跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/24 05:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃筱青
研究生(外文):Hsiao-Chin Huang
論文名稱:二氧化錳於電容性質之應用與研究
論文名稱(外文):The Study and Applications of the manganese dioxides forCapacitive Properties
指導教授:鄭紀民
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:104
中文關鍵詞:二氧化錳拉曼光譜電化學電容器循環伏安法
外文關鍵詞:Manganese dioxideRaman spectroscopyelectrochemical capacitorcyclic voltammetry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:463
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究分別製備了非晶型和孔道形式之二氧化錳奈米結構材料,這些不同型態之氧化錳結構分別為奈米粒子、奈米棒、奈米線、奈米纖維和繡球花狀。α-MnO2合成是由過錳酸鉀與硫酸錳所獲得二氧化錳粉體於硫酸溶液中而後再經水熱法製備;β和γ-MnO2合成是由過硫酸銨和硫酸錳之水熱法合成;δ-MnO2合成是由過錳酸鉀水溶液中利用鹽酸還原法製備。非晶型之二氧化錳是化學共沉澱法合成。此外,製備這些不同型態之二氧化錳控制參數中其反應溫度、反應物濃度和溶液中的酸度都是極為重要的。不同型態之二氧化錳以TEM、SEM、XRD、BET對其做特性分析,並運用拉曼(Raman)光譜對奈米級金屬二氧化錳觸媒做結構振動分析,以瞭解金屬二氧化錳之動態變化。
由於二氧化錳具有優良的擬電容特性,可應用於電化學電容器。本實驗使用先前製備二氧化錳奈米微粒並混合碳黑製作複合電極。顯示不同結構與表面型態之氧化錳電極,會影響其電容特性。主要以提高金屬氧化物之比表面積,達到增加電容之可能性。非晶型二氧化錳具有較高的比表面積約326m2/g,在0.5M硫酸鈉電解液中使用循環伏安法進行電化學特性分析,亦發現非晶型二氧化錳電極擁有最佳的比電容值,最大比電容值可達約314F/g。
目 錄
中文摘要------------------------------------------------------------ I
英文摘要------------------------------------------------------------ II
目錄------------------------------------------------------------------ IV
圖目錄--------------------------------------------------------------- VII
表目錄--------------------------------------------------------------- XIV
第一章 緒論-------------------------------------------------------- 1
1-1前言 -------------------------------------------------- 1
1-2研究動機---------------------------------------------- 2
第二章 理論基礎與文獻回顧----------------------------------- 5
2-1二氧化錳簡介---------------------------------------- 5
2-2電化學電容器發展史------------------------------- 9
2-3 儲能元件概述--------------------------------------- 9
2-4電化學電容器之工作原理------------------------- 10
2-5電化學電容器電解液的種類---------------------- 15
2-6電化學電容器之電極材料------------------------- 17
2-7金屬氧化物電極------------------------------------- 18
2-8錳氧化物電極之製備方法------------------------- 20
2-9電化學電容器的電容評估------------------------- 24
第三章 實驗設備與研究方法----------------------------------- 32
3-1實驗藥品---------------------------------------------- 32
3-2觸媒之製備------------------------------------------- 33
3-2-1 奈米金屬氧化物之製備-------------------- 33
3-3 觸媒特性與反應分析儀--------------------------- 38
3-3-1 BET孔洞分析儀------------------------------ 38
3-3-2穿透式電子顯微鏡及電子繞射分析------- 38
3-3-3場發射掃描式電子顯微鏡------------------- 40
3-3-4 粉末X光繞射分析-------------------------- 40
3-3-5 拉曼光譜儀----------------------------------- 41
3-3-6 電化學測試系統----------------------------- 42
第四章 結果與討論----------------------------------------------- 44
4-1結晶態錳氧化物之特性分析---------------------- 44
4-1-1 MnO2之TEM分析--------------------------- 44
4-1-2 MnO2之SEM分析---------------------------- 44
4-1-3 MnO2之X光繞射儀-------------------------- 49
