跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/24 17:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馮皓翔
研究生(外文):Hao-Hsiang Feng
論文名稱:硼酸官能基薄膜之製備及其在純化盤尼西林醯胺酵素上之應用
論文名稱(外文):Preparation of Boronate Ligands Membrane and Its Application on Penicillin G Acylase Purification
指導教授:劉永銓
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:89
中文關鍵詞:硼酸親和層析間胺基苯硼酸盤尼西林醯胺酵素固定化金屬親和薄膜純化
外文關鍵詞:boronate affinity chromatographym-aminophenylboronic acidpenicillin G acylaseimmobilized metal affinity membranepurification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究應用再生纖維薄膜(Regenerated cellulose membrane, RCM)為固體基材,使用前以epichlorohydrin (EPI)修飾RCM,再以化學合成方式接上間胺基苯硼酸官能基(m-aminophenylboronate ligand, m-APB),即為硼酸官能基薄膜(Boronate affinity chromatography, BAC),並利用BAC膜來純化盤尼西林醯胺酵素(Penicillin G acylase, PGA)。
首先探討在膜上反應m-APB之最佳條件,其結果為:3% m-APB (0.75 g)添加於25 ml, 20% acetonitrile中,反應條件為60℃, 100 rpm, 24 h, pH 8。使用SEM分析BAC表面型態,發現RCM長時間的化學反應會造成BAC薄膜的結構和孔洞分佈損壞。
以此最適化條件製作出的BAC膜,探討純化PGA之條件,其結果為: PGA (活性0.1 IU/ml)與BAC膜浸泡於25 ml loading buffer( 3 M NaCl, 10 mM phosphate buffer, pH 6)吸附12小時,接著使用10 ml elution buffer(1.5 M NH4Cl, 50 mM acetate buffer, pH 4.5),將BAC膜上PGA脫附,此操作之PGA純化倍率為9.63倍。
使用BAC膜將PGA粗酵素液進行第一步純化,再使用本實驗室研發之固定化金屬親和薄膜進行第二階段純化PGA酵素,經由二階段純化步驟,PGA純化倍率可達32.93倍,回收率為64.06%。使用SDS-PAGE分析蛋白質,可看出PGA之α-Chain及β-Chain在23 kDa與62 kDa顯示。
The regenerated cellulose (RC) membrane as solid matrix was modified by epichlorohydrin (EPI), followed by constructing the m-aminophenyl boronate ligand (m-APB). The modified membrane named as boronate affinity chromatography membrane (BAC) was used to apply on penicillin G acylase (PGA) purification.
The optimal preparation conditions were concluded as follows: for one RC-EPI membrane, 3% m-APB (0.75 g) and 25 ml 20% acetonitrile were added and the reaction conditions were carried out at 60°C, 100 rpm, pH 8 for 24h. From the surface morphologies scanned by SEM, the modified membrane had the structure and pore destruction for a long time chemical reaction.
In order to evaluate the BAC for purification of PGA, the crude enzymes were adsorbed to one piece of BAC in the presence of 25ml loading buffer ( 3 M NaCl, 10 mM phosphate buffer, pH 6). After that, Elution buffer (1.5 M NH4Cl, 50 mM acetate buffer, pH 4.5) were used to elute PGA and a 9.63-fold PGA purification was obtained.
Two-stage purification was presented by combining the BAC and IMAM (immobilized metal affinity membrane) for PGA purification. Under the elution conditious, a 32.93-fold PGA purification and 64.06% recovery were obtained.
