跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/25 15:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡志偉
研究生(外文):Chih-Wei Tsai
論文名稱:集水區土地變遷對水域棲地環境影響評估之研究
論文名稱(外文):A Study on Aquatic Habitat Environmental Assessments with Land Use Change
指導教授:林信輝林信輝引用關係
學位類別:博士
校院名稱:國立中興大學
系所名稱:水土保持學系所
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:191
中文關鍵詞:集水區地景結構水域棲地環境水質評估指數魚類調查生物整合指數
外文關鍵詞:watershedlandscape structureaqua-habitat environmentwater quality assessment Indexfish investigationindex of biotic integrity
相關次數:
  • 被引用被引用:5
  • 點閱點閱:499
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以台中盆地西側之筏子溪及東南側之頭汴坑溪與台北縣雙溪鄉牡丹溪為研究樣區,經由SPOT衛星影像判釋探討集水區地景結構變化,並於各溪流選定測站進行水質及魚類調查,藉以探討水域棲地環境之變動情形及變動生成之原因,研究結果重點摘錄如下:
依筏子溪集水區SPOT衛星影像(2000-2008年)分析結果,得知建成地佔整體集水區面積約49%,為最主要的土地利用型態,且建成地面積之擴張速度較其他類別土地利用大;頭汴坑溪(2003-2007年)及牡丹溪(2004、2007年)集水區林地為最主要的土地利用類別,但隨著都市化擴張導致建成地面積有逐漸增加之趨勢,而牡丹溪受到農業開發的影響致使農地面積增加,頭汴坑溪農地面積則因觀光產業的興盛而呈現逐漸減少的趨勢(被建地所取代)。地景結構指數之NP、MPS、MSI、MPFD及MPI變化顯示筏子溪及頭汴坑溪集水區受到建成地及農地用地面積變化之影響造成地景趨於零散分布、嵌塊體形狀趨於規則化及破碎狀態,牡丹溪則因建成地及農地之集中擴張致使NP、MPI呈現減少的趨勢,而MPS呈現增加的趨勢。
依各溪流之水質調查分析結果,得知筏子溪位處於平原都市區內,受到周邊人為污染物排入的影響,水質數據較頭汴坑溪及牡丹溪差,且變動幅度也較大;頭汴坑溪及牡丹溪位處於海拔較高的地區,受到人為干擾情形較筏子溪少,影響水質變化的因素主要來自季節變化所造成的溫差及降雨的影響。此外,筏子溪水質評估指數分析結果發現,F2(東海橋)及F5(集泉橋)測站之RPI及WQI8變化,受到中科台中園區營運及周邊環境開發的影響,在2005年3月以後,發現F2測站水質污染開始呈現大於F5測站的趨勢。
依筏子溪魚類調查結果,顯示耐污性較強的外來種吳郭魚為最優勢魚種,且與台灣特有種最優勢魚種明潭吻鰕虎之數量呈現反向趨勢,由於生態棲地具有一定的承載量,代表著當外來種入侵族群數量過於龐大時,將對台灣特有種的族群產生威脅;而頭汴坑溪及牡丹溪台灣特有種的數量與分布皆為最優勢狀態,且具有較多的低耐污魚種。本研究並發現,豪雨會對魚類豐度產生負面影響,下游河段因洪峰流量大,其影響大於上游河段,且日最大降水量超過200 mm(大豪雨等級以上的雨量)會對魚類數量產生明顯減少趨勢;然而,水污染卻會導致魚類豐度與歧異度兩者皆產生減少趨勢。
應用魚類生物整合指數(IBI)評估本研究三條溪流之水域棲地環境品質狀態,得知筏子溪IBI評值主要介於極差至尚可的等級,顯示人為活動干擾、外來魚種入侵、水污染及豪雨的影響,導致筏子溪環境品質常處於不良狀態;頭汴坑溪所處的區位受到人為的擾動較少且集水區環境富多樣性(包含海拔高程及溪床坡度多變化的特性),導致IBI評值主要介於差至好的等級(好多於差);牡丹溪IBI評值主要介於差至好的等級,但屬於差的等級明顯高於好之等級,顯示牡丹溪的棲地環境品質較同位處郊區之頭汴坑溪不良,主要原因在於牡丹溪會受到颱風及東北季風的影響產生豪大雨破壞棲地環境,且牡丹溪河道內混凝土化的狀況較同位處郊區之頭汴坑溪狀況嚴重,導致牡丹溪水域棲地環境常處於不穩定狀態。
依地景、水質及魚類相關分析結果,發現筏子溪受到建成地面積增加之影響,導致水域棲地品質處於較不良狀態,而林地面積減少,亦造成筏子溪台灣特有種及外來種魚類數量之減少。此外,筏子溪集水區小尺度下的土地利用改變,因無森林涵養及過濾水源,導致對水質產生較大的變動狀態。位處郊區之頭汴坑溪及牡丹溪,雖保有較完整的林地,但是受到人為用地擴充的影響,開墾林地做為住宅區及經濟農作物栽植等用途,破壞原有的自然環境,也對水域棲地環境造成不良影響。
整體而言,衛星影像可應用於監測集水區地景結構變化,能間接反映河溪水域環境的變動狀態,分析結果可提供水土保持規劃治理之參考。此外,降雨強度200mm之日最大降水量可作為魚類抵抗力臨界值,若魚類恢復力無法達到原先未受大豪雨干擾的狀態,則有必要施行保護策略(如封溪),避免人為干擾影響魚類復育速度,而魚類恢復力的判定,可應用本研究所制定之IBI評分標準於冬季進行調查分析,以評估保護策略之施行與否。
Fazih River which located in west side of Taichung basin, while Tou-Bian-Keng Creek at southern-east side, and Mu-Dan Creek which located at Swan-Shi, Taipei county were chose as study areas in this study. By using SPOT satellite image analysis to explore landscape structure changes during different periods, and select record stations among basins to conducting water quality and fish survey, in order to exploring vicissitude and causes of environmental transformation. The study results are extracted as follow:
According to SPOT satellite images(2000-2008)analysis, the developed land is the most major land use(49% of the whole watershed areas), and the expansion of developed land is higher than other land use, while Tou-Bian-Kang(2003-2007) and Mu-Dan(2004-2007) Creeks are mainly occupied by woodland, yet developed land use shows increase trends according with urban expansion. Mu-Dan Creek has increase in farm land while Tou-Bian-Kang Creek shows opposite trend due to bloom of tourism industry(substituted by building land). The changes of indicators such as NP、MPS、MSI、MPFD and MPI of landscape structure index indicated that scatter distributed landscape of Fazih River and Tou-Bian-Kang Creek watersheds were effected by the change of developed land and farm land, and the shape of patches are gradually transform to regular and fracture. The NP and MPI of Mu-Dan Creek show decline while MPS shows increase trends.
