(34.226.234.102) 您好!臺灣時間:2021/05/12 09:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳思穎
研究生(外文):Ssu-Ying Chen
論文名稱:光誘導不同分子大小及化學組成之腐植酸還原Cr(VI)
論文名稱(外文):The photo-induced reduction of Cr(VI) as influenced by humic acids with various molecular weights and chemical compositions
指導教授:鄒裕民
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土壤環境科學系所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:98
中文關鍵詞:腐植酸分子量六價鉻
外文關鍵詞:humic acidmolecular weightchromium
相關次數:
  • 被引用被引用:3
  • 點閱點閱:116
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腐植物質在土壤和水體中為主要有機物質之一,且強烈的影響著重金屬的宿命。在化學特性上,由於腐植物質的結構複雜且分子大小分布範圍從幾百到幾十萬道爾吞(kD),因此很難評估何種腐植質組成具有光誘導的特性,促使毒性較高的Cr(VI)經由光催化還原成Cr(III)。
在本研究中,利用超濾膜的技術,將來自於台灣北部陽明山山區所萃取出的腐植酸,分級成四種不同分子大小的物質(>100 kD、50~100 kD、10~50 kD和<10 kD),並且將分級後之各分子大小腐植酸,利用元素分析及傅立葉紅外線光譜測定其特性,並用以解釋在UV光照與否,對於不同分級大小之腐植酸移除和吸附無機污染物Cr(VI)之影響。元素分析結果顯示,碳、氫和氮均隨著腐植酸分子量變小而減少,而氧含量則呈現相反之趨勢。另外,以13C-NMR分析含碳種類,結果顯示,芳香性碳含量與羧基官能基均隨著分子量的減少而增加,而脂肪性碳則隨分子量的增大而增加。
在避光系統中,不同分級之腐植酸移除Cr(VI)之速率極緩慢,且隨著溶液中pH值的提升,Cr(VI)移除量減少;而在光照系統中,由於UV光激發腐植酸上之官能基,使其成不穩定態,因而釋放出電子,以增進Cr(VI)之還原。實驗結果顯示在本研究之實驗條件下,均以HA(<10 kD)之反應速率最快,主要可能為HA(<10 kD)具有較高的芳香族官能基及羧基含量,且有較多的含氧官能基。此結論是基於光譜分析的結果,由光譜分析腐植酸分子與Cr(VI)反應前後結構上之改變,發現經Cr(VI)反應後,腐植酸結構中的羧基、含氧官能基以及芳香性碳含量均明顯減少,由於分子越小之腐植酸具有較多之芳香性碳含量、羧基和含氧官能基,因此與Cr(VI)反應後,能較其他大分子還原較多Cr(VI)。
Humic substances (HS) strongly affect the fate of trace metals in soils and aquatic environments. Because HS is a huge organic molecules with molecular weights ranging from several hundred to several hundred thousands Daltons, the elucidation of which components of HS possess photo-induced properties responsible for photo-reduction of toxic Cr(VI) to Cr(III) is less possible. Therefore, in this study, an ultrafiltration technique was used to fractionate HS, originated from a Taiwan peat soil, into four fractions of different nominal molecular weight (>100 kD, 50~100 kD, 10~50 kD and <10 kD). The specific domains or functional groups of HA involving in Cr(VI) adsorption/reduction were then systemically evaluated. Each fraction of HS was first characterized by elemental analysis and spectroscopic techniques followed by examining the sorption and transformation of Cr(VI) on each fraction of HS under illumination. The results of elemental analysis indicated that the contents of C, H, and N decreased with a decrease in molecular weight of HAs, but the content of O exhibited an opposite tendency. 13C -NMR studies showed that the aromatic C and carboxylic C increased with decreasing the molecular weight of HAs; however, aliphatic C decreased with a smaller molecular weight of HAs.
In a dark system, Cr(VI) removal by each fraction of HAs proceeded slowly, particularly at a higher pH. The application of UV light promoted Cr(VI) reduction probably due to the enhancement of electron-transfer between reactants upon the absorption of light energy by specific functional groups on HAs. The rate of Cr(VI) reduction by HAs with a molecular weight of <10kD exhibited the highest which may be attributed to the presence of high contents of aromatic C, carboxylic groups and oxygen containing groups in this fraction of HAs. This conclusion is based on the changes in the structures of HAs before and after reacting with Cr(VI). The results of spectroscopic analysis of HAs found that Cr(VI) treatment would lead to a significant decrease in carboxyl groups, oxygen containing groups and aromatic C in HAs. Because these specific functional groups are concentrated in HAs with a molecular weight of <10kD, the rapid reduction of Cr(VI) by this fraction of HA is expected.