摘要 I
Abstract II
總目次 III
圖目錄 VI
表目錄 VIII
壹、緒論 1
ㄧ、前言 1
二、研究目的 2
貳、文獻回顧 3
ㄧ、層析法應用(Chromatography applications): 6
(一)逆相層析 6
(二)正相層析 6
(三)親水性作用層析技術 6
(四)離子交換層析 7
(五)分子篩選層析 7
(六)親和性層析 7
(七)疏水性交互作用層析 8
二、薄膜應用於親和層析法 8
三、酵素固定化法 9
四、可逆固定化技術 12
五、硼酸親和層析法 13
1.硼酸鹽與分析物之間的作用力 14
1.1主要的作用力 14
1.2次要的作用力 15
1.2.1疏水作用力 15
1.2.2離子作用力 15
1.2.3氫鍵 16
1.2.4配位鍵作用力 16
2.硼酸配位基與基材 16
2.1 硼酸配位基 16
2.2 固體基材 17
3.硼酸親和層析的應用 18
3.1 碳水化合物 18
3.2 核甘、核甘酸、核酸 19
3.3 糖蛋白與酵素 20
3.4 其他微小分子 22
六、影響BAC吸附之因素 22
(一) 蛋白質結構及其穩定度 22
(二) 吸附基材、延伸臂的種類 23
(三) 鹽類種類及濃度 24
(四) 溫度 25
(五) 其他因素 26
七、PGA酵素純化 26
参、實驗方法與步驟 30
一、實驗藥品 30
二、實驗儀器設備 34
三、PGA酵素液的製備 35
四、m-APB改質膜製作步驟 36
(一) RCM改質 36
(二) RC-EPI-m-APB膜改質結果之鑑定 37
五、批次吸附實驗 39
六、批次脫附實驗 39
七、利用親水(IMAM)和疏水(HIC)薄膜與BAC膜之疊合試驗 39
八、兩階段純化 40
九、分析方法 40
(一) 蛋白質濃度測定方法 42
(二) PGA酵素活性分析法 42
1. 6-APA標準品之檢量線分析方法 42
2. 酵素液活性測試 43
(三) SDS-PAGE電泳分析步驟 43
1. 電泳操作原理 43
2. 電泳操作步驟 44
肆、結果與討論 46
ㄧ、製作親水官能基BAC膜 46
二、BAC膜生成之最適化條件探討 50
(一)m-APB反應溫度與m-APB添加量之影響 50
(二)反應pH值之影響 51
(三)反應時間之影響 51
三、探討BAC膜上固定化PGA酵素之最適化條件 54
(一)各種鹽類的影響 54
(二)不同NaCl濃度的影響 55
(三) loading buffer pH值的影響 56
四、探討BAC膜上吸附與脱附酵素情形 58
(一) BAC膜之吸附PGA酵素情形 58
(二) m-APB與Epoxy官能基共存之BAC膜之吸附與脱附酵素能 力 60
(三)利用親水(IMAM)和疏水(HIC)薄膜與BAC膜疊合對PGA脫附之影響 63
五、探討BAC膜純化PGA酵素之最適化條件 65
(一) Elution buffer對PGA純化的影響 65
(二) 使用不同NH4Cl濃度進行脫附 67
(三) PGA粗酵素液載入量的影響 68
六、使用二階段方式純化PGA酵素的效果 69
伍、結論及未來展望 72
ㄧ、結論 72
二、未來展望 73
參考文獻 74
附錄一:元素分析儀(EA)測式結果 84
附表1 BAC-6hr膜 84
附表2 BAC-12hr膜 85
附表3 BAC-18hr膜 86
附表4 BAC-24hr膜 87
附表5 BAC-36hr膜 88
附表6 BAC-48hr膜 89
1.P. Knight, Downstram Processing, Bio/technology, (1989), 7 (8): p.777-782.
2.王春年, 糖化血紅蛋白檢測的臨床意義及常用檢測方法和儀器簡介. 工企醫刊. Vol. 21. 2008.
3.Luksa, et al., Purification of human tumour necrosis factor by membrane chromatography, Journal of Chromatography A, (1994), 661 (1-2): p.161-168.
4.R. Ghosh, Protein separation using membrane chromatography: opportunities and challenges, Journal of Chromatography A, (2002), 952 (1-2): p.13-27.