According to water quality analysis of three streams, Fazih River located at plain urban area has poorer water quality and higher change then the other two Creeks due to pollutant influx. While Tou-Bian-Kang and Mu-Dan Creeks are located at higher elevation has result in lower human impacts, the water quality influence are mainly from temperature difference and rainfall caused by seasonal changes. Further, the analysis of water quality assessment index of Fazih River has show that the changes of RPI(river pollution index) and WQI8(water quality index) at F2(Tung-Hai Bridge)and F5(Chi-Chen Bridge)were influenced by operation of Central Taiwan Science Park in Taichung(with 1.5km in distance from F2 station) and neighbor building land development since latter half of 2004, the water pollution of F2 began severer than F5, the most turning point occurred at March 2005, but after that, compare to F5, the RPI shows higher increases rate, on the other hand, the WQI8 shows higher decrease rate, both indicated the deteriorate in water quality.
Base on fish survey in Fazih River, tilapia(exotic species) is the superiority specie because of higher pollutant endurance, and show opposite trend with Rhinogobius candidianus(endemic species). Owing to limitation of carrying capacity of ecological habitat, when exotic species invade severely, it will threaten the population of endemic species. The amount and distribution of endemic species both in Tou-Bian-Kang and Mu-Dan Creeks are superiority, and has lower pollutant endurance fish. This study also figure out that torrential rain will cause negative effect to fish richness, lower segments(with higher flood peak) are higher than upper ones. precipitation more than 200mm/day(torrential rain level) will obviously decrease fish amount, however, water pollution will cause decrease both in richness and diversity of fish.
By using IBI(index of biotic integrity) to evaluate quality of aqua-habitat environment of three streams has indicated that IBI value of Fazih River are between very poor to fair, which shows human activity interference, exotic species invade, water pollution and torrential rain effects are main factors which deteriorate environmental quality of Fazih River. Tou-Bian-Kang Creek, due to less of human activity interference and environmental diversity of watershed(including higher elevation and slope variation of stream bed), the IBI values are between good to poor, while Mu-Dan Creek possess poor to good in IBI values, yet poor values are obviously higher than good values. The results has illustrated that Mu-Dan Creek is much worse than Tou-Bian-Kang Creek in habitat quality, although two Creeks are both lacated at suburbs. The main reason is that Mu-Dan Creek suffer from typhoon and northern-east monsoon, and leading to torrential rain impacts. In addition, Mu-Dan Creek is rife with concrete works, which cause unstable situation more severely than Tou-Bian-Kang Creek.
By following the interrelation analysis results of landscape, water quality and fish amount, those indicated that aqua-habitat environment of Fazih River is affected by the increase of developed lands, yet the decrease of forestry area will also reduce both of endemic and exotic species in Fazih River. In addition, because of lacking of forest to preserve and filtrate water, small scale change in land use will cause relatively higher impact. Although Tou-Bian-Keng Creek and Mu-Dan Creek are located at suburbs, due to expansion of land use, woodland were reclaim to residential or economical crops uses, has also injure nature environment and aqua-habitat.
In general, satellite images are available for monitoring landscape transformation of watershed, thus to reflecting aquatic environment change of streams indirectly. The analytic results are useful for soil conservation management works. Further, maximum rainfall intensity of 200mm/day can be used as critical value of fish persistence. To mitigate man-made interferences on the rehabilitation of fish, the protection tasks such as temporary close stream usage are necessary as if fish resilience can not reach original conditions before torrential disturbance. The IBI assessment standards which are developed in this study are available for conducting field survey and analysis in winter to judgment of fish resilience, and used to evaluating the necessity of protection strategies.