目 錄
謝誌……………………………………………………………………………..I
摘要……………………………………………………………………….II
Abstract….…………………………………………………………………… III
圖次…………………………………………………………………………..VII
表次………………………………………………………………………........X

第一章 緒論 …………………………………………………………………...1
1-1 研究緣起與目的 1
1-2 研究內容 2
第二章 文獻回顧……………………………………………………………...4
2-1 鉻的自然特性及應用 4
2-1-1 鉻元素的基本特性 4
2-1-2環境中鉻的移動及轉換………………………….……………7
2-1-3 鉻的危害 9
2-1-4光催化還原六價鉻…………………………………………..10
2-2環境中腐植物質之來源與基本特性 11
2-2-1 腐植物質之結構 12
2-2-2 腐植物質在環境中的行為 13
2-3 腐植酸之分級方法 14
2-4 腐植酸經分級後之結構分析 17
2-5 腐植物質之應用性………………………………………...……….18
第三章 研究方法與步驟…………………………………………………….20
3-1材料與方法 20
3-1-1 腐植酸之製備及分級方法 20
3-1-2 腐植酸特性分析方法 28
3-2 吸附催化動力學實驗 31
第四章 結果與討論………………………………………………………...35
4-1 利用超濾膜分離技術之回收率 35
4-2 不同分子大小腐植酸之鑑定分析 35
4-3 不同分子大小腐植酸之結構分析 39
4-3-1 元素分析 39
4-3-2 傅立葉紅外線光譜分析 41
4-3-3 13C核磁共振光譜分析 44
4-4 影響不同分子大小腐植酸與六價鉻反應之因素 48
4-4-1 有機碳含量之影響 48
4-4-2 UV光照之影響 50
4-4-3 溶液pH值之影響 52
4-4-3-1 於避光系統中,pH影響不同分子大小腐植酸對
Cr(VI)之轉變………………………………………53
4-4-3-2 pH影響不同分子大小腐植酸對Cr(VI)之光催化
轉變………………………………………………...59
4-5 與不同濃度的六價鉻反應後之腐植酸分子結構分析 72
4-5-1 元素分析 72
4-5-2 傅立葉紅外線光譜分析 74
4-5-3 13C核磁共振光譜分析 80
4-5-4 XANES光譜分析 86
第五章 結論………………………………………………………………….88
參考文獻……………………………………………………………………...89







圖 次
圖 2-1 酸性溶液下鉻物種的弗洛斯特圖(Frost diagram)………………….5
圖2-2 六價鉻存在型態比例與pH值關係圖……………………………….7
圖3-1 純化及萃取腐植酸之流程圖………………………………………...22
圖3-2 Molecular Stirred Cells 之細部構造…………………………………23
圖3-3於分級不同分子大小腐植酸之實驗裝置中,溶液流動之方向示意圖…………………………………………………………………………24
圖3-4 分級腐植酸分子大小之實驗裝置圖………………………………...25
圖 3-5計算HPSEC圖譜之示意圖。(a)將波峰分成五個區塊來進行計算 (b)藉由標準球蛋白質所得之標準曲線……………………………...……...27
圖3-6 實驗設計之流程圖……………………………………………..……29
圖3-7 不同分子大小腐植酸之Cr(VI)吸附及還原動力實驗架構圖……..32
圖3-8 光催化反應裝置及反應箱內光源相對位置圖…………………..…34
圖4-1 經由HPSEC分析後之球蛋白標準樣品(a)及所得之標準曲線(b).....37
圖4-2經分級後,四種不同分子大小腐植酸………………………………38
圖4-3 不同分子大小腐植酸之紅外線光譜圖(a)、波數2400-3200 cm-1之放大圖(b) …………………………………………………………………...42
圖4-4 不同分子大小腐植酸之CPMAS 13C NMR光譜圖………………45
圖4-5 UV光照下,溶液為pH 1.0時,不同TOC之濃度對於HA (<10 kD)移除Cr(VI)之影響... ..……………………………………………………49
圖 4-6 溶液pH為1.0時,不同分子大小腐植酸在照光與避光時對0.1923 mM Cr(VI)之移除。(A) HA (bulk) (B) HA (>100 kD) (C) HA (50~100 kD) (D) HA (<10 kD) ………………………………………………………….51
圖 4-7 於避光系統下,溶液pH值為1.0時,不同分子大小腐植酸(初始TOC濃度約26 mg L-1),與0.1923 mM Cr(VI)反應後,Cr(VI)轉變情形(A) HA (bulk) (B) HA (>100 kD) (C) HA (50~100 kD) (D) HA (<10 kD) ………………………………………………………………………54
圖 4-8 於避光下,溶液pH值為3.0時,不同分子大小腐植酸(初始TOC濃度約26 mg L-1),與0.1923 mM Cr(VI)反應後,Cr(VI)轉變情形。
(A) HA (bulk) (B) HA (>100 kD) (C) HA (50~100 kD) (D) HA (<10 kD)…………………………………………………………………………58
圖4-9 UV光照下,溶液pH值為1.0時,不同分子大小腐植酸移除0.1923 mM Cr(VI)之效率………………………………………………..………60