5.陳東煌, 離子交換膜的應用. 化工. Vol. 46. 1999. 14-23
6.Freitag, et al., Controlled mixed-mode interaction chromatography on membrane adsorbers, Journal of Chromatography A, (1996), 728 (1-2): p.129-137.
7.P. Langlotz, K. H. Kroner, Surface-modified membranes as a matrix for protein purification, Journal of Chromatography A, (1992), 591 (1-2): p.107-113.
8.H. L. Hu, et al., Purification of VP3 Protein of Infectious Bursal Disease Virus Using Immobilized Nickel Ion Regenerated Cellulose-Based Membranes, Journal of Chromatography B, (2006), 840: p.76-84.
9.Y. C. Liu, C. C. ChangChien, S. Y. Suen, Purification of penicillin G acylase using immobilized metal affinity membranes, Journal of Chromatography B, (2003), 794: p.67-76.
10.Y. C. Liu, et al., Effects of spacer arm on penicillin G acylase purification using immobilized metal affinity membranes, Journal of Membrane Science, (2005), 251: p.201-207.
11.黃振翁, 應用多功能基薄膜純化及固定化盤尼西林醯胺酵素, 國立中興大學化學工程研究所碩士論文, (2004)
12.C. Y. Wu, et al., Analysis of Protein Adsorption on Regenerated Cellulose-based Immobilized Copper Ion Affinity Membranes, Journal of Chromatography A, (2003), 996: p.53-70.
13.C. S. Chen, et al., Purification of Capsid-like Particles of Infectious Bursal Disease Virus (IBDV) VP2 Expressed in E. coli with a Metal-ion Affinity Membrane System, Journal of Virological Methods, (2005), 130: p.51-58.
14.S. Y. Suen, Y. C. Liu, C. S. Chang, Exploiting immobilized metal affinity membranes for the isolation or purification of therapeutically relevant species, Journal of Chromatography B, (2003), 797: p.305-319.
15.H. Zou, Q. Luo, D. Zhou, Affinity membrane chromatography for the analysis and purification of proteons, Journal of Biochemical and Biophysical Methods, (2001), 49: p.199-240.
16.A. Kotha, et al., Adsorption and expression of penicillin G acylase immobilized onto methacrylate polymers generated with varying pore generating solvent volume, Applied Biochemistry and Biotechnology, (1991), 30: p.297-302.
17.A. Naidja, P. M. Huang, J. M. Bollag, Activity of tyrosinase immobilized on hydroxyaluminum-montmorillonite complexes, Journal of Molecular Catalysis A:Chemical (1997), 115: p.305-316.
18.J. He, et al., A new support for the immobilization of penicillin acylase, Journal of Molecular Catalysis B: Enzymatic, (2000), 11: p.45-53.
19.田蔚城, 生物技術的發展與應用, 九州圖書文物有限公司, (1998)
20.陳國誠, 生物固定化技術與產業應用, 茂昌圖書有限公司, (2000)
21.潘建亮, 固定化盤尼西林去醯基酵素反應動力學建模及其兩水相系統分離反應之探討, 國立成功大學化學工程研究所博士論文, (2005)
22.S. Hjerten, et al., Gradient and isocratic high-perforemance hydrophobic interaction chromatography of proteins on agarose columns, Journal of Chromatography, (1986), 359: p.99-109.
23.V. V. Mozhaev, Mechanism-based strategies for protein thermostabilization, Trends in Biotechnology, (1993), 11: p.88-95.
24.R. M. Blanco, J. M. Guisan, Stabilization of enzymes by multipoint covalent attachment to agarose aldehyde gels-borohydride reduction of trypsin agarose derivatives, Enzyme and Microbial Technology, (1989), 11: p.360-366.
25.E. Katchalski-Katzir, Immobilized enzymes: learning from past successes and failures, Trends in Biotechnology, (1993), 11: p.471-478.
26.A. Schmid, et al., Industrial biocatalysis today and tomorrow, Nature, (2001), 409: p.258-268.