摘 要 I
Abstract III
表 目 錄 VIII
圖 目 錄 X
第一章 緒論 1
1.1 研究動機與目的 1
1.1.1 研究動機 1
1.1.2 研究目的 2
1.2 研究內容與流程 2
1.2.1 論文架構 2
1.2.2 研究流程 4
第二章 文獻回顧 5
2.1 集水區水域生態系 5
2.1.1 集水區之定義與內涵 5
2.1.2 集水區水域生態系特性 6
2.2 地景生態學 10
2.2.1 地景生態學之定義與內涵 10
2.2.2 地景空間格局與尺度 12
2.2.3 地景結構指數 15
2.3 生態監測與評估 18
2.3.1生態監測 18
2.3.2生態評估 21
2.4 河溪生態評估指標及指數 22
2.4.1指標及指數之意義 22
2.4.2 水質評估 25
2.4.3 生物評估 28
2.4.4 棲地環境評估 42
2.5 生態系發育與互動機制 48
2.5.1 生態系發育與干擾 48
2.5.2環境與水質及魚類關係 53
第三章 研究材料與方法 56
3.1 研究區域環境特性 56
3.1.1 筏子溪集水區 57
3.1.2 頭汴坑溪集水區 62
3.1.3 牡丹溪集水區 67
3.2 衛星影像分析 72
3.2.1 衛星影像購置 72
3.2.2 影像分類方法 73
3.3 水域生態調查 81
3.3.1 水質與雨量 81
3.3.2 魚類調查 83
3.4生態評估指數與統計分析方法 85
3.4.1 生態評估指數 85
3.4.2 統計分析方法 86
第四章 結果與討論 88
4.1 地景變遷分析 88
4.1.1集水區土地利用變遷分析 88
4.1.2 集水區地景結構指數變化分析 96
4.2 水質變化分析 109
4.2.1 測站水質變化 109
4.2.2 不同時期水質變化 112
4.3 魚類變化分析 124
4.3.1 測站魚類變化 124
4.3.2 不同時期魚類變化 137
4.4 魚類IBI應用與評估 146
4.4.1 IBI評分標準之建立 146
4.4.2 IBI變化探討 157
4.5 地景與水質及魚類相關性分析 162
4.5.1 土地利用與水質及魚類關係 162
4.5.2 地景結構與水質及魚類關係 169
4.5.3 水質與魚類關係 173
第五章 結論與建議 176
5.1結論 176
5.2 建議 178
參考文獻 180
1.于錫亮,1997,淺談流量與棲地關係的方法學,自然保育季刊(19):15-19。
2.中央氣象局全球資訊網,http://www.cwb.gov.tw/。
3.內政部營建署,2008,全國污水下水道用戶接管普及率及整體污水處理率統計表,http://www.cpami.gov.tw/。
4.王素芬、陳永寬、鄭祈全,1999,地理資訊系統和碎形維度於森林地景空間變化上之應用,航測及遙測學刊 4(2):33-53。
5.王瑞香譯(Odum E. P.原著),2000,生態學-科學與社會之間的橋樑,國立編譯館主譯出版,啟英文化總經銷。
6.王漢泉,1983,淡水河流域魚類分布與水質關係之初步研究,中國水產(372): 25-34。
7.王漢泉,2002,台灣河川水質魚類指標,環境檢驗(40):44-46。
8.田志仁、汪碧涵,2004,淡水生物多樣性調查方法與評估指標,環境檢驗季刊(50):14-21。
9.白梅玲、李培芬、端木茂甯,2006,氣候變遷對台灣淡水魚多樣性之衝擊評估,全球變遷通訊雜誌(49):23-37。
10.石再添、張津端、黃阿有,1986,基隆河的水污染及其變遷,工程環境會刊(7):55-66。
11.江政彥,2004,以景觀生態及景觀生心理探討永續環境之研究,國立中興大學園藝學系碩士論文,國立中興大學園藝學系。
12.江漢全,1996,水質分析,三民書局,台北。
13.行政院環境保護署,2007,http://www.epa.gov.tw/
14.何大仁、蔡厚財,1999,魚類行為學,水產出版社。
15.吳俊宗、周晉文,1998,淡水河系污染整治對生物相群聚動態影響,第四章-藻類,p.4-1 ~ 4-45頁。
16.吳富春,胡通哲,李國昇,李德旺,1998,應用棲地模式估算台灣河川之生態流量,第九屆水利工程研討會論文集。
17.李明儒,2004,頭汴坑溪環境生態評估指數之研究,國立中興大學水土保持學系博士論文。
18.李美慧,2006,生態監測概論,明文書局編印,p.278。
19.李德旺、于錫亮,2005,埔里中華爬岩鰍棲地環境之需求,特有生物研究7(2):13-22。
20.李德旺、邱健介、林維玲、于錫亮,1998,卑南溪流域高身鏟頜魚之分布與環境因子的關係,中華林學季刊31(3):219-225。
21.周正明,2002,河川生態工法評估程序建立-溪流狀況指數為例,國立台灣大學土木工程學研究所碩士論文。
22.周正明、黃世孟,2003,生態工法評估程序建立-溪流狀況指數為例,中華水土保持學報34(1):25-39。
23.周建成、溫清光,1990,台灣河川水質指數之建立,國立成功大學環工所碩士論文。
24.林幸助、于淑芬,2007,溪流中的藻類,科學發展(417):6-9。
25.林青蓉、陳信雄、陳明杰,1991,溪頭試驗集水區降雨及溪流水質之研究,台大實驗林研究報告5(2):67-93。
26.林信輝,2008,集水區景觀生態保育治理評估技術手冊,行政院農業委員會水土保持局編印,歐樂實業股份有限公司印刷。
27.林信輝、李明儒、孫明德、黃俊仁,2003,生物整合指標(IBI)之應用探討,水土保持學報35(1):81-96。
28.林昭遠,1997,集水區植生緩衝帶配置之研究,跨世紀水土保持技術之走向研討會論文集,中華水土保持學會,p.55-65。
29.林信輝、李明儒、張世倉、李訓煌,2003,應用水生昆蟲科級生物指標(FBI)評估溪流水質之研究,水土保持學報35(4):425-438。
30.津田松苗,1962,水生昆虫學,北隆館出版,日本。
31.徐希蓮,2001,水生昆蟲與水質的生物監測,萊陽農學院學報18(1):66-70。
32.殷名稱,1998,魚類生態學,水產出版社,537p。
33.翁慕涵、黃宏斌,2007,溪流狀況指數(ISC)應用於台灣土石流整治溪流之研究,2007農業工程研討會論文集,p.895-929。
34.張明雄、王慎之、邵廣昭,1999a,生物整合指標(IBI)在台灣的應用:以後龍溪中上游水體環境為例,中華民國生物學會-88年度論文發表會。
35.張明雄、王慎之、張廖年鴻、邵廣昭,1999b,淡水河系生物相調查及生物指標手冊建立-第七章魚類,行政院環境保護署,p.7-1 ~ 7-29。
36.張益誠,2001,應用因子分析方法為台灣地區建構永續發展趨勢評估指標系統,國立台灣大學環境工程學研究所,博士論文,台北。
37.張高雯,2000,景觀生態與結構與鳥類多樣性之相關研究,國立中興大學園藝學系碩士論文。
38.梁文盛,2005,本土化水域生態工法工程技術之研究(第三期),行政院公共工程委員會專案研究計畫。
39.梁文盛,2006,水域生態及水利設計原則,公共建設相關專業人員生態工程講習-河溪水域班,研討講習(046):1-61。
40.梁世雄,2000,水生昆蟲相關調查及利用其建立河川水質多測項評估系統之研究-以高屏溪中上游為例,經濟部水資源局。
41.梁雲芳,2004,外來種可能是生態怪客,科學發展(382):63-67。
