跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 03:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝尚潔
研究生(外文):Shang-Chieh Hsieh
論文名稱:單分子元件之計算模型的探討
論文名稱(外文):Computational Modeling of single-molecule devices
指導教授:李豐穎
指導教授(外文):Feng-Yin Li
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:59
中文關鍵詞:半導體型奈米探管氣體感測器
外文關鍵詞:CNT-Chemical Sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
藉由密度泛函理論的方法結合real-space nonequilibrium Green’s function(NEGF), 我們成功完成了DTB(di-thiol-benzene)以及CNT感測器的電導測定。
(i)我們使用G03W軟體以不同的方法去最佳化di-thiol-benzene(DTB),接著利用TranSIESTA-C去做DTB的電導測定,並且以DTB在電極座標固定的情況下做最佳化,比較不同的計算方法和電極在固定的情況下,數種計算方法的差異性。

(ii)我們使用TranSIESTA-C在周期性邊界條件下去做鉅齒型(8,0)奈米碳管在不同的NO2吸附位置的最佳化,也成功地測量低偏壓情況下,NO¬2吸附位置對碳導電性的變化,其NO2的導電性變化趨勢符合了2000年Jing Kong在Science所發表的文章。
Based on density functional theory(DFT) combined with real-space nonequilibrium Green’s function (NEFG) formalism. We have successfully finished the DTB(di-thiol-benzene) and CNT sensor conductance determination.
(i)We use G03W to optimize di-thiol-benzene(DTB) with different method and test the conductance with different basis set on TranSIESTA-C, and compare the conductance of DTB with electrode was fixed.

(ii)We use TranSIESTA-C to optimize the zigzag(8,0)-nanotube with NO2 adsorb on different site under periodic boundary condition(PBC). We have successfully to measure the conductance under low bias with NO2 adsorb on Carbon Nanotube(CNT), it’s consistent with the Kong’s experiment that was published in Science in 2000 years.
誌謝辭-------------------------------------i
中文摘要-----------------------------------ii
Abstract-----------------------------------iii
Contents-----------------------------------iv
Figures------------------------------------v
Table--------------------------------------vi
Chapter 1
Introduction-------------------------------01
Reference----------------------------------02
Chapter 2
Theoretical background and calculation method-----04
2.1 Introduction of TranSIESTA-C------------------04
2.2 Theory background-----------------------------04
2.2.1 Theory of band structure-----------------04
2.2.2 Brillouin zone of band structure---------05
2.2.3 Density of state-------------------------07
2.2.4 Theory of two-probe system---------------08
2.2.5 The two-probe system and calculation method--09
Reference---------------------------------13
Chapter 3
Theoretical study of the conductance of Di-thiol benzene coupled to Au(1 1 1) surfaces via thiolate bond----14
3.1 Background of DTB conductance measurement------14
3.2 System and computational method----------------15
3.3 Results and discussion-------------------------17
3.4 Summary----------------------------------------25
Reference------------------------------------------26
Chapter 4
CNT sensor-----------------------------------------28
4.1 Background of miniature CNT sensor-------------28
Reference------------------------------------------34
4.2 Model and Computational Method-----------------35
4.3 Result and discussion--------------------------39
Reference------------------------------------------58
Chapter 5
Conclusion-----------------------------------------59

Figures
Fig.2.2.1 Electronic band structure--------------05
Figure.2.2.2.1 First Brillouin zone of FCC lattice----06
Figure.2.2.2.2 Band structure of silicon---------06
FIG.2.2.4 Two probe system-----------------------08
Fig.2.2.5 Two probe system of Al/semiconductor CNT/Al---10
Fig.3.2.1 Two-probe device structure with an DTB molecule junction-----------------------------------------15
Fig.3.3.1 The optimize structure of DTB with different method-------------------------------------------17
Fig.3.3.2 The transmission spectrum of DTB-------18
Fig.3.3.3 MPSH of DTB----------------------------21
Fig.3.3.4 The local density of state of DTB------22
Fig.3.3.5 I-V curve of DTB-----------------------24
Fig.4.1.1 Electrical resistance of CNT of SWNT films to gas exposure-------------------------------------29
Fig.4.1.2 Schematic of a nanotube-based chemical sensor-----------------------------------------------------29
Fig.4.1.3 Changes of electrical characteristics of a semiconducting SWNT in chemical environments-----30
Fig.4.1.4 Chemical gating effects to the semiconducting SWNT---------------------------------------------30
Fig.4.1.5 Electrical response of a semiconducting SWNT to gas molecules------------------------------------31
Fig.4.1.6 Dynamic gas responses of CNT thin film at different gas------------------------------------32
Fig.4.1.7 GGA-calculated density of states of CNT+CO system-------------------------------------------32
Fig.4.2.1 The optimize bulk structure of CNT with different basis set------------------------------35
Fig.4.2.2 The optimize CNT structure and band structure-----------------------------------------------------36
Fig.4.2.3 CNT sensor and energy-couple distance diagram-----------------------------------------------------38
Fig.4.3.1 The test unit cell length and transmission spectrum-----------------------------------------40
Fig.4.3.2 Transmission spectra T(E, Vb) of CNT as a function of electron energy at zero bias---------43
Fig.4.3.3 The LDOS of CNT sensor-----------------44
Fig.4.3.4 The I-V curve of CNT sensor------------46
Fig.4.3.5 The transmission eigen-channel of CNT sensor------------------------------------------------------47
Fig.4.3.6 The MPSH of CNT sensor-----------------49
Fig.4.3.7 The bulk configuration of CNT----------50
Fig.4.3.8 The different adsorb site of NO2 on CNT exterior wall---------------------------------------------52
Fig.4.3.9 The different band structure after 2nd NO2 adsorb on different site-------------------------54
Fig.4.3.10 The model of CNT electrode system and transmission spectrum after 2nd NO2 adsorb on different site.--------------------------------------------56