27.C. Mateo, et al., Reversible enzyme immobilization via a very strong and nondistorting ionic adsorption on support–polyethyenimine composites, Biotechnology and Bioengineering (2000), 68: p.98-105.
28.J. Turkova, Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function, Journal of Chromatography. B, Biomedical Sciences and Applications (1999), 1-2: p.25-34.
29.J. Maly, et al., Reversible immobilization of engineered molecules by Ni-NTA chelators, Bioelectrochemistry, (2004), 63: p.271-275.
30.C. Mateo, et al., Stabilization of enzymes by multipoint attachment via reversible immobilization on phenylboronic activated supports, Journal of Biotechnology, (2005), 120: p.396-401.
31.C. Mateo, et al., Purification and very strong reversible immobilization of large proteins on anionic exchangers by controlling the support and the immobilization conditions, Enzyme and Microbial Technology, (2006), 39: p.909-915.
32.M. Yakup Arıca, G. Bayramoglu, Reversible immobilization of tyrosinase onto polyethyleneimine-grafted and Cu(II) chelated poly(HEMA-co-GMA) reactive membranes, Journal of Molecular Catalysis B: Enzymatic, (2004), 27: p.255-265.
33.C. Mateo, et al., Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment, Enzyme and Microbial Technology, (2000), 26: p.509-515.
34.J. Böeseken, The use of Boric Acid for the Determination of the Configuration of Carbohydrates, Journal of Advances in Carbohydrate Chemistry, (1949), 4: p.189-210.
35.A. B. Foster, Zone Electrophoresis of Carbohydrates, Advances in Carbohydrate Chemistry, (1957), 12: p.81-115.
36.G. L. Mattok, W. D. L., Separation of catecholamines and metanephrine and normetanephrine using a weak cation-exchange resin, Analytical Biochemistry, (1965), 11 (3): p.575-579.
37.H. L. Weith, W. J. L., G. P. T., Synthesis of cellulose derivatives containing the dihydroxyboryl group and a study of their capacity to form specific complexes with sugars and nucleic acid components, Biochemistry, (1970), 9 (22): p.4396-4401.
38.A. Bergold, S. W. H, e. In: Scouten W H, Solid Phase Biochemistry New York: Wiley, (1983): p.149.
39.M. J. Benes, S. A, S. W. H., In: Ngo T T, ed. Molecular Interactions in Bioseparations. New York: Plenum Press, (1993): p.313.
40.X. C. Liu, W. H. Scouten, e. In: Vijayalakshmi M A, Biochromatography. London, UK: Taylor & Francis Ltd., (2002): p.307.
41.X. C. Liu, W. H. Scouten, In: Bailon P, Ehrlich G K, Fung W-J, Berthold W, eds. Affinity Chromatography. Totowa: Humana Press, (2000): p.119.
42.A. Foettinger, A. Leitner, W. Lindner, Solid-phase capture and release of arginine peptides by selective tagging and boronate affinity chromatography, Journal of Chromatography A, (2005), 1079 (1-2): p.187-196.
43.R. R. Little, et al., Validation by a Mass Spectrometric Reference Method of Use of Boronate Affinity Chromatography to Measure Glycohemoglobin in the Presence of Hemoglobin S and C Traits, Clinical Chemistry, (2005), 51: p.264 - 265.
44.J. Zha, L. Z, W. X, Chinese Journal of Pharmaceuticals, (2003), 34: p.66.
45.Y. Li, et al., Application of shielding boronate affinity chromatography in the study of the glycation pattern of haemoglobin, Journal of Chromatography B, (2002), 776 (2): p.149-160.
46.H. Zhang, et al., Chinese Journal of Antibiotics, 2002. 27: p. 108.
47.B. Elmas, et al., Temperature controlled RNA isolation by N-isopropylacrylamide-vinylphenyl boronic acid copolymer latex Colloid and Polymer Science, (2002), 280: p.1137-1146.
48.Z. F. Kou, et al., Journal of East China University of Science and Technology (Natural Science), (2001), 27 (6): p.614.
