(3.230.154.160) 您好!臺灣時間:2021/05/07 23:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鍾享牟
研究生(外文):Hsiang-Mou Chung
論文名稱:Au-20wt.%Sn銲料與Cu基材之界面反應
論文名稱(外文):Interfacial reactions of Au-20wt.%Sn solder on Cu substrate
指導教授:陳志銘陳志銘引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:67
中文關鍵詞:介金屬化合物枝晶共晶
外文關鍵詞:intermetallic compounddendriteeutectic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在光學與電子封裝上常使用Au-20wt.%Sn共晶銲料做為焊接材料,而Cu是常見的金屬基材,因此本研究探討不同體積之Au-20wt.%Sn銲料與Cu基材於330℃與310℃焊接後的微結構演化。回焊1min後的凝固銲料內部會形成薄片狀介金屬化合物(intermetallic compound, IMC)ζ-(Au,Cu)5Sn + δ-(Au,Cu)Sn二相,於銲料與Cu基材的界面處會形成ζ-(Au,Cu)5Sn與AuCu固溶體,其中ζ-(Au,Cu)5Sn相會以不規則的柱狀型態析出在界面處。隨著回焊時間增加,銲料內部粗化的薄片狀介金屬化合物會漸漸增加。當銲料體積從4.00±0.3mg縮小至2.11±0.26mg時,形成枝晶(dendrite)結構ζ-(Au,Cu)5Sn相的量愈多。當以furnace-cooling、fan-cooling、ice-cooling等不同方式冷卻,會影響凝固時的枝晶結構。由垂直截面示意相圖(vertical section)可得知銲料凝固路徑是經由L+ζ→L+ζ+δ→ζ+δ,因此提早析出的ζ與δ相於凝固時會有粗化之現象,並在銲料內部形成粗與細緻薄片狀IMC。從不同回焊溫度可知枝晶結構形成與Cu的溶解量相關,Cu溶解量大,會使銲料組成從原本之共晶(eutectic)轉變成亞共晶(hypo-eutectic),而使液/固界面發生過冷,於凝固時形成柱狀晶結構。Au20Sn/Cu回焊凝固後,界面處不規則成長之ζ-(Au,Cu)5Sn相與銲料內部的枝晶成長等微結構的演化,可以使用二元相圖與垂直截面示意相圖解釋。不同體積銲料於230℃熱處理後,銲料內部薄片狀結構ζ-(Au,Cu)5Sn與δ-(Au,Cu)Sn皆有粗化之現象,可以使用Gibbs-Thomson effect 解釋。熱處理期間銲料內部ζ-(Au,Cu)5Sn相會在界面處成長,在熱處理一天後便有層狀AuCu與AuCu3二相之介金屬化合物形成,且層狀結構隨著熱處理時間增加而增厚。
Eutectic Au-20wt%.Sn (Au20Sn) solder alloy is commonly used in bonding applications for microelectronic and optoelectronic packages. The copper is a common substrate used in electronic equipment. The subject of this study is to investigate the microstructure evolution of the Au20Sn solder reflowed on Cu with different solder volumes of 5.4×109 and 2.84×108m3. After reflow for 1min, the as-solidified solder matrix presented a typical eutectic ζ-(Au,Cu)5Sn + δ-(Au,Cu)Sn lamellar microstructure and two phases, ζ-(Au,Cu)5Sn and AuCu, were formed at the solder/Cu interface. The ζ-(Au,Cu)5Sn phase grew very irregularly at the interface. Upon increasing the reflow time, part of the fine lamellar microstructure coarsened in the as-solidified solder matrix, and therefore the solder matrix displayed a composite microstructure of fine lamellar eutectic and coarse eutectic. In addition, dendritic growth of the ζ-(Au,Cu)5Sn phase was observed and the dendrites were found to grow at a faster rate in the solder matrix of smaller volume. The microstructural evolution at the Au20Sn/Cu solder joint during reflow, including irregular growth of ζ-(Au,Cu)5Sn at the interface, dendritic growth of ζ-(Au,Cu)5Sn in the solder matrix, and development of eutectic microstructure, was explained using related phase diagram and vertical section. After solid-state aged for 1day to 120days at 230℃, eutectic ζ-(Au,Cu)5Sn + δ-(Au,Cu)Sn lamellar microstructure coarsed. This phenomenon can be explained by Gibbs-Thomson effect . The ζ-(Au,Cu)5Sn phase grew at the interface,and it’s microstructure changed from irregular pillars to layer.