42.郭一羽、陳有祺、周文杰、陳賜賢,2003,牡丹溪集水區整體治理調查規劃成果報告,行政院農委會水土保持局第一工程所。
43.陳文吉,2002,聚電解質加強超過濾移除水中重金屬之研究,國立屏東科技大學環境工程與科學系碩士論文,p.1-8。
44.陳伯中,2000,藻類作為水庫水質監測指標之重要性-以德基水庫為例,集水區保育,中國文化大學環境設計學院景觀學系發行,台北,p.107-126。
45.陳萓蓉,1998,以農業非點源污染模式評估河川保護帶的配置,東華大學自然資源管理研究所,碩士論文,台灣:花蓮。
46.陳意昌,2004,農地重劃地區土地利用與景觀變遷之研究,國立中興大學水土保持學研究所博士論文,pp.32-242。
47.陳榮宗、何平合、李訓煌,2003,外來種淡水魚類及蝦類在台灣河川之分布概況,特有生物研究(5):33-46。
48.陳瀅茹,2008,泥岩地區農塘景觀結構與生物群聚關係之研究,國立中興大學水土保持學系碩士學位論文,p.9-15。
49.曾如玉,2004,南台灣地區都會公園鳥類群聚整合性指標之建立,高雄師範大學生物科學研究所碩士論文。
50.曾晴賢,2007,生態工程推行成果評估與研究(第三年),行政院農業委員會水土保持局委託專業服務計畫成果報告書。
51.森下郁子、森下雅子、森下依理子,2000,川のHの條件陸水生態學からの提言,山海堂(東京),150p。
52.馮豐隆、黃志成,1997,惠蓀林場土地利用之地景排列和變遷,中華林學季刊30(4):387-400。
53.黃佩俐,2001,台灣北部繁殖鳥類之分布型態,台灣大學動物學研究所碩士論文。
54.黃俊仁,2008,崩塌地植生復育與景觀變遷之研究,國立中興大學水土保持學系博士學位論文,p.4-40 ~ 4-48。
55.黃莉芬,1990,應用生態能量分析於土地分類之研究-以台北都會區為例,碩士論文,國立中興大學都市計劃研究所。
56.黃勝頂,2002,河川近自然工法之設計及其高水分析—以台中地區筏子溪為例,中原大學土木工程學系碩士學位論文,p.37~38。
57.楊平世,1992,台灣河川底棲生物手冊─水棲昆蟲,行政院環境保護署環境檢驗所編印,台北縣,78p。
58.溫清光,2000,河川水質監測實務講習班講義,行政院環境保護署訓人員訓練所。
59.葉明峰、邱健介、李德旺,2002,清水溪魚類族群分布與海拔高度及溪流坡度之關係,特有生物研究(2):34-43。
60.鄔建國,2003,景觀生態學-格局、過程、尺度與等級,五南圖書出版公司。
61.趙仁方、陳錦生,1999,太平洋之美-河川生態資源專輯,太平市公所,台中。
62.劉棠瑞、蘇鴻傑,1989,森林植物生態學(第三版),台灣商務印書館,臺北市。
63.蕭蘊華、傅崇德、許鼎居譯,1995,環境工程化學,Sawyer, C. N., P. L. McCarty, and G. F. Parkin.原著,台北:美商麥格羅•希爾國際股份有限公司,第四版。
64.薛怡珍、李國忠、邱祈榮、賴明洲、劉淑芬,2002,陳有蘭溪流域地景變遷之分析,中華林學季刊 35(4):375-386。
65.謝森和,2002,環境生物指標-以河流生物監測為例,地球環境現況與變遷研討會。
66.鍾旭和、顏江河,1985,翡翠水庫集水區之土地利用與溪流水質關係。台灣省林業試驗所試驗報告第436號,pp.1-19。
67.魏國彥、許晃雄,1997,全球環境變遷導論,展智文化事業股份有限公司。
68.鐘丁茂,2005,筏子溪的生態與污染,生態臺灣(7):24-26。
69.鐘俊生、郁蔚文、劉必林、龔小玲、薄歡軍、胡芬、丁峰元,2005,長江口沿岸碎波帶仔稚魚種類組成和季節性變化,上海水產大學學報14(4):375-382。
70.Agarwal, C., G. L. Green, J. M. Grove, T. Evans and C. Schweik. 2000. A review and assessment of land use change models:dynamics of space, time, and human choice. 4th International Conference on Integrating GIS and Environmental Modeling: Problems, Prospects and Research Needs. Banff, Alberta, Canada.
71.Allan, J.D. 1995. Stream Ecology Structure and Function of Running Water. Chapman & Hall, New York. p.329-330.
72.Alsop, D. H., J. C. McGeer, D. G. McDonald and C. M. Wood. 1999. Costs of chronic waterborne zinc exposure and the consequences of zinc acclimation on the gill/zinc interactions of rainbow trout in hard and soft water. Environmental Toxicology and Chemistry (18): 1014-1025.
73.Angermeier, P. L. and G. Davideanu. 2004. Using fish communities to assess streams in Romania: initial development of an index of biotic integrity. Hydrobiologia (511): 65-78.
74.Ball, T. 1983. The migration of geese as an indicator of climate change in the southern Hudson Bay region between 1715 and 1851, Climatic Change (5): 85-93.
75.Beeby, A. 1993. Applying Ecology. Chapman & Hall, New York.
76.Bervoets, L. and R. Blust. 2003. Metal concentrations in water, sediment and gudgeon (Gobio gobio) from a pollution gradient: Relationship with fish condition factor. Environmental Pollution (126): 9-19.
77.Bervoets, L., G. Knaepkens, M. Eens and R. Blust. 2005. Fish community responses to metal pollution. Environmental Pollution (138): 338-349.
78.Blake, J.G. and J.R. Karr. 1987. Breeding birds of isolated woodlots: area and habitat relationships. Ecology (68):1724-1734.