49.C. L. Yu, et al., Separation of mistletoe lectins based on the degree of glycosylation using boronate affinity chromatography Journal of Chromatography A, (2001), 925 (1-2): p.115-121.
50.Y. C. Li, et al., Separation of neoglycoproteins with different degrees of glycosylation by boronate chromatography, Chromatographia, (2001), 54: p.213-217.
51.W. L. Roberts, et al., Effects of Nine Hemoglobin Variants on Five Glycohemoglobin Methods, Clinical Chemistry, (2000), 46: p.560 - 576.
52.W. J. Schnedl, et al., Evaluation of HbA1c determination methods in patients with hemoglobinopathies, Diabetes Care, (2000), 23 (3): p.339-344.
53.H. H. Barnes, C. A. Ishimaru, Purification of catechol siderophores by boronate affinity chromatography: Identification of chrysobactin from Erwinia carotovora subsp. carotovora, BioMetals, (1999), 12 (1): p.83-87.
54.B. Jerkovic, H. C. Kung, P. H. Bolton, Purification of Thymine Glycol DNA and Nucleosides by Use of Boronate Chromatography, Analytical Chemistry, (1998), 255 (1): p.90-94.
55.I. Kazuyoshi, et al., Determination of glycated albumin by enzyme-linked boronate immunoassay (ELBIA), Clinical Chemistry, (1998), 44: p.256-263.
56.S. Gao, W. Wang, B. Wang, Building Fluorescent Sensors for Carbohydrates Using Template-Directed Polymerizations, Bioorganic Chemistry, (2001), 29 (5): p.308-320.
57.S. Greg, et al., The Development of Photometric Sensors for Boronic Acids, Bioorganic Chemistry, (2001), 28 (5): p.259-331.
58.G. Wulff, Selective binding to polymers via covalent bonds. The construction of chiral cavities as specific receptor sites. Pure and Applied Chemistry, 1982. 54(11): p. 2093-2102.
59.X. C. Liu, K. Mosbach, Sutface Imprinting of RNase B Using Boronate-Carbohydrate Interaction, American Biotechnology Laboratory, (1998), 16 (10): p.90.
60.S. J. Angyal, D. Greeves, V. A. Pickles, The stereochemistry of complex formation of polyols with borate and periodate anions, and with metal cations Carbohydrate Research, (1974), 35 (1): p.165-173.
61.J. F. Robert, Carbohydrate Boronates, Advances in Carbohydrate Chemistry and Biochemistry, (1978), 35: p.31-80.
62.W. J. Evans, E. J. McCourtney, and W. B. Carney, A comparative analysis of the interaction of borate ion with various polyols Analytical Biochemistry, (1979), 95 (2): p.383-386.
63.C. Zittle, Advances in Enzymology, (1951), 12: p.493.
64.S. Fulton, Boronate Ligands in Biochemical Separations Danvers,MA: Amicon Corp, (1981)
65.A. Vladimir, et al., New aliphatic boronate ligands for affinity chromatography Journal of Chromatography A, (1992), 625 (2): p.91-99.
66.K. A. Valerii, V. M. Stepanov, Phenylboronic acid as a ligand for biospecific chromatography of serine proteinases Journal of Chromatography A, (1978), 155 (2): p.329-336.
67.S. Higa, et al., Isolation of catecholamines in biological fluids by boric acid gel Analytical Biochemistry, (1977), 77 (1): p.18-24.
68.M. Y. Alexander, et al., Study of the interaction of polyols with polymers containing n-substituted [(4-boronophenyl)methyl]-ammonio groups, Carbohydrate Research, (1975), 43 (2): p.215-224.
69.P. O. Larsson, Handbook of Affinity Chromatography New York: Marcel Dekker, (1993): p.61.
70.X. C. Liu, W. H. Scouten, New ligands for boronate affinity chromatography, Journal of Chromatography A, (1994), 687 (1): p.61-69.