4-1-4 MnO2之拉曼光譜---------------------------- 52
4-1-5 MnO2之電化學電容測試-------------------- 58
4-2鹼條件下製備非晶型MnO2之特性分析--------- 59
4-2-1 MnO2之TEM圖像--------------------------- 59
4-2-2 MnO2之SEM圖像---------------------------- 59
4-2-3 MnO2之X光繞射儀-------------------------- 62
4-2-4 MnO2之拉曼光譜---------------------------- 62
4-2-5 MnO2之電化學電容測試-------------------- 64
4-3酸性條件下製備MnO2之特性分析--------------- 66
4-3-1 MnO2之TEM圖像--------------------------- 66
4-3-2 MnO2之X光繞射儀-------------------------- 69
4-3-3 MnO2之拉曼光譜---------------------------- 69
4-3-4 MnO2之電化學電容測試-------------------- 71
4-4探討硫酸(18M)實驗參數變化--------------------- 74
4-4-1製備錳氧化物之溫度變化------------------- 74
4-4-1-1溫度變化之TEM圖------------------ 74
4-4-1-2溫度變化之X光繞射儀------------- 74
4-4-1-3製備溫度變化之電化學電容分析-- 78
4-4-2製備錳氧化物水量影響因素---------------- 81
4-4-2-1水量影響之TEM圖像--------------- 81
4-4-2-2水量影響之SEM圖像--------------- 81
4-4-2-3水量影響之X光繞射儀------------- 81
4-4-2-4水量變化之電化學電容分析------- 85
4-4-3製備錳氧化物之添加硫酸含量變化-------- 87
4-4-3-1硫酸含量變化之TEM圖像--------- 87
4-4-3-2硫酸含量變化之SEM圖像--------- 87
4-4-3-3硫酸量變化之X光繞射儀---------- 87
4-4-3-4硫酸體積變化之電化學電容測試-- 93
第五章 結論-------------------------------------------------------- 95
參考文獻------------------------------------------------------------ 96
附錄------------------------------------------------------------------ 103
參考文獻
[1]R. Ko¨tz and M. Carlen, "Principles and applications of electrochemical capacitors," Electrochimica Acta, vol. 45, pp. 2483-2498, 2000.
[2]A. Burke, "Ultracapacitors: why, how, and where is the technology," Journal of Power Sources, vol. 91, pp. 37-50, 2000.
[3]B. E. Conway, "Transition from "Supercapacitor" to "Battery" Behavior in Electrochemical Energy Storage," J. Electrochem. Soc., vol. 138, pp. 1539-1548, 1991.
[4]J. P. Zheng, J. Huang, and T.R.Jowt, "The Limitations of Energy Densily for Electrochemical Capacitors," J. Electrochem. Soc., vol. 144, pp. 2026-2031, 1997.
[5]B. Pilla and J. Newman, "The Influence of Side Reactions on the Performance of Electrochemical Double-Layer Capacitors," J. Electrochem. Soc., vol. 143, pp. 1806-1814, 1996.
[6]T. Morimoto, K. Hiratsuka, Y. Sanada, and K. Kurihara, "Electric double-layer capacitor using organic electrolyte," Journal of Power Sources vol. 60, pp. 239-247, 1996.
[7]D. Qu and H. Shi, "Studies of activated carbons used in double-layer capacitors," Journal of Power Sources, vol. 74, pp. 99-107, 1998.
[8]K. R. Prasad and N. Munichandraiah, "Potentiodynamically Deposited Polyaniline on Stainless Steel Inexpensive, High-Performance Electrodes for Electrochemical Supercapacitors," Journal of The Electrochemical Society, vol. 149, pp. A1393-A1399 ~2002, 2002.
[9]J.P. Zheng and T. R. Jow, "High energy and high power density electrochemical capacitors," Journal of Power Sources, vol. 62, pp. 155-159, 1996.