Table
Table 3.3.1(a) Conductance of DTB with different basis set at zero energy-----------------------------------19
Table 3.3.1(b) Conductance of DTB with different basis set at 0.3 eV----------------------------------------19
Table.3.3.2 Conductance difference of DTB with different opt method and fixed at the same contact position-----------------------------------------------------------20
Table.3.3.3 The energy gap and HOMO , LUMO with different basis set of optimized the DTB-------------------23
Table.4.3.1 The conductance of CNT dependent NO2 adsorb site---------------------------------------------42
Table.4.3.2 The different adsorb site of 2nd NO2 on the CNT----------------------------------------------53
Table.4.3.3 The conductance change of the 2nd NO2 adsorb on the CNT exterior wall. Under low bias---------57
chapter 1
1 T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber, Nature 391 (1998).
2 R. S. Lee, H. J. Kim, J. E. Fischer, A. Thess, and R. E. Smalley, Nature 388 (1997).
3 B. Xu and N. J. Tao, Science 301 (2003).
4 M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science 278, 252 (1997).
5 Y. Teramae, K. Horiguchi, S. Hashimoto, M. Tsutsui, S. Kurokawa, and A. Sakai, Appl. Phys. Lett. 93 (2008).
6 M. Tsutsui, Y. Teramae, S. Kurokawa, and A. Sakai, Appl. Phys. Lett. 89 (2006).
7 C. P. Collier, et al., Science 285, 391 (1999).
8 T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C.-L. Cheung, and C. M. Lieber, Science 289, 94 (2000).
9 C. Zhou, J. Kong, E. Yenilmez, and H. Dai, Science 290, 1552 (2000).
10 J. K. Gimzewski and C. Joachim, Science 283, 1683 (1999).
11 A. Yazdani, D. M. Eigler, and N. D. Lang, Science 272, 1921 (1996).
12 S. Katano, Y. Kim, M. Hori, M. Trenary, and M. Kawai, Science 316, 1883 (2007).
13 J. I. Pascual, J. Mendez, J. Gomez-Herrero, A. M. Baro, N. Garcia, U. Landman, W. D. Luedtke, E. N. Bogachek, and H. P. Cheng, Science 267, 1793 (1995).
14 M. D. Ganji and I. Rungger, J. Iran. Chem. Soc 5 (2008).
15 M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science 278, 252 (1997).
16 Y. Teramae, K. Horiguchi, S. Hashimoto, M. Tsutsui, S. Kurokawa, and A. Sakai, Appl. Phys. Lett 93 (2008).
17 S. Iijima, Nature 354, 56 (1991).
18 H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, Nature 384, 147 (1996).
19 S. Wong, E. Joselevich, A. Woolley, C. Cheung, and C. Lieber, Nature 394, 52 (1998).
20 W. A. d. Heer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995).
21 C. Dekker, Phys. Today 52, 22 (1999).
22 T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber, J. Phys. Chem. B 104, 2794 (2000).
23 J. Appenzeller, R. Martel, and P. Avouris, Appl Phys Lett 78, 3313 (2001).
24 P. Collins, A. Zettl, and H. Bando, Science 1997, 278 (1997).
25 A. Bachtold, P. Hadley, and T. Nakanishi, Science 294, 1317 (2001).
26 J. Kong, Science 287, 622 (2000).
27 W.-L. Yim, X. G. Gong, and Z.-F. Liu, J. Phys. Chem. B 107, 9363 (2003).
28 H. Chang and J. D. Lee, Appl. Phys. Lett 79, 3863 (2001).
29 Y. Zhang, D. Zhang, and C. Liu, J. Phys. Chem. B 110, 4671 (2006).