71.A. T. Myöhänen, V. Bouriotis, P. D. Dean, Affinity chromatography of yeast alpha-glucosidase using ligand-mediated chromatography on immobilized phenylboronic acids, Biochemical Journal (1981), 197: p.683-688.
72.B.J.B. Johnson, Synthesis of a nitrobenzeneboronic acid-substituted polyacrylamide and its use in purifying isoaccepting transfer ribonucleic acids, Biochemistry, (1981), 20 (21): p.6103-6108.
73.M. Glad, et al., High-performance liquid affinity chromatography of nucleosides, nucleotides and carbohydrates with boronic acid-substituted microparticulate silica Journal of Chromatography A, (1980), 200: p.254-260.
74.C. A. Elliger, B. G. Chan, W. L. Stanley, p-vinylbenzeneboronic acid polymers for separation of vicinal diols Journal of Chromatography A, (1975), 104 (1): p.57-61.
75.T. Koyama, K. I. Terauchi, Synthesis and application of boronic acid-immobilized porous polymer particles: a novel packing for high-performance liquid affinity chromatography Journal of Chromatography B, (1996), 679 (1-2): p.31-40.
76.E. J. Bourne, E. M. Lees, H. Weigel, Paper chromatography of carbohydrates and related compounds in the presence of benzeneboronic acid Journal of Chromatography A, (1963), 11: p.253-257.
77.S. Herbert, New Dihydroxyboryl-Substituted Polymers for Column-Chromatographic Separation of Ribonucleoside-Deoxyribonucleoside Mixtures Angewandte Chemie International Edition in English, (1972), 11 (9): p.824-825.
78.G. Armando, T. Wood, L. Chitemerere, The separation of isomeric pentose phosphates from each other and the preparation of -xylulose 5-phosphate and -ribulose 5-phosphate by column chromatography Analytical Biochemistry, (1981), 118 (1): p.4-9.
79.W. Günter, W. Vesper, Preparation of chromatographic sorbents with chiral cavities for racemic resolution, Journal of Chromatography A, (1978), 167: p.171-186.
80.S. Herbert, et al., Dihydroxyboryl-substituted methacrylic polymer for the column chromatographic separation of mononucleotides, oligonucleotides, and transfer ribonucleic acid, Biochemistry, (1973), 12 (5): p.932-938.
81.A. Steven, B. Cool, J. J. Furth, Removal of DNA from RNA by chromatography on acetylated N-[N''-(m-dihydroxylborylphenyl)succinamyl]aminoethyl cellulose Analytical Biochemistry, (1979), 100 (1): p.174-178.
82.J. G. Barry, P. M. Halla, J.G.H. Cook, Measurement of glycosylated haemoglobins using an affinity chromatography method Clinica Chimica Acta, (1982), 125 (1): p.41-48.
83.C. K. Dennis, et al., Determination of glycosylated hemoglobin by affinity chromatography: comparison with colorimetric and ion-exchange methods, and effects of common interferences, Clinical Chemistry, (1982), 28: p.2088-2094.
84.R. Fluckiger, T. Woodtli, W. Berger, Quantitation of glycosylated hemoglobin by boronate affinity chromatography, Diabetes, (1984), 33 (1): p.73-76.
85.H. n. Stellan, J. P. Li, High-performance liquid chromatography of proteins on deformed non-porous agarose beads: Fast boronate affinity chromatography of haemoglobin at neutral pH Journal of Chromatography A, (1990), 500: p.543-553.
86.E. Bisse, H. Wieland, Coupling of m-aminophenylboronic acid to s-triazine-activated Sephacryl: use in the affinity chromatography of glycated hemoglobins Journal of Chromatography : Biomedical Sciences and Applications (1992), 575 (2): p.223-228.
87.D. H. Christopher, et al., Robotic chromatography: development and evaluation of automated instrumentation for assay of glycohemoglobin, Clinical Chemistry, (1993), 39: p.143-147.
88.B. S. David, et al., Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus, Clinical Chemistry, (2002), 48: p.436-472.