圖 4-10於UV光下,溶液pH值為1.0時,不同分子大小腐植酸,與0.1923 mM Cr(VI)反應後,Cr(VI)之轉變情形。(A) HA (bulk) (B) HA (>100 kD) (C) HA (50~100 kD) (D) HA (<10 kD)……………………………..………..63
圖4-11 UV光照下,溶液pH值為3.0時,不同分子大小腐植酸移除0.1923 mM Cr(VI)之效率………………………………………………….…….65
圖 4-12 於UV光下,溶液pH值為3.0時,不同分子大小腐植酸,與0.1923 mM Cr(VI)反應後,Cr(VI)之轉變情形。(A) HA (bulk) (B) HA (>100 kD) (C) HA (50~100 kD) (D) HA (<10 kD)……………………..……………67
圖 4-13 UV光照下,溶液pH值為5.0時,不同分子大小腐植酸移除0.1923 mM Cr(VI)之效率………………………………………………..……….69
圖 4-14 於UV光下,溶液pH值為5.0時,不同分子大小腐植酸,與0.1923 mM Cr(VI)反應後,Cr(VI)之轉變情形。(A) HA (bulk) (B) HA (>100 kD) (C) HA (50~100 kD) (D) HA (<10 kD)…………………………..…..…..71
圖 4-15在UV光照下,溶液為pH 1.0時,HA (bulk)與不同濃度Cr(VI)反應前後之紅外線光譜圖…………………………………………………..75
圖 4-16在UV光照下,溶液為pH 1.0時, HA (>100 kD),與不同濃度Cr(VI)反應前後之紅外線光譜圖…………………………………..….....77
圖 4-17 HA (bulk)分別與100 mg L-1 Cr(VI)和100 mg L-1 Cr(III)反應之紅外線光譜圖…………………………………………………………..……...79
圖 4-18 HA (bulk)與不同濃度Cr(VI)反應前後之13C NMR光譜圖……….81
圖 4-19 HA (>100 kD)與不同濃度Cr(VI)反應前後之13C NMR光譜圖…84
圖 4-20 於UV光照下,溶液pH值為1.0時,HA(bulk)和HA(>100 kD)與100 mg L-1 Cr(VI)吸附後及標準品之XANES圖譜………………….… 87

表次
表 2-1環保署規定各項水體中鉻標準...........................................................9
表 4-1不同分子大小腐植酸之產率、分子量、元素組成、原子比和E4/E6值.............................................................................................................36
表4-2 傅立葉紅外線光譜之含碳官能基.....................................................43
表 4-3 不同分子大小腐植酸之13C NMR光譜圖中,含碳官能基之分布率及其芳香性、脂肪性……....................................................................47
表 4-4於避光系統下,溶液pH值為1.0時,不同分子大小腐植酸對於Cr(VI)之零級、一級和二級反應速率方程式........................................56
表 4-5 於UV光下,溶液pH值為1.0時,不同分子大小腐植酸對於Cr(VI)之一級反應速率方程式………….........................................................61
表4-6於UV光下,溶液pH值為3.0時,不同分子大小腐植酸對於Cr(VI)之一級反應速率方程式……………………….....................................66
表 4-7於UV光下,溶液pH值為5.0時,不同分子大小腐植酸對於Cr(VI)之零級、一級和二級反應速率方程式………………………….........70
表4-8 HA(bulk)與100 mg L-1 Cr(VI)反應前後之元素組成........................73
表4-9 HA(>100 kD)與100 mg L-1 Cr(VI)反應前後之元素組成……….....74
表 4-10 HA (bulk)與不同濃度Cr(VI)反應後之13C NMR光譜圖中,含碳官能基之分布率及其芳香性、脂肪性……...........................................82
表 4-11 HA (>100 kD)與不同濃度Cr(VI)反應後之13C NMR光譜圖中,含碳官能基之分布率及其芳香性、脂肪性…………...............................85
王一雄。1997. 土壤環境化學。明文書局。
黃盈盈。2006。重複萃取腐植酸之結構特性及其對2,4,6-三氯酚吸附之影響,碩士論文,中興大學,台中。
Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for Chlordane. U.S. Department of Human and Health Services, Public Health Service, Atlanta, GA.