目錄
誌謝------------------------------------------------------Ⅰ
摘要------------------------------------------------------Ⅱ
Abstract---------------------------------------------------Ⅲ
目錄------------------------------------------------------Ⅳ
表目錄----------------------------------------------------Ⅵ
圖目錄----------------------------------------------------Ⅶ
一、 前言---------------------------------------------------1
二、 文獻回顧-----------------------------------------------2
2-1 電子封裝技術簡介-------------------------------------2
2-2 覆晶構裝---------------------------------------------4
2-3 傳統錫鉛銲料與無鉛銲料之特性-------------------------7
2-3-1 傳統錫鉛銲料--------------------------------------7
2-3-2 無鉛銲料特性--------------------------------------8
2-4 界面反應---------------------------------------------9
2-4-1 三元系統相平衡-----------------------------------12
2-4-2 Au-20wt%Sn銲料/Cu之界面反應---------------------18
2-5 體積效應--------------------------------------------23
2-6 凝固理論--------------------------------------------27
2-6-1 凝固過程-----------------------------------------27
2-6-2 組成過冷與凝固模式-------------------------------27
三、 實驗方法----------------------------------------------34
3-1 銲錫合金製備----------------------------------------34
3-2 管狀高溫爐之升溫曲線--------------------------------35
3-3 Au20Sn/Cu之液/固界面反應----------------------------35
3-4 冷卻速率對微結構之影響----------------------------37
3-5確認71Au29Sn-Cu近320℃之垂直截面相圖-----------37
3-6 Au20Sn/Cu之固/固界面反應----------------------------38
四、 實驗結果與討論----------------------------------------40
4-1 回焊期間之界面反應----------------------------------41
4-1-1 330℃下4.00±0.3mg Au20Sn/Cu之液/固界面反應--------41
4-1-2 330℃下2.11±0.26mg Au20Sn/Cu之液/固界面反應-------44
4-1-3冷卻速率對微結構之影響---------------------------48
4-1-4 71Au29Sn-Cu近320℃之垂直截面相圖------------51
4-1-5 310℃下Au20Sn/Cu之液/固界面反應------------------53
4-1-6 Cu溶解量之計算-----------------------------------54
4-1-7 330℃下4.00±0.3mg Au20Sn/Ag/Cu之液/固界面反應-----55
4-2不同體積Au20Sn/Cu之固/固界面反應-----------------58
五、 結論--------------------------------------------------62
六、 參考文獻----------------------------------------------63

表目錄

表2-1 Sn3AgxCu/Ni於235℃回焊20min產物組成----------------25
表3-1 Au-Sn-Cu 310℃三元相平衡合金配置表-------------------37
表4-1圖4.3(d)各點之組成分析--------------------------------42
表4-2 Cu溶入不同銲料體積之Au-20wt%.Sn後改變之重量比------46

圖目錄

圖2.1:電子封裝層級之示意圖---------------------------------2
圖2.2:IC元件於封裝上之演進圖-------------------------------3
圖2.3:覆晶與打線接合之差異---------------------------------5
圖2.4:FCBGA之結構示意圖-----------------------------------5
圖2.5:Sn-Pb相圖--------------------------------------------7
圖2.6:Au-Sn相圖-------------------------------------------11圖2.7:Sn-Au-Cu三元系統於360℃下的等溫橫截面圖-------------13
圖2.8:320℃附近之Au-Cu-Sn三元相圖:(a)溫度高過320℃ (b)溫度於320℃ (c)溫度低過320℃----------------------------14
圖2.9:71Au29Sn-Cu近320℃之垂直截面示意圖-----------------15
圖2.10:Sn-Au-Cu三元系統於200℃下的等溫橫截面圖------------16
圖2.11:Sn-Au-Cu三元系統於190℃下的等溫橫截面圖------------17
圖2.12:Au20Sn/Cu於280-315℃間回焊75秒SEM橫截面圖--------19
圖2.13:Au20Sn/Cu於200℃熱處理(a)1天(b)4天(c)80day----------19
圖2.14:Cu/Au20Sn/Cu於280-315℃間回焊10分鐘(a)一般接合的微結構(b)未接合的微結構---------------------------------20
圖2.15:Cu/Au20Sn/Cu於200℃熱處理50day(a)低倍率(b)高倍率----20
圖2.16:薄片Au20Sn/Cu於310℃回焊(a)1分鐘(b)5分鐘(c)15分鐘(d)30分鐘(e)60分鐘---------------------------------------21
圖2.17:薄片Au20Sn/Cu於250℃熱處理(a)100小時(b) 250小時(c) 500小時(d) 1000小時------------------------------------22