79.Bradley, N.L., A. C. Leopold, J. Ross, and W. Huffaker. 1999. Phenological changes reflect climate change in Wisconsin. Proceedings of the National Academy of Sciences of the United States of America (96): 9701-9704.
80.Bray, J. R. and J. T. Curtis. 1957. An ordination of the upland forest communities of Southern Wisconsin: Ecol. Monogr (27): 325–349.
81.Camarero, J.J. and E. Gutierrez. 2004. Pace and pattern of recent treeline dynamics: Response of ecotones to climatic variability in the Spanish Pyrenees, Climatic Change (63): 181-200.
82.Chmielewski, F. M., A. Mueller and E. Bruns. 2004. Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961-2000, Agricultural & Forest Meteorology (121): 69-78.
83.Ciruna, K. A., L. A. Myerson and A. Gutierrez. 2004. The ecological and socio-economic impacts of invasive alien species in inland water ecosystems. Report to the Conservation on Biological Diversity on behalf of the Global Invasive Species Programme, Washington D.C. p. 34.
84.Clarke, R.(ed), 1986. The Handbook of Ecological Monitoring. Clarendon Press, Oxford.
85.Clawson, M. and C. L. Stewart. 1965. Land use information, a critical survey of U.S. statistics including possibilities for greater uniformity, Baltimore: The Johns Hopskins Press.
86.Compin, A., R. Cereghino. 2003. Sensitivity of aquatic insect species richness to disturbance in the Adour-Garonne stream System (France). Ecol. Indicators 3(2): 135-142.
87.Dale, V. H. and S. C. Beyeler. 2001. Challenges in the development and use of ecological indicators, Ecological Indicators (1): 3-10.
88.Delcourt, H. R., P. A. Delcourt and T. Webb, Ⅲ. 1983. Dynamic plant ecology: the spectrum of vegetational change in space and time. Quaternary Science Review (1):153-175.
89.Dramstad, W. E., W. J. Fjellstad, G. H. Strand, H. F. Mathiesen, G. Engan and J. N. Stokland. 2000. Development and implementation of the Norwegian monitoring programmed for agricultural landscapes, Journal of Environmental Management (64): 49-63.
90.Fahrig, L. and G. Merriam. 1985. Habitat patch connectivity and population survival. Ecology (66): 1762-1768.
91.Fang, L.S., I. S. Chen, K. S. Tew, C. C. Han, T. F. Lee and I. M. Chen. 2002. Impact of the 1999 Earthquake in mountain stream fishes in Taiwan. Fishery Science (68): 446-448.
92.Flerchinger, G. N. and F. B.Pierson, 1997. Modelling plant canopy effect on variability of soil temperature and water: model calibration and validation. Journal of Arid Environments (35): 641-653.
93.Forman, R. T. T. 1995. Land mosaics: the ecology of landscapes and regions, Cambridge University Press.
94.Forman, R. T. T. and M. Godron. 1986. Landscape ecology, John Wiley & Sons, New York.
95.Freeman, B. 1995. Environmental Ecology. 2nd edition. Academic Press, San Diego.
96.Freemark, K. E. and Merriam, H. G. 1986. Importance of area and habitat heterogeneity to bird assemblages in temperate forest fragments. Biology Conservation (36): 115-141.
97.Furley, P., C. Hughes and D. Thomas. 1996. Threshold, Carrying Capacity and Sustainable Tourism: Monitoring Environmental Change in the Coastal Zone of Belize. Edinburgh: Department of Geography, University of Edinburgh.
98.Gamache, I. and S. Payette. 2004. Height growth response of tree line black spruce to recent climate warming across the forest-tundra of eastern Canada, Journal of Ecology (92): 835-845.
99.Goldsmith, F. B. 1991. Monitoring for Conservation and Ecology, Chapman and Hall, London.
100.Gordon, S. I. 2001. Come explore experience Ohio’s watersheds. City and Regional Planning Program, School of Architecture, The Ohio State University.
101.Hao, O. J. 1996. Bioindicators for water quality evaluation – a review, J. of the Chinese Institute of Environmental Engineering 6(1): 1-19.
102.Hargis, C. D., J. A. Bissonette and D. L. Turner. 1998. The influence of forest fragmentation and landscape patterns of American martens. J. Appalachian Ecology (36): 157-172.
103.Hilsenhoff, W. L. 1988. Rapid field assessment of organic pollution with a family-level biotic index. J. N. Am. Benthol. Soc.(7):68p.
104.Hollis, L., J. C. McGeer, D. G. McDonald and C. M. Wood. 1999. Cadmium accumulation, gill Cd binding, acclimation, and physiological effects during long term sublethal Cd exposure in rainbow trout. Aquatic Toxicology (46): 101-119.
105.Hoosier Riverwatch. 2000. Volunteer stream monitoring training manual. Nautral Resources Education Center, Fort Harrison State Park, Indianapolis, Indiana.
106.Horne, J. K. and D. C. Schneider. 1995. Spatial variance in ecology. Oikos (74): 18-26.
107.Hulshoff, R. M. 1995. Landscape indices describing a Dutch landscape. Landscape Ecology (10): 101-111.
108.Hunsacker, C. T. and D. A. Levine. 1995. Hierarchical approaches to the study of water quality in rivers. Bioscience 45(3): 193-203.
109.Intergovernmental Task Force on Monitoring Water Quality (ITFM). 1995. The strategy for improving water-quality monitoring in the United States: Final report of the Intergovernmental Task Force on Monitoring Water Quality, USGS, Reston, Virginia.
110.Jaccard, P. 1902. Lois de Distribution Florale dans la Zone Alpine. Soc. Vaud. Sci. Natl. Bull (38): 69p.
111.Jackson, L. E., J. C. Kurtz and W. S. Fisher (eds). 2000. Evaluation Guidelines for Ecological Indicators. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC.
112.Joy, M. 2007. A New Fish Index of Biotic Integrity using Quantile Regressions: the Fish QIBI for the Waikato Region, Environment Waikato Technical Report, p.1-10.