Aiken, G.R., and R.L. Malcolm. 1987. Molecular weight of aquatic fulvic acids by vapor pressure osmometry. Geochim. Cosmochim. Acta 51:2177-2184.
Anderson, R.A. 1989. Essentiality of chromium in humans. Sci. Total Environ. 86:75-81.
Baes, C.F.J., and R.E. Messmer. 1976. The Hydrolysis of Cations. Wiley, New York.
Baes, A.U., and P.R. Bloom. 1989. Disffuse reflectance and transmission Fourier transform infrared (DRIFT) spectroscopy of humic and fulvic acids. Soil Sci. Soc. Am. J. 53:695-700.
Bartlett, R.J., and B.R. James. 1996. Methods of soil analysis. 3ed. SSSA, Madison, WI.
Belzile, N., H.A. Joly, and H. Li. 1997. Characterization of humic substances extracted from Canadian lake sediments. Cana. J. Chem. 75:14-27.
Benner, R., B. Biddanda, B. Black, and M. McCarthy. 1997. Abundance, size distribution, and stable carbon and nitrogen isotopic compositions of marine organic matter isolated by tangential-flow ultrafiltration Mar. Chem. 57:243-263.
Buffle, J., P. Deladoey, and W. Haerdi. 1978. The use of ultrafiltration for the separation and fractionation of organic ligands in fresh waters. . Anal. Chim. Acta 101:339-357.
Cabaniss, S.E., Q. Zhou, P.A. Maurice, Y.P. Chin, and G.R. Aiken. 2000. A log-normal distribution model for the molecular weight of aquatic fulvic acids. Environ. Sci. Technol. 34:1103-1109.
Cameron, R.S., R.S. Swift, B.K. Thornton, and A.M. Posner. 1972. Calibration of gel permeation chromatography materials for use with humic acid. J. Soil Sci. 23:342-349.
Chen, Y., N. Senesi, and M. Schnitzer. 1977. Information provied on humic substances by E4/E6 ratios. Soil Sci. Soc. Am. J. 41:352-358.
Chen, B., B.J. Johnson, B. Chefetz, L. Zhu, and B. Xing. 2005. Sorption of polar and nonpolar aromatic organic cintaminants by plant cuticular materials: Role of polarity and accessibility. Environ. Sci. Technol. 39:6138-6146.
Cheryan, M. 1998. Ultrafiltration and Microfiltration Handbook. Technomic Publishing Company, Inc, Pennsylvania.
Chien, Y.Y., and W.F. Bleam. 1998. Two-dimensional NOESY nuclear magnetic resonance study of pH-dependent changes in humic acid conformation in aqueous solution. Environ. Sci. Technol. 32:3653-3658.
Chin, Y.P., G. Aiken, and E. O`Loughlin. 1994. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol. 28:1853-1858.
Chiou, C.T., R.L. Malcolm, T.I. Brinton, and D.E. Kile. 1986. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ. Sci. Technol. 20:502-508.
Christl, I., H. Knicker, I. Kogel-Knabner, and R. Kretzschmar. 2000. Chemical heterogeneity of humic substances: characterization of size fractions obtained by hollow-fibre ultrafiltration. Euro. J. Soil Sci. 51:617-625.
Christl, I., C.J. Milne, D.G. Kinniburgh, and R. Kretzschmar. 2001. Relating ion binding byfulvic and Humic Acids to Chemical Composition and Molecular Size. 2. Metal Binding. Environ. Sci. Technol. 35:2512-2517.
Cieśla, P., P. Mytych, and Z. Stasicka. 2004. Homogeneous photocatalysis by transition metal complexes in the environment. J. Mol. Catal. A-Chem. 224:17-33.
Clapp, C.E., and M.H.B. Hayes. 1999. Sizes and shapes of humic substances. Soil Sci. 164:777-789.
Conte, P., and A. Piccolo. 1999. Conformational arrangement of dissolved humic substances. Influence of solution composition on association of humic molecules. Environ. Sci. Technol. 33:1682-1690.
Conte, P., R. Spaccini, and A. Piccolo. 2006. Advanced CPMAS-13C NMR techniques for molecular characterization of size-separated fractions from a soil humic Anal. Bioanal. Chem. 386:382-390.
Cotton, F.A., and G. Wilkinson. 1980. Advanced organic chemistry : a comprehensive text. 4ed. John Wiley and Sons, New York.
Cotton, A.F., and G. Wilkinson. 1988. Advanced Inorganic Chemistry, 5th edn. John Wiley and Sons, New York.
Davis, J.A., and R. Gloor. 1981. Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight. Environ. Sci. Technol. 15:1223-1229.