圖2.18:Sn3.9Ag0.6Cu/Ni 於250℃回焊10min (a)橫截面圖(b)蝕刻後之(Cu1-yNiy)6Sn5表面圖----------------------------------24
圖2.19:Sn3.9Ag0.2Cu/Ni 於250℃回焊10min(a)橫截面圖(b)蝕刻後之(Ni1-xCux)3Sn4表面圖----------------------------------25
圖2.20:Sn3AgxCu與Ni/Cu襯墊於235℃回焊20分鐘,銲球直徑760μm[(a),(d),(g)],500μm[(b),(e),(h)],300μm[(c),(f),(i)],x值0.6wt.%[(a)-(c)],0.5wt.%[(d)-(f)],0.4wt.%[(g)-(i)] ----------26
圖2.21:Al-4.5%Cu固/液相等溫單向凝固程序圖-----------------29
圖2.22:合金凝固之組成過冷(a)相圖(b) 固/液界面前形成富溶質層 (c)穩定界面(d)不穩定界面-------------------------------29
圖2.23:平坦界面崩解逐漸形成胞狀晶-------------------------30
圖2.24:不同成長速率之成長結構(a)低成長速率下成規則的胞狀晶(b) 以<100>成長方向之規則的胞狀晶(c)凸緣胞狀晶(d)胞狀枝晶--------------------------------------------------30
圖2.25:四溴化碳之胞狀晶枝---------------------------------31
圖2.26:溫度梯度(G)與固/液界面成長速率(R)對合金凝固微觀組織的影響------------------ ----------------------------31
圖2.27:合金凝固過程組成過冷度與界面型態關係圖-------------32
圖2.28:枝狀晶在合金中之成長-------------------------------33
圖2.29:枝狀晶粗化模式-------------------------------------33
圖3.1:銲錫合金熔融裝置示意圖------------------------------34
圖3.2:管狀高溫爐之升溫曲線圖------------------------------35
圖3.3: Au20Sn/Cu實驗樣品回焊流程圖------------------------36
圖3.4:熱處理裝置示意圖------------------------------------38
圖3.5:實驗流程概要圖--------------------------------------39
圖4.1:4.00±0.3mg銲料於330℃下不同回焊時間之BEI橫截面影像圖--------------------------------------------------41
圖4.2:4.00±0.3mg銲料於330℃下不同回焊時間之BEI橫截面影像圖---------------------------------------------------42
圖4.3:4.00±0.3mg銲料 330℃回焊60min (a)Sn (b)Cu (c)原圖(d)Au EPMA-mapping圖----------------------------------42
圖4.4:4.00±0.3mg銲料於330℃下不同回焊時間之BEI橫截面影像圖---------------------------------------------------43
圖4.5:2.11±0.26mg銲料於330℃下不同回焊時間之BEI橫截面影像圖-------------------------------------------------45
圖4.6:2.11±0.26mg銲料於330℃下不同回焊時間之BEI橫截面影像圖-------------------------------------------------46
圖4.7:2.11±0.26mg銲料330℃回焊60min (a)Sn (b)Cu (c)原圖(d)Au EPMA-mapping圖---------------------------------47
圖4.8:2.11±0.26mg銲料於330℃下不同回焊時間之BEI橫截面影像圖-------------------------------------------------47
圖4.9:4.00±0.3mg銲料於330℃下回焊90min不同冷卻方式(a)furnace -cooling (b)fan-cooling (c)ice-cooling BEI橫截面影像圖----49
圖4.10:4.00±0.3mg銲料於330℃下回焊90min ice-cooling (a)界面處(b)銲料內部BEI橫截面影像圖-------------------------50
圖4.11:Au20Sn 成核成長示意圖-----------------------------50
圖4.12:編號1、2、3和4於310℃熱處理一個月後,分析所得之相平衡結果與成長型態BEI橫截面影像圖-------------------52
圖4.13:4.00±0.3mg 銲料於310℃下不同回焊時間(a)1min (b)60min (c) 120min BEI橫截面影像圖-----------------------------53
圖4.14:330℃下回焊時間1min LEI橫截面影像圖----------------54
圖4.15:不同回焊溫度各時間之Cu溶解量-----------------------54
圖4.16:55∼60℃間浸鍍銀60min BEI橫截面影像圖--------------55
圖4.17:4.00±0.3mg銲料Au20Sn/Ag/Cu 於330℃下不同回焊時間下B-EI橫截面影像圖- -------- ------------------------56
圖4.18:4.00±0.3mg銲料Au20Sn/Ag/Cu於330℃不同回焊時間下BEI橫截面影像-----------------------------------------57
圖4.19:230℃下熱處理 4.00±0.3mg (a)1day (b)120day 2.11±0.26mg (c) 1day (d) 120day BEI橫截面影像圖---------------------58
圖4.20:4.00±0.3mg銲料於230℃熱處理 (a)1day (b)3day (c) 10day (d) 20 day(e)60day (f)120day BEI橫截面影像圖-------------60
圖4.21:2.11±0.26mg銲料於230℃熱處理 (a)1day (b)3day (c) 10day (d) 20 day (e)60day (f)120day BEI橫截面影像圖-------------61
1.J. M. Song, P. C. Liu, C. L. Shih, and K. L. Lin, “Role of Ag in the Formation of Interfacial Intermetallic Phases in Sn-Zn Solder”, Journal of Electronic Materials, Vol. 34(9), pp. 1249-1254 (2005).