[10]J. P. Zheng, P. J. Cygan, and T. R. Jow, "Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors," J. Electrochem. Soc., vol. 142, pp. 2699-2703, 1995.
[11]J. P. Zheng and T. R. Jow, "A New Charge Storage Mechanism for Electrochemical Capacitors," J. Electrochem. Soc., vol. 142, pp. L6-L8, 1995.
[12]Q. Feng, H. Kanoh, and K. Ooi, "Manganese oxide porous crystals," J. Mater. Chem., vol. 9, pp. 319-333, 1999.
[13]M. H. Rossouw, D. C. Liles, and M. M. Thackeray, "ALPHA MANGANESE DIOXIDE FOR LITHIUM BATI''ERIES:A STRUCTURAL AND ELECTROCHEMICAL STUDY," Mat. Res. Bull.,, vol. 27, pp. 221-230, 1992.
[14]X.-M. Shen and A. Clearfield, "Phase Transitions and Ion Exchange Behavior of Electrolytically Prepared Manganese Dioxide," Journal of Solid State Chemistry, vol. 64, pp. 270-282, 1986.
[15]M. F. Ryan, A. Fiedler, D. Schrijder, and H. Schwarz, "Radical-like Behavior of Manganese Oxide Cation in Its Gas-Phase Reactions with Dihydrogen and Alkanes," J. Am. Chem. SOC, vol. 117, pp. 2033-2040, 1995.
[16]C.-C. Hu and T.-W. Tsou, "The optimization of specific capacitance of amorphous manganese oxide for electrochemical supercapacitors using experimental strategies," Journal of Power Sources, vol. 115, pp. 179-186, 2003.
[17]H. Y. Lee and J. B. Goodenough, "Supercapacitor Behavior with KCl Electrolyte," Journal of Solid State Chemistry, vol. 144, pp. 220-223, 1999.
[18]高志勇, 陳耿陽, 吳富其, 江萬爵, and 賴志坤, "超高電容器製程技術簡介," 工業材料, vol. 166, pp. 113, 2000.
[19]A. Nishino, "Capacitors: operating principles, current market and technical trends," Journal of Power Sources, vol. 60, pp. 137-147, 1996.
[20]M. Nakamura, M. Nakanishi, and K. Yamamoto, "Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors," Journal of Power Sources, vol. 60, pp. 225-231, 1996.
[21]T.-C. Weng and H. Teng, "Characterization of High Porosity Carbon Electrodes Derived from Mesophase Pitch for Electric Double-Layer Capacitors," Journal of The Electrochemical Society, vol. 148, pp. A368-A373, 2001.
[22]B. E. Conway, "Electrochemical Supercapacitors:Scientific Fundamentals and Technological Applications," New York, 1999.
[23]M. Ue, K. Ida, and S. Mori, "Electrochemical Properties of Organic Liquid Electrolytes Based on Quaternary Onium Salts for Electrical Double-Layer Capacitors," J. Electrochem. Soc., vol. 141, pp. 2989-2996, 1994.
[24]J. P. Zheng and T. R. Jow, "The Effect of Salt Concentration in Electrolytes on the Maximum Energy Storage for Double Layer Capacitors," J. Electrochem. Soc., vol. 144, pp. 2417-2420, 1997.
[25]薛立人, "高性能電容器," 工業材料, vol. 166期, pp. 120, 2000.
[26]黃孟娟 and 張榮錡, "釕氧化物超高電容材料特性簡介," 工業材料, pp. 120, 2002.
[27]方偉權, "超高電容器電極薄膜材料應用及其製作技術," 工業材料, pp. 145, 2008.
[28]J. H. Park and O. O. Park, "Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes," Journal of Power Sources, vol. 111, pp. 185-190, 2002.
[29]S.-C. Pang, M. A. Anderson, and T. W. Chapmanb, "Novel Electrode Materials for Thin-Film Ultracapacitors:Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide," Journal of The Electrochemical Society, vol. 147, pp. 444-450, 2000.