De Nobili, M., E. Gjessing, and P. Sequi. 1989. Sizes and shapes of humic substances by gel chromatography., p. 561-591, In M. H. B. Hayes, et al., eds. Humic Substances II. John Wiley and Sons Ltd., New York.
De Nobili, M., and Y. Chen. 1999. Size Exclusion Chromatography of Humic Substances: Limits, Perspectives and Prospectives. Soil Science 164:825-833.
DeWit, J.C.M., W.H.V. Riemsdijk, and L.K. Koopal. 1993. Proton binding to humic substances. 1. Electrostatic effects. Environ. Sci. Technol. 27:2005-2014.
Environmental Protection Agency, U.S. (USEPA). 1998. Toxicological review of trivalent chromium.
Eyrolle, F., M.F. Benedetti, J.Y. Benaim, and D. Fèvrier. 1996. The distributions of colloidal and dissolved organic carbon, major elements, and trace elements in small tropical catchments. Geochim. Cosmochim. Acta 60:3643-3656.
Firestone, R.B. 2002. Elemental aabundances (Table 2) [Online]. Available by Lawrence berkeley national laboratory isotopes project - Lund Nuclear Data http://ie.lbl.gov/toi.html.
Fisher, J.A. 1990. The Chromium Program. Harper and Row, New York.
Fukushima, M., and K. Tatsumi. 1999. Light acceleration of iron(III) reduction by humic acid in the aqueous solution . Coll. Surf. A 155:249-258.
Gauthier, T.D., W.R. Seitz, and C.L. Grant. 1987. Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values. Environ. Sci. Technol. 21:243-248.
Ghosh, K., and M. Schnitzer. 1980. Macromolecular Structures of Humic Substances. Soil Sci. 129:266-276.
Guertin, J., J.A. Jacobs, and C.P. Avakian. 2005. Chromium (VI) handbook. CRC Press, New York.
Hayes, M.H.B. 1985. Extraction of humic substances from soil., p. 329-361, In G. R. Aiken, ed. Humic substances in soil, sediment and water. Geochemistry, isolation and characterization. Wiley Intersci., New York.
Henderson, P. 1982. Inorganic Geochemistry Pergamon Press, Oxford, UK.
Higgins, T.E., A.R. Halloran, and J.C. Petura. 1997. Traditional and Innovative treatment methods for Cr(VI) in soil. J. Soil Contam. 6:767-797.
Irvine, G.B. 2002. Molecular weight estimation for native proteins using High-Performance Size-Exclusion Chromatography, In J. M. Walker, ed. The Protein Protocols Handbook, 2nd Edition. Humana Press Inc., Totowa, NJ.

Jacobs, J.A., and S.M. Testa. 2005. Overview of chromium(VI) in the environment: background and history. In: J. Guertin, Jacobs JA, Avakian CP (eds) Chromium(VI) handbook. CRC Press Inc., Boca Raton, FL.
James, B.R., and R.J. Bartlett. 1983a. Behavior of chromium in soils. V. Fate of organically complexed Cr (III) added to soil. J. Environ. Qual. 12:169-172.
James, B.R., and R.J. Bartlett. 1983b. Behavior of chromium in soils. VI. Interactions between oxidation-reduction and organic complexation. J. Environ. Qual. 12:173-176.
John, J., B. Salbu, E.T. Gjessing, and H.E. Bjornstad. 1988. Effect of pH, humus concentration and molecular weight on conditional stability constants of cadmium Water Res. 22:1381-1388.
Kang, S., D. Amarasiriwardena, P. Veneman, and B. Xing. 2003. Characterization of ten sequentially extracted humic acids and a humin from a soil in western Massachusetts. Soil Sci. 168:880-887.
Kang, S., and B. Xing. 2005. Phenanthrene sorption to sequentially extracted soil humic acids and humins. Environ. Sci. Technol. 39:134-140.
Katritzky, A.R., V.S. Lobanov, and M. Karelson. 1995. QSPR: the correlation and quantitative prediction of chemical and physical properties from structure. Chem. Soc. Rev, 24:279.
Kawahigashi, M., H. Sumida, and K. Yamamoto. 2005. Size and shape of soil humic acids estimated by viscosity and molecular weight. J. Coll. and Interf. Sci. 284:463-469.
Klavins, M. 1997. Aquatic humic substances: Characterisation, structure and genesis University of Latvia, Riga. 78-104
Klavins, M., and J. Serzane. 2000. Use of humic substances in remediation of contaminated environments. In: Bioremadiation of contaminated soil:217-236.
Kleber, R.J., and G.R. Helz. 1992. Indirect Photoreduction of Aqueous Chromium(V I). Environ. Sci. Technol. 26:307-312.