2.林光隆、宋振銘、黃家緯,“Sn-Zn系列無鉛銲錫合金與基材界面金屬間化合物生成之探討”,界面科學會誌,26卷8期,pp. 61-70 (2004)。
3.J. W. Yoon and S. B. Jung, “Reliability studies of Sn-9Zn/Cu solder joints with aging treatment”, Journal of Alloys and Compounds, Vol. 407, pp. 141-149 (2006).
4.S. W. Chen and Y. W. Yen, “Interfacial Reactions in Ag-Sn/Cu Couples”, Journal of Electronic Materials, Vol. 28(11), pp. 1203-1208 (1999).
5.W. K. Choi and H. M. Lee, “Effect of Soldering and Aging Time on Interfacial Microstructure and Growth of Intermetallic Compounds Between Sn-3.5Ag Solder Alloy and Cu Substrate”, Journal of Electronic Materials, Vol. 29(10), pp. 1207-1213 (2000).
6.C. E .Ho, R. Y. W. Lin, S. C. Yang, C. R. Kao, and D. S. Jiang, “Effects of limited cu supply on soldering reactions between SnAgCu and Ni”, Journal of Materials Research, Vol. 35(5), pp. 1017-1024 (2006).
7.K. N. Tu, A. M. Gusak, and M. Li, “Physics and materials challenges for lead-free solders”, Journal of Applied Physics, Vol. 93(3), pp. 1335-1353 (2003).
8.K. N. Tu and K. Zeng, “Tin-lead(SnPb) solder reaction in flip chip technology”, Materials Science and Engineering R, Vol. 34, pp. 1-58 (2001).
9.K. Z. Wang and C. M. Chen, “Intermetallic Compound Formation and Morphology Evolution in the 95Pb5Sn Flip-Chip Solder Joint with Ti/Cu/Ni Under Bump Metallization during Reflow Soldering”, Journal of Electronic Materials, Vol. 34(12), pp. 1543-1549 (2005).
10.T. C. Chang, M. H. Hon, and M. C. Wang, “Intermetallic compounds formation and interfacial adhesion strength of Sn-9Zn-0.5Ag solder alloy hot-dipped on Cu substrate”, Journal of Alloys and Compounds, Vol. 352, pp. 168-174 (2003).
11.M. N. Islam, Y. C. Chan, M. J. Rizvi, and W. Jillek, “Investigations of interfacial reactions of Sn-Zn based and Sn-Ag-Cu lead-free solder as replacement for Sn-Pb solder ”, Journal of Alloys and Compounds, Vol. 400, pp. 136-144 (2005).
12.K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura, “Wetting and interface microstructure between Sn-Zn binary alloys and Cu”, Journal of Materials Research, Vol. 13(10), pp. 2859-2866 (1998).
13.D. Q. Yu, H. P. Xie, and L. Wang, “Investigation of interfacial microstructure and wetting property of newly developed Sn-Zn-Cu solder with Cu substrate”, Journal of Alloys and Compounds, Vol. 385, pp. 119-125 (2004).