113.Joy, M. K. and R. G. Death. 2004. Application of the index of biotic integrity methodology to New Zealand freshwater fish communities. Environmental Management (34): 415-428.
114.Karr, J. R. 1981. Assessment of biotic integrity using fish communities. Fisheries (6): 21-27.
115.Karr, J. R. 1991. Biological integrity: A long-neglected aspect of water resource management. Ecological Applications (1): 66-84.
116.Karr, J. R., K. D. Fausch, P. L. Angermeier, P. R. Yant and I. J. Schlosser. 1986. Assessing Biological Integrity in Running Waters: a Method and Its Rationale. Illionis Natural History Survey Special Publication 5, Urbana.
117.Kay, J. J. 1997. Some Notes on the Ecosystem Approach: Ecosystems as Complex Systems. In Murray, T., and G. C. GallopPn. (eds) Proceedings of the First International Workshop on Integrated Conceptual Framework for Tropical Agroecosystem Research Based on Complex Systems Theories. Working document(167):69-98.
118.Kelly, M. G. and B. A. Whitton. 1995. The trophic diatom index: a new index for monitoring eutrophication in rivers. J. Appl. Phycol.(7): 433-444.
119.Kesminas, V. and T. Virbickas. 2000. Application of an adapted index of biotic integrity to rivers of Lithuania, Hydrobiologia (422): 257-270.
120.Kovacs, T. G., P. H. Martel and R. H. Voss. 2002. Assessing the biological status of fish in a river receiving pulp and paper mill effluents, Environmental Pollution 118(1): 123-140.
121.Ladson, A. R. and L. J. White. 1999. An Index of Stream Condition: Reference Manual (second edition), Department of Natural Resources and Environment, Melbourne.
122.Langdon, R. W., 2001. A preliminary index of biological integrity for fish assemblages of small coldwater streams in Vermont, Northeastern Naturalist 8(2): 219-232.
123.Langevelde, F., A. Schotman, F. Claassen and G. Sparenburg. 2000. Competing land use in the reserve site selection problem. Landscape Ecology (15): 243-256.
124.Leonard, M. P. and D. J. Orth. 1986. Application and testing of an Index of biotic integrity in a small coolwater stream. Transactions of the American Fisheries Society (115): 401-414.
125.Li, H. and J. F. Reynolds. 1995., On definition and quantification of heterogeneity. Oikos (73): 280-284.
126.Liang, S. H. and B.W. Mensel. 1997. A new method to establish scoring criteria of the Index of Biotic Integrity. Zoological Studies 36(3): 240-250。
127.Livingstone, D. A. 2003. Global climate change strikes a tropical lake. Science (301): 468-469.
128.Lodge, D. M., C. A. Taylor, D. M. Holdich and J. Skurdal. 2000. Nonindigenous crayfishes threaten North American freshwater biodiversity: Lessons from Europe. Fisheries 25(8): 7-20.
129.Lodge, D. M., R. A. Stein, K. M. Brown, A. P. Covich, C. Bronmark, J. E. Garvey and S. P. Klosiewski. 1998. Pridicting impact of freshwater exotic species on native biodiversity: Challenges in spatial scaling.
130.Maddox, D., K. Poiani and R. Unnasch. 1999. Evaluating management success: using ecological models to ask the right monitoring questions. In Sexton, W. T., Malk, A. J., Szaro, R. C., and Johnson, N. C. (eds) Ecological Stewardship. Volume 3. Elsevier Science, New York, p. 563-584.
131.Maret, T. R., C. T. Robinson and G. W. Minshall. 1997. Fish assemblages and environmental correlates in least-disturbed streams of the upper Snake River basin. Transactions of the American Fisheries Society (126): 200-216.
132.Margalef, R. 1951. Diversidad de especies en las comunidades naturales. Publ. Inst. Biol.Apl. (Barcelona) (9): 5-27.
133.Master, L. 1990. The imperiled status of North American aquatic animals. Biodiversity Network News (3): 1-8.
134.McGarigal, K. and B. J. Marks. 1995. FRAGSTATS: Spatial Pattern analysis program for quantifying landscape structure. USDA Forest Service-General. Technical Report PNW-GTR-351, p. 122-136.
135.McQueen, D. V. and H. Noack. 1988. Health promotion indicators: current status, issues and problems. Health Promotion. An International Journal 3(1): 117-125
136.Medley, K. E., B. W. Okey, G. W. Barrett, M. F. Lucas and W. H. Renwick. 1995. Landscape change with agricultural intensification in a rural watershed, Southwestern Ohio, U.S.A., Landscape Ecology (9): 151-157.
137.Michener, W. K., E. R. Blood, K. L. Bildstein, M. M. Brinson and L. R. Gardner. 1997. Climate change, hurricanes and tropical storms and rising sea level in coastal wetlands (review), Ecological Adaptations, (7): 770-801.
138.Morse, J. C., L. F. Yang and L. X. Tian(eds). 1994. Aguatic Insects of China Useful for Monitoring Water Quality. Nanjiang: Hehai University Press. pp.68-91
139.Motyka, J. B., B. Dobrzanski and S. Zawadski. 1950. Wstepne badania nad lakami Puhidnis-Woswchodneij Lubetszezgzny (Preliminary studies on meadows in the southeast of the province Lublin.).Ann. Aniv. M. Curie-Sklodowska, Sec.E. Agricultura (5): 367-447.
140.Naveh, Z. and A. S. Lieberman. 1984. Landscape Ecology:Theory and Appkication.New York:Springer-Verlag.
141.Noon, B. Y. 2003. Conceptual issues in monitoring ecological resources. In Bush, D. E.,and Trexler, J. C. (ed) Monitoring Ecosystems. Island Press, Washington, DC, pp. 27-71.
142.Noss, R. F. 1990. Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology (4): 355-364.
143.O’Neill, R. V., D. L. DeAngelis, J. B. Waide and T. F. H. Allen. 1986. A hierarchical concept of ecosystems. Princeton University Press, Princeton, New Jersey, USA.
144.Organization for Economic Cooperation and Development(OECD), 1993, OECD Core set of Indicators for Environmental Performance Reviews:A Synthesis Report by the Group on the state of the Environment, Paris .