chapter 2
1 D. Sanchez-Portal, P. Ordejon, E. Artacho, and J. M. Soler, Int. J. Quantum Chem 65, 453 (1999).
2 N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
3 E. Artacho, Phys. Status Solidi B 215, 809 (1999).
4 O. F. Sankey and D. J. Niklewski, Phys. Rev. B 40, 3979 (1989).
5 J. Taylor, H. Guo, and J. Wang, Physical Review B 63, 121104 (2001).
6 M. Brandbyge, N. Kobayashi, and M. Tsukada, Physical Review B 60, 17064 (1999).
7 M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Physical Review B 65, 165401 (2002).
8 A. R. Williams, P. J. Feibelman, and N. D. Lang, Physical Review B 26, 5433 (1982).
9 M. Lopez-Sancho, J. Lopez-Sancho, and J. Rubio, J. Phys. F 14, 1205 (1984).
10 R. T. Tung, Phys. Rev. B 64, 205310 (2001).
11 J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 121104 (2001).
12 J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001).
13 S. Datta, Cambridge University Press: Cambridge (1995).
14 A. P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50 (1994).
15 B. G. Wang, J. Wang, and H. Guo, Phys. Rev. Lett. 82, 398 (1999).
16 P. Ordejon, E. Artacho, and J. M. Soler, Phys. Rev. B 53, R10441 (1996).
17 D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. lett 43, 1494 (1982).

chapter 3
1 D. R. Bowler, J. Phys. : Condens. Matter. 16, R721 (2004).
2 R. L. Carroll and C. B. Gorman, Angew. Chem., Int. Ed. 41, 4378 (2002).
3 J. R. Heath and M. A. Ratner, Phys. Today 43 (2003).
4 D. K. James and J. M. Tour, Chem. Mater 16, 4423 (2004).
5 R. L. McCreery, Chem. Mater 16 (2004).
6 A. Nitzan, Annu. Rev. Phys. Chem 52 (2001).
7 A. Nitzan and M. A. Ratner, Science 300, 1384 (.2003).
8 M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science 278, 252 (1997).
9 J. Reichert, R. Ochs, D. Beckmann, H. B. Weber, M. Mayor, and H. v. Lohneysen, Phys. Rev. lett 88, 176804 (2002).
10 P. A. Derosa and J. M. Seminario, J. Phys. Chem. B 105 (2001).
11 S. N. Yaliraki, A. E. Roitberg, C. Gonzalez, V. Mujica, and M. A. Ratner, J. Phys. Chem. 111, 6997 (1999).
12 E. G. Emberly and G. Kirczenow, Phys. Rev. B 64 (2001).
13 Y. Xue, S. Datta, and M. A. Ratner, J. Chem. Phys 115 (2001).
14 M. D. Ventra, S. T. Pantelides, and N. D. Lang, Phys. Rev. lett 84 (2000).
15 M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B: Condens. Matter mater. Phys 65 (2002).
16 P. Damle, A. W. Ghosh, and S. Datta, Chem. Phys 281 (2002).
17 S. Datta, Cambridge University Press: Cambridge (1995).
18 S. Datta, Superlattices Microstruct 28 (2000).
19 S. Datta, Nanotechnology 15 (2004).
20 L. E. Hall, J. R. Reimers, N. S. Hush, and K. J. Silverbrook, Chem. Phys 112 (2000).
21 K. Stokbro, J. Taylor, M. Brandbyge, and P. Ordejon, Ann. N. Y. Acad. Sci 1006 (2003).
22 J. Taylor, M. M. Brandbyge, and K. Stokbro, Phys. Rev. lett 89 (2002).
23 J. Taylor, H. Guo, and J. Wang, J. Phys. Rev. B: Condens. Matter Mater. Phys 63 (2001).
24 Y. Xue, S. Datta, and M. A. Ratner, Chem. Phys 281 (2002).
25 W. Andreoni, A. Curioni, and H. Gronbeck, Int. J. Quantum Chem 80 (2000).
26 A. P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50, 5528 (1994).
27 M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Physical Review B 65, 165401 (2002).
28 J. Taylor, H. Guo, and J. Wang, Physical Review B 63, 121104 (2001).
29 B. Larade, J. Taylor, H. Mehrez, and H. Guo, Phys. Rev. B 64, 075420 (2001).
30 X. Y. Xiao, B. Q. Xu, and N. J. Tao, Nano Lett 4 (2004).