89.Y. Keiko, et al., High-performance affinity chromatography system for the rapid, efficient assay of glycated albumin Journal of Chromatography A, (1992), 597 (1-2): p.271-275.
90.S. H. David, Affinity Chromatography: A Review of Clinical Applications, Clinical Chemistry, (1999), 45: p.593-615.
91.M. B. Beatriz, et al., Selective adsorption of immunoglobulins and glucosylated proteins on phenylboronate-agarose Journal of Chromatogr A, (1992), 604 (1): p.109-115.
92.J. Ugelstad, et al., Macromolecular Symposium, (1996), 101: p.491.
93.Y. Tetsuo, et al., Boronate Affinity Chromatography of γ-Glutamyltransferase in Patients with Hepatocellular Carcinoma, American Journal of Gastroenterology, (1991), 86 (4): p.389-531.
94.D. C. Raimondo, et al., Human platelet glycocalicin purification by phenyl boronate affinity chromatography coupled to anion-exchange high-performance liquid chromatography, Journal of Chromatography B, (1988), 426: p.376-380.
95.J. H. Clifford, et al., Isolation of 3,4-dihydroxyphenylalanine-containing proteins using boronate affinity chromatography Analytical Biochemistry, (1986), 159 (1): p.187-190.
96.T. W. Gwyn, A. P. Johnstone, P. D. Dean, Fractionation of membrane proteins on phenylboronic acid-agarose, Biochemical Journal, (1982), 205: p.167-171.
97.A. M. David, et al., X-ray crystallographic study of boronic acid adducts with subtilisin BPN'' (Novo). A model for the catalytic transition state, Journal of Biology Chemistry, (1975), 250: p.7120-7126.
98.W. C. G.arner, Boronic acid inhibitors of porcine pancreatic lipase, Journal of Biology Chemistry, (1980), 255: p.5064-5068.
99.D. E. Zembower, et al., International Journal of Peptide and Protein Research, (1996), 47: p.405.
100.B. Vasilis, I. J. Galpin, P.D.G. Dean, Applications of immobilised phenylboronic acids as supports for group-specific ligands in the affinity chromatography of enzymes Journal of Chromatography A, (1981), 210 (2): p.267-278.
101.R. M. Ramoncita, et al., Polyacrylamide-boronate beads saturated with biomolecules: A new general support for affinity chromatography of enzymes Journal of Chromatography A, (1980), 189 (2): p.225-231.
102.H. Sadayoshi, S. Kishimoto, Isolation of 2-hydroxycarboxylic acids with a boronate affinity gel Analytical Biochemistry, (1986), 154 (1): p.71-74.
103.D. Bongartz, A. Hesse, Selective extraction of quercetrin in vegetable drugs and urine by off-line coupling of boronic acid affinity chromatography and high-performance liquid chromatography, Journal of Chromatography B, (1995), 673 (2): p.223-230.
104.P. Jaroslav, J. Harmatha, Phenylboronic acid as a versatile derivatization agent for chromatography of ecdysteroids, Journal of Chromatography : Biomedical Sciences and Applications, (1992), 596 (2): p.271-275.
105.J. Porath, Salt-promoted adsorption: Recent developments, Journal of Chromatography: Biomedical Applications, (1986), 376: p.331-341.
106.B.H.J. Hofstee, Hydrophobic affinity chromatography of proteins, Analytical Biochemistry, (1973), 52 (2): p.430-448.
107.S. Shaltiel, B. J. William, Hydrophobic chromatography, Methods in Enzymology, (1984), 104: p.69-96.
108.W. Melander, C. Horvath, Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: An interpretation of the lyotropic series, Archives of Biochemistry and Biophysics, (1977), 183 (1): p.200-215.
109.T. Arai, W. Norde, The behavior of some model proteins at solid-liquid interfaces 1. Adsorption from single protein solutions, Colloids and Surfaces, (1990), 51: p.1-15.