14.陳信文、陳立軒、林永森、陳志銘,“電子構裝技術與材料”,高立圖書,pp. 136 (2004)。
15.鐘文仁、陳佑任,“IC封裝製程與CAE應用”,全華科技圖書 (2004)。
16.陳志銘,“微電子構裝材料與技術”,化工技術,第十四卷, pp. 114-123 (2006)。
17.T. B. Massalski, “Binary alloy phase diagrams”, (Materials Park, OH: ASM Intl., 1990).
18.黃嘉緯、林光隆,“電子構裝無鉛銲錫的發展現況”,銲接與切割,13卷2期 (2003)。
19.M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics”, Materials Science and Engineering, R27, pp. 95-141 (2000).
20.莊東漢、吳醒非、黃貴偉、顏秀芳、林修任,“銲錫接點界面反應生成介金屬形態及其動力學”,界面科學會誌,26卷2期,pp. 71-82 (2004)。
21.M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, “New Pb-free solder alloy with superior mechanical properties”, Applied Physics Letters, Vol. 63(1), pp. 15-17 (1993).
22.K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura, “Wetting and interface microstructure between Sn-Zn binary alloys and Cu”, Journal of Materials Research, Vol. 13(10), pp. 2859-2866 (1998).
23.T. C. Chang, M. H. Hon, and M. C. Wang, “Intermetallic compounds formation and interfacial adhesion strength of Sn-9Zn-0.5Ag solder alloy hot-dipped on Cu substrate”, Journal of Alloys and Compounds, Vol. 352, pp. 168-174 (2003).
24.D. Q. Yu, H. P. Xie, and L. Wang, “Investigation of interfacial microstructure and wetting property of newly developed Sn-Zn-Cu solder with Cu substrate”, Journal of Alloys and Compounds, Vol. 385, pp. 119-125 (2004).
25.Y. S. Kim, K. S. Kim, C. W. Hwang, and K. Suganuma, “Effect of composition and cooling rate on microstructure and tensile properties of Sn-Zn-Bi alloys”, Journal of Alloys and Compounds, Vol. 352, pp. 237-245 (2003).
26.T. C. Chang, M. C. Wang, and M. H. Hon, “Effect of aging on the growth of intermetallic compounds at the interface of Sn-9Zn-xAg/Cu substrates”, Journal of Crystal Growth, Vol. 250, pp. 236-243 (2003).
27.K. L. Lin and C. L. Shih, “Wetting Interaction between Sn-Zn-Ag Solders and Cu”, Journal of Electronic Materials, Vol. 32(2), pp. 95-100 (2003).
28.S. C. Chang, S. C. Lin, and K. C. Hsieh, “The Foemation and Growth of Intermetallic Compounds in Sn-Zn and Sn-Zn-Al Solder with Ni/Au Surface Finish”, Journal of Electronic Materials, Vol. 35(3), pp. 399-405 (2006).
29.K. L. Lin, P. C. Liu, and J. M. Song, “Wetting Interaction between Pb-free Sn-Zn Series Solders and Cu,Ag Substrates”, IEEE Electronic Components and Technology Conference, Vol. 2, pp. 1310-1313 (2004).
30.C. S. Lee and F. S. Shieu, “Growth of Intermetallic Compounds in the Sn-9Zn/Cu Joint”, Journal of Electronic Materials, Vol. 35(8), pp. 1660-1664 (2006).
31.H. Okamoto, “Journal of Phase Equilibria and Diffusion”, Vol. 28(5), (2007).
32.G. Elger, M. Hutter, H. Oppermann, R. Aschenbrenner, H. Reichl, and E. Jager, “Development of an assembly process and reliability investigations for flip-chip LEDs using the AuSn soldering”, Microsystem Techologies, Vol. 7, pp. 239-243 (2002).
33.Z. Mei, M. Kaufmann, A. Eslambolchi, and P. Johnson, “Brittle Interfacial Fracture of PBGA Packages Soldered on Electroless Nickel / Immersion Gold”, 48th IEEE Electronic Components and Technology Conference, pp. 952-961 (1998).
34.Y. H. Wang, K. Nishida, M. Hutter, T. Kimura, and T. Suga, “Low-Temperature Process of Fine-Pitch Au-Sn Bump Bonding”, Japanese Journal of Applied Physics, Vol. 46, pp. 1961-1967 (2007).
35.B. J. Lee, N. M. Hwang, and H. M. Lee, “Prediction of Interface reaction Productions between Cu and various Solder Alloys by Thermodynsmic Calculation”, Acta Metallurgica, Vol. 45(5), pp. 1867-1874 (1997).