chapter 4.1
1 S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature 393, 49 (1998).
2 P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Science 287, 1801 (2000).
3 J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000).
4 E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, and T. L. Reinecke, Science 307, 1942 (2005).
5 S. Santucci, S. Picozzi, F. Di Gregorio, L. Lozzi, C. Cantalini, L. Valentini, J. M. Kenny, and B. Delley, J. Chem. Phys. 119, 10904 (2003).
6 H. Chang, J. D. Lee, S. M. Lee, and Y. H. Lee, Appl. Phys. Lett 79, 3863 (2001).
7 X. Dong, et al., Chemistry of Materials 19, 6059 (2007).
8 D. Fu, H. Lim, Y. Shi, X. Dong, S. G. Mhaisalkar, Y. Chen, S. Moochhala, and L.-J. Li, J. Phys. Chem. C 112, 650 (2008).
9 L. Bai and Z. Zhou, Carbon 45, 2105 (2007).
10 R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, Appl. Phys. Lett 73 (1998).
11 S. Santucci, S. Picozzi, F. D. Gregorio, L. Lozzi, C. Cantalini, L. Valentini, J. M. Kenny, and B. Delley, J. Chem. Phys 119, 10904 (2003).

chapter 4.2~4.3
1 M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Physical Review B 65, 165401 (2002).
2 J. Taylor, H. Guo, and J. Wang, Physical Review B 63, 121104 (2001).
3 J. Taylor, H. Guo, and J. Wang, Physical Review B 63, 245407 (2001).
4 P. Pomorski, C. Roland, and H. Guo, Physical Review B 70, 115408 (2004).
5 R. T. Tung, Physical Review B 64, 205310 (2001).
6 X.-F. Li, K.-Q. Chen, L.-L. Wang, M.-Q. Long, B. S. Zou, and Z. Shuai, Journal of Applied Physics 101, 064514 (2007).
7 J. Wu, J. Zang, B. Larade, H. Guo, X. G. Gong, and F. Liu, Physical Review B 69, 153406 (2004).
8 Y. Xue and M. A. Ratner, Physical Review B 70, 205416 (2004).
9 P. Ordejon, E. Artacho, and J. M. Soler, Physical Review B 53, R10441 (1996).
10 D. R. Hamann, M. Schluter, and C. Chiang, Physical Review Letters 43, 1494 (1979).
11 A.-P. Jauho, N. S. Wingreen, and Y. Meir, Physical Review B 50, 5528 (1994).
12 B. Larade, J. Taylor, H. Mehrez, and H. Guo, Physical Review B 64, 075420 (2001).
13 K. Seo, K. A. Park, C. Kim, S. Han, B. Kim, and Y. H. Lee, Journal of the American Chemical Society 127, 15724 (2005).
14 W.-L. Yim, X. G. Gong, and Z.-F. Liu, J. Phys. Chem. B 107, 9363 (2003).
15 H. Chang, J. D. Lee, S. M. Lee, and Y. H. Lee, Applied Physics Letters 79 (2001).
16 J. Suehiro, H. Imakiire, S.-i. Hidaka, W. Ding, G. Zhou, K. Imasaka, and M. Hara, Sensors and Actuators B: Chemical 114, 943 (2006).
17 J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 探討混合式最佳倒頻譜之特徵擷取對母音之影響
2. 連續型多樣性指標之模擬研究
3. 掩護性買權之交易策略分析──以臺股期貨及選擇權買權為例
4. 金融海嘯與投資人的從眾行為
5. 適用國小四年級學童體驗教育之棲地概念
6. 農村規劃指標對農村再生先期規劃之驗證
7. 德基水庫台8線63K地滑地之調查分析
8. 對位聯苯二酚磺酸類化合物抑制乙醯膽鹼酯酵素、丁醯膽鹼酯酵素、膽固醇酯酵素及脂肪酵素之構形改變的計算與分析
9. 新型催化材料於燃料電池之研究
10. 新合成方法之研究:(一)α-胺基酸的不對稱合成:(1S)-(+)-3-蒈烯衍生之三環亞胺基內酯的合成及其應用(二)醛類化合物的製備:開發以2-碘醯基苯甲酸氧化一級醇之實用方法
11. 泊 n-對甲苯磺酸正烷醇類、n-雙-對甲苯磺酸正烷類及1-氨基甲酸氧,n-對-甲苯磺酸正烷類入乙醯膽鹼酯酵素及丁醯膽鹼酯酵素之活性位置
12. 液相層析串聯質譜術於半夏藥材中β –咔吧啉類生物鹼與麻黃鹼成分之定量分析研究
13. 製備具有芳香環咪唑取代基之二級氧化膦基及其衍生鈀金屬錯合物並應用於Suzuki-Miyaura耦合反應
14. 利用氯化三甲基矽烷催化碘琥珀醯亞胺和溴琥珀醯亞胺再利用銅金屬進行碳-氰鍵或碳-硫鍵形成以進行一鍋化合成溴化苯氰及溴化硫醚等化合物及其衍生物之合成研究
15. 伊文氏桿菌所產生的低分子量細菌素與其分泌機制之探討