Kotaś, J., and Z. Stasicka. 2000. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 107:263-283.
Kudryavtsev, A.V., I.V. Perminova, and V.S. Petrosyan. 2000. Size-exclusion chromatographic descriptors of humic substances. Anal. Chim. Acta 407:193-202.
Kukkonen, J., and A. Oikari. 1991. Bioavailability of organic pollutants in boreal waters with varying levels of dissolved organic material. Water Res. 25:445-463.
Lakshman, S., R. Mills, H. Patterson, and C. Cronan. 1993. Apparent differences in binding site distributions and aluminium(III) complexation for three molecular weight fractions of a coniferous soil fulvic acid. Anal. Chim. Acta 282:101-108.
Leboeuf, E.J., and J.W.J. Weber. 1997. A distributed reactivity model for sorption by soils and sediments. 8. Sorbent organic domains: discovery of a humic acid glass transition and an argument for a polymer-based model. Environ. Sci. Technol. 31:1697-1702.
Leboeuf, E.J., and J.W.J. Weber. 2000a. Macromolecular characteristics of natural organic matter. 2. Sorption and desorption behavior. Environ. Sci. Technol. 34:3632-3640.
Leboeuf, E.J., and J.W.J. Weber. 2000b. Macromolecular characteristics of natural organic matter. 1. Insight from glass transition and Enthalpic Relaxation Behavior. Environ. Sci. Technol. 34:3623-3631.
Li, L., W. Huang, P. Peng, G. Sheng, and J. Fu. 2003. Chemical and molecular heterogeneity of humic acids repetitively extracted from a peat. Soil Sci. Soc. Am. J. 67:740-746.
Li, L., Z. Zhao, W. Huang, P. Peng, G. Sheng, and J. Fu. 2004. Characterization of humic acids fractionated by ultrafiltration. Org. Geochem. 35:1025-1037.
Liang, B.C., E.G. Gregorich, M. Schnitzer, and H.R. Schulten. 1996. Characterization of water extracts of two manures and their adsorption on soil. Soil Sci. Soc. Am. J. 60:1758-1763.
Lipskic, M., J. Slawinski, and D. Zych. 1999. Changes in the luminescent properties of humic acids induced by UV radiation. J. Fluoresc. 9:133-138.
Livens, F. 1991. Chemical reaction of metals with humic materials. Environ. Pollut. 70:183-208.
Lobartini, J.C., G.A. Orioli, and K.H. Tan. 1997. Characteristics of soil humic acid fractions separated by ultrafiltration. Commun. Soil Sci. Plant Anal. 28:789-796.
Lovley, D.R., J.D. Coatest, E.L. Blunt-Harris, E.J.P. Phillipst, and J.C. Woodward. 1996. Humic substances as electron acceptors for microbial respiration. Nature 382:445-448.
Lu, X.Q., J.V. Hanna, and W.D. Johnson. 2000. Source indicators of humic substances: an elemental composition, solid state 13C CP/MAS NMR and Py-GC/MS study. Appl. Geochem. 15:1019-1033.

Lund, M.A., and D.S. Ryder. 1997. Can artificially generated gilvin (g440m-1, Gelbstoff) be used as a tool for lake restoration? Verh. Int. Verein. Limmnol. 26:731-735.
Malcolm, R.L. 1989. Application of solid state 13C NMR spectroscopy to Geochemical structure of humic sub-stances., In M. H. B. Hayes, et al., eds. Humic Substances II. In Search of Structure. John Wiley and Sons, New York.
McCarthy, J.F., L.E. Roberson, and L.W. Burris. 1989. Association of benzo(a)pyrene with dissolved organic matter: prediction of Kdom from structural and chemical properties of the organic matter. Chemosphere 19:1911-1920.
Morel, F., and J.G. Hering. 1993. Principles and applications of aquatic chemistry, Francois.
Mytych, P., P. Cieśla, and Z. Stasicka. 2001. Photoredox reactions of environmental chromium. Int. J. Photoenergy. 3:181-186.
Mytych, P., and Z. Stasicka. 2004. Photochemical reduction of chromium(VI) by phenol and its halogen derivatives. Appl. Catal. B-Environ. 52:167-172.
Nakamoto, K. 1986. Spectra of inorganic and coordination compounds Infrared and Raman spectra of inorganic and coordination compounds. Wiley, New York.
Paolis, F.D., and J. Kukkonen. 1997. Binding of organic pollutants to humic and fulvic acids: Influence of pH and the structure of humic material. Chemosphere 34:1693-1704.
Peuravuori, J., and K. Pihlaja. 1998. Molecular size distribution and spectroscopic properties of aquatic humic substances Anal. Chim. Acta 364:203-221.