145.Osborne, L. L. and M. J. Wiley. 1983. Empirical relationship between land use cover and stream water quality in an agricultural watershed. J. Environ. Manage. (26): 9-57.
146.Ott, W. R. 1978., Environmental Indices:Theory and Practice, Ann Arbor, Mich.: Ann Arbor Sciences.
147.Perry, J., E. Vanderklein. 1996. Water Quality Management of a Natural Resource. Blackwell Science. Cambridge, USA, 639p.
148.Pickett, S. T. A. and P. S. White. 1985. the Ecology of Natural Disturbance and Patch Dynamics. Orlando, FL: Academic Press pp. 3-13.
149.Pickett, S. T. A. and M. L. Cadenasso. 1995. Landscape ecology: Spatial heterogeneity in ecological systems. Science (269): 331-334.
150.Pickett, S. T. A., J. Wu and M. L. Cadenasso. 1999. Patch dynamics and the ecology of disturbed ground: A framework for synthesis. In: Walker L R, ed. Ecosystems of Disturbed Ground, New York: Elsevier. 707-722.
151.Pielou, E. C. 1966. The measurement of diversity in different types of biological collections. J. Theor. Ecol. (13): 131-144.
152.Pirhalla, D. E. 2004. Evaluating fish-habitat relationships for refining regional indexes of biotic integrity: development of a tolerance index of habitat degradation for Maryland stream fishes. Transactions of the American Fisheries Society (133): 144-159.
153.Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross and R. M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers. Benthic macroinvertebrates and fish. EPA/444/4-89/001. Office of Water Regulations and Standards, U.S. Environmental Protection Agency, Washington, D.C.
154.Powell, T. M., 1989. Physical and biological scales of variability in lakes, estuaries, and the costal ocean. In: J. Roughgarden, R.M. May and S.A. Levin(eds.) Perspective in Ecological Theory. Princeton University Press. p.157-176.
155.Rankin, E. T. 1989. The qualitative habitat evaluation index [QHEI]: ratioanal, methods, and application. Environmental Proteciton Agency, State of Ohio.
156.Richard, S., J. Thorne and W. P. Williams. 1997. The response of benthic macroinvertebrates to pollution in developing countries: a multimetric system of bioassessment. Freshwater Biology (37):671-686.
157.Risser. P. G., J. R. Karr and R. T. T. Forman. 1984. Landscape Ecology: Directions and Applications. National History Survey.
158.Ritters, K. H., R. V. O''Neill, C. T. Hunsaker, J. D. Wickham, D. H. Yankee, S. P. Timmins, K. B. Jones and B. L. Jackson. 1995. A factor analysis of landscape pattern and structure metrics. Landscape Ecology 10(1): 23-40.
159.Root, T. L. 1988. Environmental factors associated with avian distributional boundaries, Journal of Biogeography (15): 489-505.
160.Sala, O. E., F. S. Chapin Ⅲ, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber- Sannwald, L. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker and D. H. Wall. 2000. Biodiversity scenarios for the year 2100. Science (287): 1770-1774.
161.Savard, J. L., P. Clergeau and G. Mennechez. 2000. Biodiversity concepts and urban ecosystems. Landscape and urban planning (48): 131-142.
162.Schulz, E. J., M. V. Hoyer and D. E. Canfield. 1999. An index of biotic integrity: A test with limnological and fish data from sixty Florida lakes. Trans. Am. Fish. Soc. (128):564-577.
163.Shannon, C. E. and W. Weiner. 1963. The Mathematical Theory of Communication. University of Illinois Press, Urbana, USA. 117p.
164.Simpson, E. H. 1949. Measurement of diversity. Nature (163): 688.
165.Smogor, R. A. and P. L. Angermeier. 2001. Determining a regional framework for assessing biotic integrity of Virginia streams, Transactions of the American Fisheries Society 130(1): 18-35.
166.SÖrensen, E. M. 1991. Cadmium. In: SÖrensen, E. M. (ed.). Metal poisoning in fish. CRC Press, Boca Raton, pp.175-234.
167.Sorensen, T. A. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskabs. Biologiske Skrifter 5(4):1–34.
168.Spellerberg, I. F. 1991. Monitoring Ecological Change. Cambridge University Press, Cambridge, UK.
169.Steedman, R. J., 1988. Modification and assessment of an index of biotic integrity to quantify stream quality in southern Ontario. Canada Journal of Fisheries and Aquatic (45):492-501.
170.Steele, J. H., 1989. Discussion: scale and coupling in ecological systems. In: J. Roughgarden, R. M. May and S. A. Levin(eds.) Perspectives in Ecological Theory. Princeton University Press pp.177-180.
171.Steffen, W. L., B. H. Walker, J. S. Ingram and G. W. Koch. 1992. Global Change and Terrestrial Ecosystems: The Operational Plan. IGBP Report No. 21. International Geosphere-Biosphere Programme, Stockholm, p. 93.
172.Steinblums, I. J., H. A. Froehlich and J. K. Lyons. 1984. Designing stable buffer strips for stream protection. Journal of Forestry, (82): 49-52.
173.Sushil, S. D., A. S. Dixit and J. P. Smol. 1999. Lake sediment Chrysophyte scales from the northeastern USA and their relationship to environmental variables. Journal of Phycology (35): 903-918.
174.Tang, T. K. D. Hoagland and B. D. Eiegfried. 1998. Uptake and bioconcentration of atrazine by selected freshwater. Environment Toxicol and Chemistry 17(6): 1085-1090.
175.The Federal Interagency Stream Restoration Working Group (FISRWG),2001, Stream Corridor Restoration, Principles, Process, and Practices,USDA.
176.Todhunter, P. 1995. Hydroclimate perspectives on waterfowl production in the North Dakota prairie pothole region. Great Plains Research, (5): 137-162.
177.Troll, C. 1939. Luftbildplan und ökologische Bodenforschung. In: Zeitschrift der Gesellschaft für Erdkunde zu Berlin, 7/8, S: p. 241-298.