[30]C. Arbizzani, M. Mastragostino, and L. Meneghello, "Polymer-Based Redox Supercapacitors: A Comparative Study," Electrochimica Acta,, vol. 41, pp. 21-26, 1996.
[31]A. M. Couper, D. Pletcher, and F. C. Walsh, "Electrode Materials for Electrosynthesis," Chem. Rev, vol. 90, pp. 837-865, 1990.
[32]B. Marsan, N. Fradette, and G. Beaudoin, "Physicochemical and Electrochemical Properties of CuCo2O4 Electrodes Prepared by Thermal Decomposition for Oxygen Evolution," J. Electrochem. Soc., vol. 139, pp. 1889-1896, 1992.
[33]L. Nanni, S. Polizzi, A. Benedetti, and A. D. Battisti, "Morphology, Microstructure, and Electrocatalytic Properties of RuO2-SnO2 Thin Films," Journal of The Electrochemical Society, vol. 146, pp. 220-225, 1999.
[34]C. Lin, J. A.Ritter, and B. N. Popov, "Development of Carbon-Metal Oxide Supercapacitors from Sol-Gel Derived Carbon-Ruthenium Xerogels," Journal of The Electrochemical Society, vol. 146, pp. 3155-3160, 1999.
[35]R.P.Simpraga and B.E.Conway, "The real-area scalinf factor in electrocatalysis and in charge storage by supercapacitors " Electrochimica Acta, vol. 43, pp. 3045-3058, 1998.
[36]R. Otogawa, M. Morimitsu, and M. Matsunaga, "Effects of microstructure of IrO2-based anodes on electrocatalytic properties," Electrochimica Acta, vol. 44, pp. 1509-1513, 1998.
[37]M. Toupin, T. Brousse, and D. Be´langer, "Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide," Chem. Mater., vol. 14, pp. 3946-3952, 2002.
[38]E. Raymundo-Pin˜ero, V. Khomenko, E. Frackowiak, and F. Be´guin, "Performance of Manganese OxideÕCNTs Composites as Electrode Materials for Electrochemical Capacitors," Journal of The Electrochemical Society, vol. 152, pp. A229-A235, 2005.
[39]H. Kim and B. N. Popov, "Synthesis and Characterization of MnO2-Based Mixed Oxides as Supercapacitors," Journal of The Electrochemical Society, vol. 150, pp. D56-D62, 2003.
[40]Y. A. Attia, "Sol-Gel Processing and Applications, Plenum Press, New York," 1994.
[41]R. N. Reddy and R. G. Reddy, "Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material," Journal of Power Sources, vol. 132, pp. 315-320, 2004.
[42]Y. Zhang, H. Wang, B. Wang, H. Yan, A. Ahniyaz, and M. Yoshimura, "Low temperature synthesis of nanocrystalline Li4Mn5O12 by a hydrothermal method," Mat. Res. Bull., vol. 37, pp. 1411-1417, 2002.
[43]G. Lodi, E. Sivieri, A. DeBattisti, and S. Trasatti, J. Electrochem. Soc., vol. 8, pp. 135-143, 1978.
[44]H. Y. Lee, V. Manivannan, and J. B. Goodenough, "Electrochemical capacitors with KCl electrolyte," Comptes Rendus Chimie, vol. 2, pp. 565-577, 1999.
[45]S. Bach, J. P. Pereira-Ramos, and N. Baffier, "Synthesis and characterization of lamellar MnO2 obtained from thermal decomposition of NaMnO4 for rechargeable lithium cells," J. Solid State Chem., vol. 120, pp. 70-73, 1995.
[46]張光揮, "循環伏安法置備含水釕銥氧化物於電化學電容器的應用," 國立中正大學 化學工程研究所 碩士論文.
[47]陳怡倫, "以陽極沈積法製備之氧化錳電極的材料特性與擬電容性質," 國立成功大學 材料科學及工程學系 碩士論文.
[48]C.-C. Hu and T.-W. Tsou, "Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition," Electrochimica Acta, vol. 47, pp. 3523-3532, 2002.