110.S. C. Burton, D.R.K. Harding, Hydrophobic charge induction chromatography: salt independent protein adsorption and facile elution with aqueous buffers, Journal of Chromatography A, (1998), 814 (1-2): p.71-81.
111.Y. Kato, et al., Separation of proteins by hydrophobic interaction chromatography at low salt concentration, Journal of Chromatography A, (2002), 971 (1-2): p.143-149.
112.Besseling, N. A. M., Theory of Hydration Forces between Surfaces. Langmuir, (1997), 13(7): p. 2113-2122.
113.K. A. Dill, Dominant forces in protein folding, Biochemistry, (1990), 29 (31): p.7133-7155.
114.W. Norde, C. A. Haynes, Reversibility and the mechanism of protein adsorption. In Proteins at Interface II. Fundamentals and Applications, in ACS Symposium, T.A. Horbett and J.L. Brash, Editors, (1995), American Chemical Society: Washington, DC. p. 27-40.
115.M. A. Esquibel-King, et al., Study of hydrophobic interaction adsorption of bovine serum albumin under overloaded conditions using flow microcalorimetry, Journal of Chromatography A, (1999), 865 (1-2): p.111-122.
116.C.M.H. Hensgens, et al. Penicillin Acylase, mutant 2001 [cited; Available from: http://www.rcsb.org/pdb/explore.do?structureId=1JX9.
117.V. Fitton, X. Santarelli, Evaluation of immobilized metal affinity chromatography for purification of penicillin acylase, Journal of Chromatography : Biomedical Sciences and Applications, (2001), 754 (1): p.135-140.
118.J. Sanchez, et al., Efficient two-step chromatographic purification of penicillin acylase from clarified Escherichia coli ultrasonic homogenate, Journal of. Chromatography B, (2001), 753: p.45-50.
119.Y. C. Liu, C. C. ChangChien, S.Y. Suen, Purification of penicillin G acylase using immobilized metal affinity membranes, Journal of Chromatography B, (2003), 794 (1): p.67-76.
120.Rodrigo Torres , et al., Stabilization of enzymes by multipoint attachment via reversible immobilization on phenylboronic activated supports, Journal of Biotechnology (2005), 120 p.396–401.
121.C. I. Chen, et al., Simultaneous purification and immobilization of penicillin G acylase using bifunctional membrane, Journal of Membrane Science, (2007), 298 (1-2): p.24-29.
122.姚呈儒, 利用金屬親和薄膜固定化盤尼西林醯胺酵素之穩定性及再生性探討. 國立中興大學碩士學位論文, (2007).
123.M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical biochemistry, (1976), 72: p.248.
124.D. L. Pavia, G. M. Lampman, G. S. Kriz, Introduction to spectroscopy : a guide for students of organic chemistry. Third Edition ed. 2001, USA. Appendix 1.
125.W. R. Melander, Z. El Rassi, C. Horvath, Interplay of hydrophobic and electrostatic interactions in biopolymer chromatography : Effect of salts on the retention of proteins, Journal of Chromatography A, (1989), 469: p.3-27.
126.C. J. Coen, H. W. Blanch, J. M. Prausnitz, Salting out of aqueous proteins: Phase equilibria and intermolecular potentials, AIChE Journal, (1995), 41 (4): p.996-1004.
127.C. L. Yu, et al., Shielding of protein–boronate interactions during boronate chromatography of neoglycoproteins, Journal of Chromatography A, (2001), 909: p.137-145.
128.G. Baojiao, X. Wang, Y. Shen, Studies on characters of immobilizing penicillin G acylase on a novel composite support PEI/SiO2, Biochemical Engineering Journal, (2006), 28 (2): p.140-147.
129.X. C. Liu, Boronic Acids as Ligands for Affinity Chromatography, Chinese Journal of Chromatography, (2006), 24 (1): p.73-80.
130.陳靜雯, 疏水官能基薄膜之製備及其在純化盤尼西林醯胺酵素上之應用. 國立中興大學碩士學位論文, (2007).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top