36.O. B. Karlsen, A. Kjekshus, and E. Rost, “The Ternary System Au-Cu-Sn”, Acta Chemica Scandinavica, Vol. 46, pp.147-156 (1992).
37.O. B. Karlsen, A. Kjekshus, and E. Rost, “Ternary Phases in the system Au-Cu-Sn”, Acta Chemica Scandinavica, Vol. 44 , pp. 197-198 (1990).
38.O. B. Karlsen, A. Kjekshus, C. Romming, and E. Rost, “The Crystal Structure of the Low-Temperature Au80-vCuvSn20 Phase”, Acta Chemica Scandinavica, Vol.46, pp. 1076-1082 (1992).
39.H. G. Song, J. W. Morris, Jr., and M. T. McCormack, “The Microstructure of Ultrafine Eutectic Au-Sn solder Joint on Cu”, Journal of Electronic Materials, Vol. 29(8), pp. 1038-1046 (2000).
40.Y. W. Yen, C. C. Jao, H. M. Hsiao, C. Y. Lin, and C. Lee, “Investigation of the phase equilibria of Sn-Cu-Au Ternary and Ag-Sn-Cu-Au quaternary systems and interfacial reactions in Sn-Cu/Au couples”, Journal of Electronic Materials, Vol. 36(2), pp. 147-158 (2007).
41.蕭憲明、李嘉平、顏怡文,“金-銅-錫三元合金、銀-金-銅-錫四元合金系統相平衡及錫-銅合金與金基材的界面反應”,國立台灣科技大學化學工程系碩士論文 (2005)。
42.J. W. Yoon, H. S. Chun, H. J. Lee, and S. B. Jung, “Microstructural evolution and interfacial reactions of fluxless-bonded Au-20Sn/Cu solder joint during reflow and aging”, Journal of Materials Research, Vol. 22(10), pp. 2817-2824 (2007).
43.S. K. Kang, D. Y. Shih, P. Lauro, and M. Y. Myung, “Interfacial Reaction Studies on Lead (Pb)-Free Solder Alloys”, IEEE Transactions on electronics manufacturing, Vol. 25, pp. 155-161 (2002).
44.C. E. Ho, Y. W. Lin, S. C. Yang, and C. R. Kao, “Volume Effect on the Soldering Reaction between SnAgCu Solders and Ni”, Proceedings of 10th International Symposium on Advanced Packaging Materials, 16th, pp. 39-44 (2005).
45.C. E. Ho, Y. L. Lin, and C. R. Kao, “Strong Effect of Cu Concentration on the Reaction between Lead-Free Microelectronic Solders and Ni”, Chemistry of Materials, Vol. 14(3), pp. 949-951 (2002).
46.C. E. Ho, R. Y. Lin, R. Y. Tsai, and C. R. Kao, “Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni”, Journal of Electronic Materials, Vol. 31, pp.584-590 (2002).
47.W. T. Chen, C. E. Ho, and C. R. Kao, “Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders”, Journal of Materials Research, Vol. 17, pp. 263-266 (2002).
48.何廣福、趙隆山,“方向性凝固之研究”,國立成功大學工程科學系碩士論文 (2005)。
49.曾繁宗,李偉賢,“304L不�袗�之惰性氣體鎢棒電弧銲及遮蔽金屬電弧銲銲接件的高速撞擊行為與顯微結構之特性分析”, 國立成功大學工程科學系碩士論文 (2002)。
50.D. A. Porter and K. E. Easterling, “Phase transformations in metals and alloys”, (London, Chapman & Hall, 1992).
51.M. C. Flemings, “Solidification processing”, (New York, McGraw-Hill, 1974 ).
52.S. Kou, “Welding Metallurgy”, (New York, J. Wiley & Sons, 1987 ).
53.E. Folkhard, G. Rabensteiner, E. Pertender, H. Schabereiter, and J. Tösch, “Welding Metallurgy of Stainless steels”, (New York, Springer-Verlag, 1984 ).
54.C. Beckermann, “Modeling Segregation and Grain structure Development in Equiaxed Solidification with Convection”, JOM, pp. 13-17 (1997).
55.Y. C. Chan, C. W. Tan, B. Leung, and H. D. Liu, “Effects of soft beam energy on the microstructure of Pb37Sn, Au20Sn, and Sn3.5Ag0.5Cu solder joints in lensed-SM-fiber to laser-diode-affixing application”, Optics and Lasers in Engineering, Vol. 46, pp. 75-82 (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