[49]J.-K. Chang and W.-T. Tsai, "Effects of temperature and concentration on the structure and specific capacitance of manganese oxide deposited in manganese acetate solution," Journal of Applied Electrochemistry, vol. 34, pp. 953-961, 2004.
[50]M. Chigane, M. Ishikawa, and M. Izaki, "Preparation of Manganese Oxide Thin Films by Electrolysis ÕChemical Deposition and Electrochromism," Journal of The Electrochemical Society, vol. 148, pp. D96-D101, 2001.
[51]蔡銘修, "氣相凝結法製備奈米氧化錳粉體之製程開發與特性研究," 私立逢甲大學 材料科學研究所 碩士論文.
[52]X. Wang and Y. Li, "Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/Nanorods," Chem. Eur. J, vol. 9, pp. 300-306, 2003.
[53]HongenWang, Z. Lu, D. Qian, Y. Li, and W. Zhang1, "Single-crystal α-MnO2 nanorods:synthesis and electrochemical properties," Nanotechnology, vol. 18, pp. 115616, 2007.
[54]X. Zhang, W. Yang, J. Yang, and D. G. Evans, "Synthesis and characterization of a-MnO2 nanowires: Self-assembly and phase transformation to b-MnO2 microcrystals," Journal of Crystal Growth, vol. 310, pp. 716-722, 2008.
[55]C. Julien, M. Massot, R. Baddour-Hadjean, S. Franger, S. Bach, and J. P. Pereira-Ramos, "Raman spectra of birnessite manganese dioxides," Solid State Ionics, vol. 159, pp. 345-356, 2003.
[56]C. M. Julien, M. Massot, and C. Poinsignon, "Lattice vibrations of manganese oxides " Spectrochimica Acta Part A, vol. 60, pp. 689-700, 2004.
[57]T. Gao, M. Glerup, F. Krumeich, R. Nesper, H. Fjellvåg, and P. Norby, "Microstructures and Spectroscopic Properties of Cryptomelane-type Manganese Dioxide Nanofibers," J. Phys. Chem. C, vol. 112, pp. 13134-13140, 2008.
[58]M. Polverejan, J. C.Villegas, and S. L. Suib, "Higher Valency Ion Substitution into the Manganese Oxide Framework," J. AM. CHEM. SOC, vol. 126, pp. 7774-7775, 2004.
[59]J. Luo, H. T. Zhu, H. M. Fan, J. K. Liang, H. L. Shi, G. H. Rao, J. B. Li, Z. M. Du, and Z. X. Shen, "Synthesis of Single-Crystal Tetragonal r-MnO2 Nanotubes," J. Phys. Chem. C,, pp. A-E, 2008.
[60]C. M. Julien and M. Massot, "Spectroscopic studies of the structural transitions in positive electrodes for lithium batteries," Journal of Power Sources, vol. 119-121, pp. 743-748, 2003.
[61]C. M. Julien, "Local structure of lithiated manganese oxides," Solid State Ionics, vol. 177, pp. 11-19, 2006.
[62]C. Julien, M. Massot, S. Rangan, M. Lemal, and D. Guyomard, "Study of structural defects in g-MnO2 by Raman spectroscopy," J. Raman Spectrosc, vol. 33, pp. 223-228, 2002.
[63]Y.-s. Ding, X.-f. Shen, S. Sithambaram, S. Gomez, R. Kumar, V. M. B. Crisostomo, S. L. Suib, and M. Aindow, "Synthesis and Catalytic Activity of Cryptomelane-Type Manganese Dioxide Nanomaterials Produced by a Novel Solvent-Free Method," Chem. Mater., vol. 17, pp. 5382-5389, 2005.
[64]F. Buciuman, F. Patcas, R. Craciun, and D. R. T. Zahn, "Vibrational spectroscopy of bulk and supported manganese oxides," Phys. Chem. Chem. Phys, vol. 1, pp. 185-190, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top