Piccolo, A., S. Nardi, and G. Concheri. 1996. Miccele-like conformation of humic substances as revealed by size exclusion chromatography. Chemosphere 33:595-602.
Piccolo, A., P. Conte, and A. Cozzolino. 1999. Effects of mineral and monocarboxylic acids on the molecular association of dissolved humic substances. Euro. J. Soil. Sci. 50:687-694.
Piccolo, A., P. Conte, E. Trivellone, B.V. Lagen, and P. Buurman. 2002. Reduced heterogeneity of a lignite humic acid by preparative HPSEC following interaction with an organic acid. Characterization of size-separates by Pyr-GC-MS and 1H-NMR spectroscopy. Environ. Sci. Technol. 36:76-84.
Pignatello, J.J. 1998. Soil organic matter as a nanoporous sorbent of organic pollutants. Adv. Colloid. Interfac. 76-77:445-467.
Rai, D., B.M. Sass, and D.A. Moore. 1987. chromium (III) hydrolysis constants and solubility of chromium (III) hydroxide. Inorg. Chem. 26:345-349.
Regina M. B. O. Duarte, Eduarda B. H. Santos, and Armando C. Duarte. 2003. Spectroscopic characteristics of ultrafiltration fractions of fulvic and humic acids isolated from an eucalyptus bleached Kraft pulp mill effluent Water Res. 37:4073-4080.
Richard, F.C., and A.C.M. Bourg. 1991. Aqueous geochemistry of chromium: A review. Water Res. 25:807-816.
Sass, B.M., and D. Rai. 1987. Solubility of amorphous chromium (III)-iron (III) hydroxide solid solutions. Inorg. Chem. 26:2228-2232.
Schnitzer, M., and S.U. Khan. 1972. Humic substances in the environment., p. 57-60, In M. Dekker, ed., New York.
Seigneur, C., and E. Constantinou. 1995. Chemical kinetic mechanism for atmospheric chromium. Environ. Sci. Technol. 29:222-231.
Sene, C.F.B., M.C. McCann, R.H. Wilson, and R. Grinter. 1994. Fourier-transform Raman and Fourier-transform infrared spectroscopy. An investigation of five higher plant cell walls and their components. Plant Physiol. 106:1623-1631.
Shin, H.S., J.M. Monsallier, and G.R. Choppin. 1999. Spectroscopic and chemical characterizations of molecular size fractionated humic acid. Talanta 50:641-647.
Shriver, D.F., P.W. Atkins, and C.H. Langford. 1994. Inorganic Chemistry. 2nd ed. Oxford University Press, Oxford.
Silva, S., B. Zanetti, E. Burzoni, G. DelTAgnola, and S. Nardi. 1981. Caratteristiche spettrofluorimetriche e potere complessante di acidi umici a diverso peso molecolare. Agrochimica 25:131-141.
Stanin, F.T. 2005. The transport and fate of chromium(Ⅵ) in the environment, p. 186-190, In J. Guertin, et al., eds. Chromium(Ⅵ) handbook. CRC Press, New York.
Steelink, C. 1985. Implications of elemental characteristics of humic substances., p. 457-476, In G. R. Aiken, et al., eds. Humic Substance in Soil, Sediment and Water. John Wiley and Sons, New York.
Stevenson, F.J. 1982. Humus Chemistry: Genesis, Composition, Reactions. Wiley, New York.
Stevenson, F.J. 1994. Humus Chemistry: Genesis, Composition, Reactions, second ed. John Wiley and Sons, New York.
Summers, R.S., P.K. Cornel, and P.V. Roberts. 1987. Molecular size distribution and spectroscopic characterization of humic substances. Sci. Total Environ. 62:27-37.
Sutton, R., and G. Sposito. 2005. Molecular structure in soil humic substances: The New View. Environ. Sci. Technol. 39:9009-9015.
Swift, R.S. 1985. Fractionation of soil humic substances., p. 387-408, In G. R. Aiken, ed. Humic substances in soil, sediment and water. Wiley Intersci., New York.
Swift, R.S. 1989. Molecular weight, size, shape, and charge characteristics of humic substances: some basic considerations., p. 449-465, In M. H. B. Hayes, et al., eds. Humic Substances: II. John Wiley and Sons, New York
Swift, R.S., R.L. Leonard, R.H. Newman, and B.K.G. Theng. 1992. Changes in humic acid composition with molecular weight as detected by 13C-nuclear magnetic resonance spectroscopy. Sci. Total Environ. 117/118:53-61.