178.Troyer, M. E. 2002. A spatial approach for integrating and analyzing indicators of ecological and human condition, Ecological Indicators (2):211–220.
179.Tsai, B. W. 1999. Land Use / Cover Change and digital Data Base in Taiwan, 1999. NIES Workshop on Information Bases and Modeling for Land Use and Cover change (LUCC)
180.Turner, M. G. 1989. Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics(20): 171-197.
181.Turner, M. G. 1990. Landscape changed in nine rural counties of Georgia. Photogrametry Engineering and Remote Sensing (56):379-386.
182.Turner, M. G. and C. L. Ruscher. 1988. Changes in landscape patterns in Georgia, USA. Landscape Ecology (1):241-251.
183.Turner, M. G., R. H. Gardner and R. V. O''Neill. 2001. Landscape Ecology in Theory and Application. Springer-Verlag, NY.
184.U.S. Fish and Wildlife Service(FWS). 1980. Habitat evaluation procedures (HEP). U.S Department of Interior Fish and Wildlife Service, Division Ecological Services Manual 102, Washington, D.C., USA.
185.U.S. Fish and Wildlife Service(FWS). 1981. Standards for the development of habitat suitability index models for use in the habitat evaluation procedure. U.S. Department of Interior Fish and Wildlife Service, Division Ecological Services Manual 103, Washington, D.C., USA.
186.Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell and C. E. Cushing. 1980. The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences 37(1): 130-137.
187.Veldkamp, A. and L. O. Freso. 1996. CLUE-CR: an integrated multi-scale model to simulate land use change scenario in Casta Rica. Ecological Modelling, 91, p. 231-248.
188.Wang, T. Y., C. S. Tzeng and S. C. Shen. 1999. Conservation and phylogeography of Taiwan paradise fish, Macropodus opercularis Linnaeus. Acta Zoologica Taiwanica (10): 121-134.
189.Watanabe, T., K. Asai, A. Houki, S. Tanaka and T. Hizuka, 1986. Saprophilous and Eurysaprobic Diatom Taxa to Organic Water Pollution and Diatom Assemblage Index (DAIpo) // Diatom, 2. December p. 23-73.
190.Wiens, J. A. 1994. Habit fragmentation : island V landscape perspectives on bird conservation, Ibis (137): S97-S104.
191.Winder, M. and D. E. Schindler. 2004. Climate change uncouples trophic interactions in an aquatic ecosystem, Ecology (85):2100-2106.
192.Wolter, C., J. Minow, A. Vilcinskas and U. A. Grosch. 2000. Long-term effects of human influence on fish community structure and fisheries in Berlin waters: An urban water system. Fisheries Management and Ecology (7): 97-104.
193.Wu, J. and O. L. Loucks. 1995. From Balance of Nature to Hierarchical Patch Dynamics: A Paradigm Shift in Ecology, Quarterly Review of Biology (70): 439-466.
194.Wu, J. T. 1986. Relation of change in river diatom assemblages to water pollution. Botanical bulletin of Academia Sinica (27): 237-245.
195.Wu, J. T. 1999. A generic index of the diatom assemblages as bioindicator of pollution in the Keelung River of Taiwan. Hydrobiologia (397):79-87.
196.Wu, J. and O. L. Loucks. 1995. Form blance-of-nature to hierarchical patch dynamics: A paradigm sfift in ecology. Quarterly Review of Biology 70:439-466.
197.Yu, S. L., E. J. Peters and W. W. Stroup. 1995. Application of logistic regression to develop habitat suitability criteria for sand shiner, Notropis stramineus. Rivers (5): 22-34.
198.Zelinka, M. and P. Marvan. 1961. Zur Präzisierung der biologischen Klassifikation der einheit fliessender Gewässer. Arch Hydrobiol (57):387-498.
199.Zonneveld, I. S. 1979. Land Evaluation and Landscape Science, Enschede: ITC Press.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 1. 于錫亮,1997,淺談流量與棲地關係的方法學,自然保育季刊(19):15-19。
2. 1. 于錫亮,1997,淺談流量與棲地關係的方法學,自然保育季刊(19):15-19。
3. 4. 王素芬、陳永寬、鄭祈全,1999,地理資訊系統和碎形維度於森林地景空間變化上之應用,航測及遙測學刊 4(2):33-53。
4. 4. 王素芬、陳永寬、鄭祈全,1999,地理資訊系統和碎形維度於森林地景空間變化上之應用,航測及遙測學刊 4(2):33-53。
5. 6. 王漢泉,1983,淡水河流域魚類分布與水質關係之初步研究,中國水產(372): 25-34。
6. 6. 王漢泉,1983,淡水河流域魚類分布與水質關係之初步研究,中國水產(372): 25-34。
7. 7. 王漢泉,2002,台灣河川水質魚類指標,環境檢驗(40):44-46。
8. 7. 王漢泉,2002,台灣河川水質魚類指標,環境檢驗(40):44-46。
9. 8. 田志仁、汪碧涵,2004,淡水生物多樣性調查方法與評估指標,環境檢驗季刊(50):14-21。
10. 8. 田志仁、汪碧涵,2004,淡水生物多樣性調查方法與評估指標,環境檢驗季刊(50):14-21。
11. 9. 白梅玲、李培芬、端木茂甯,2006,氣候變遷對台灣淡水魚多樣性之衝擊評估,全球變遷通訊雜誌(49):23-37。
12. 9. 白梅玲、李培芬、端木茂甯,2006,氣候變遷對台灣淡水魚多樣性之衝擊評估,全球變遷通訊雜誌(49):23-37。
13. 19. 李德旺、于錫亮,2005,埔里中華爬岩鰍棲地環境之需求,特有生物研究7(2):13-22。
14. 19. 李德旺、于錫亮,2005,埔里中華爬岩鰍棲地環境之需求,特有生物研究7(2):13-22。
15. 20. 李德旺、邱健介、林維玲、于錫亮,1998,卑南溪流域高身鏟頜魚之分布與環境因子的關係,中華林學季刊31(3):219-225。