Tanaka, T., S. Nagao, Y. Sakamoto, T. Ohnuki, S.W. Ni, and M. Senoo. 1997. Distribution coefficient in the sorption of radionuclides onto Ando soil in the presence of humic acid: Influence of the molecular size of humic acid. J. Nucl. Sci. Technol. 34:829-834.
Tombacz, E. 1999. Colloidal properties of humic acids and spontaneous change of their colloidal state under variable solution conditions. Soil Sci. 164:814-824.
Traina, S.J., J. Novak, and N.E. Smeck. 1990. An Ultraviolet absorbance method of estimating thepercent aromatic carbon content of humic acids. J. Environ. Qual. 19:151-153.
Trubetskoj, O.A., O.E. Trubetskaya, G.V. Afanas''eva, O.I. Reznikova, and C. Saiz-Jimenez. 1997. Polyacrylamide gel electrophoresis of soil humic acid fractionated by size-exclusion chromatography and ultrafiltration. J. Chromatogr. A 767:285-292.
Tzou, Y.M. 2001. Surface and solution abiotic processes in the redox transformations of chromium, Texas A&M University, Texas.
Tzou, Y.M., R.H. Loeppert, and M.K. Wang. 2003. Light-catalyzed chromium(VI) reduction by organic compounds and soil minerals. J. Environ. Qual. 32:2076-2084.
Uyguner, C.S., and M. Bekbolet. 2004. Evalution of humic acid, chromium (VI) and TiO2 ternary system in relation to adsorptive interactions. Appl. Catal. B-Environ. 49:267-275.

Uyguner, C.S., and M. Bekbolet. 2005. Evaluation of humic acid photocatalytic degradation by UV-vis and fluorescence spectroscopy. Catal. Today 101:267-274.
Vermrer, A.W.P., and L.K. Koopal. 1998. Adsorption of humic acids to mineral particles. 2. Polydispersity effects with polyelectrolyte adsorption. Langmuir 14:4210-4216.
Vitale, R.J., G.R. Mussoline, K.A. Rinehimer, J.C. Petura, and B.R. James. 1997. Extraction of sparingly soluble chromate from soils: Evaluation of methods and Eh-pH effects. Environ. Sci. Technol. 31:390-394.
Wang, X., S.O. Pehkonen, and A.J. Ray. 2004. Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation. Ind. Eng. Chem. Res. 43:1665-1672.
Wasscheleyn, P.H., J.H. Pardue, R.D. DeLaune, and W.H. Jr. 1992. Effect of redox [otential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. 26:1217-1226.
Weber, J.H. 1988. Binding and transport of metals by humic materials., In F. H. Frimmel and R. F. Christman, eds. Humic Substances and Their Role in the Environment. John Wiley and Sons, Chichester.
Weber, W.J., P.M.J. McGinley, and L.E. Katz. 1992. A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments. Environ. Sci. Technol. 26:1955-1962.
Wershaw, R.L. 1986. A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment-water systems. J. Contamin. Hydro. 1:29-45.
Williams, C.F., J. Letey, W.J. Farmer, S.D. Nelson, M. Anderson, and M. Ben-Hur. 1999. Efficiency of hexane extraction of napropamide from aldrich humic acid and soil solution. J. Environ. Qual. 28:1751-1757.
Wilson, M.A. 1987. NMR Techniques and Application in Geochemistry and Soil Chemistry. Pergamon, Oxford.
Wittbrodt, P.R., and C.D. Palmer. 1995. Reduction of Cr(VI) in the presence of excess soil fulvic acid. Environ. Sci. Technol. 29:255-263.
Wittbrodt, P.R., and C.D. Palmer. 1996. Reduction of Cr(V1) by soil humic acids. Euro. J. Soil. Sci. 47:151-162.
Xing, B., and Z. Chen. 1999. Spectroscopic evidence for condensed domains in soil organic matter. Soil Sci. 164:40-47.
Xing, B. 2001. Sorption of naphthalene and phenanthrene by soil humic acids. Environ. Pollut. 111:303-309.

Yang, J.K., and S.M. Lee. 2006. Removal of Cr(VI) and humic acid by using TiO2 photocatalysis. Chemosphere 63:1677-1684.
Zachara, J.M., C.C. Ainsworth, C.E. Cowan, and C.T. Resch. 1989. Adsorption of chromate by subsurface soil horizons. Soil Sci. Soc. Am. J. 53:418-428.
Zhilin, D.M., P. Schmitt-Kopplin, and I.V. Perminova. 2004. Reduction of Cr(VI) by peat and coal humic substances. Environ. Chem. Lett. 2:141-145.
Zhou, R., S. Shi, and C.I. Wu. 2005. Molecular criteria for determining new hybrid species—An application to the Sonneratia hybrids. Mol. Phylogenet. Evol. 35:595-601.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