(3.236.118.225) 您好!臺灣時間:2021/05/14 12:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂碧芬
研究生(外文):Pi-Fen Lu
論文名稱:紫色不含硫光合細菌與藍綠細菌共培養產氫可行性之評估
論文名稱(外文):Assessing the feasibility of hydrogen production by co-cultured system combining Rhodopseudomonas palustris WP3-5 and Anabaena sp. CH3.
指導教授:李季眉李季眉引用關係
指導教授(外文):Chi-Mei Lee
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:110
中文關鍵詞:紫色不含硫光合菌WP3-5藍綠細菌CH3共培養氫氣
外文關鍵詞:Rhodopseudomonas palustris WP3-5Anabaena sp. CH3co-culturehydrogen
相關次數:
  • 被引用被引用:2
  • 點閱點閱:253
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氣候環境溫室效應問題的惡化,與石化燃料的耗竭嚴重影響了人類的生活,故發展其他替代能源已成為現今重要課題。氫氣是一種乾淨且富有高能量(122 kJ/g)的永續能源,目前被視為未來主要替代能源之ㄧ,如能有效的大量生產氫氣,將會對環境有正面的幫助,現階段氫氣生產的方法為石化燃料產生氫、水電解產生氫氣與生物方法產生氫氣。
生物產氫優勢為可利用有機廢棄物、廢水做為碳源,在獲得氫氣的同時淨化了水質且達到能源回收再利用之目的,故本研究為探討利用生物方法產生氫氣。現今具有產氫能力的微生物有綠藻、藍綠細菌、紫色不含硫光合細菌與厭氧菌,由於藍綠菌、紫色不含硫光合細菌與厭氧菌各有不同的產氫條件,能夠有效結合三種微生物達到提升生物產氫量為一重要的研究課題,本研究第一部分是以廚餘作為厭氧產氫基質,利用厭氧暗醱酵系統產生氫氣,再將厭氧暗醱酵含有機酸之出流水提供紫色不含硫光合細菌產氫;第二部分為探討紫色不含硫光合細菌與藍綠細菌共培養產氫之可行性。
實驗先由台中某生活污水廠污泥經由熱篩程序,分離出厭氧產氫菌,並由BMP培養基增殖,作為厭氧暗醱酵槽之植種,再以廚餘進行厭氧醱酵菌半連續式產氫試驗並將其液態產物作為光合細菌連續流產氫試驗,進行兩階段生物產氫,結果顯示利用廚餘作為厭氧暗醱酵之基質能夠產氫,最高累積248ml氫氣,且富含有機酸之出流水氨氮濃度大約為5mg/L,低於紫色光合作用細菌Rhodopseudomonas plaustris WP3-5產氫時氨氮抑制濃度17mg/L,故此厭氧暗醱酵出流水適合後續光合連續流產氫試驗。利用厭氧暗醱酵出流水做為紫色不含硫光合菌產氫基質,最高氫氣產量為988.9 ml-H2/day。
第二部份以紫色光合作用細菌與藍綠菌共培養,其中紫色光合作用細菌以有機酸作為碳源產生氫氣,藍綠菌以異營方式可利用果糖作為碳源來產生氫氣,經由實驗結果得知將紫色光合作用細菌與藍綠菌共培養,可產生氫氣且藍綠菌以果糖產氫會有乙酸及其他代謝物產生,可持續提供紫色光合作用細菌利用而提高氫氣累積量。本試驗設計為將單獨培養紫色不含硫光合細菌、單獨培養藍綠細菌及共培養紫色不含硫光合細菌與藍綠細菌在同一系統條件下進行產氫批次試驗。試驗結果,單獨培養之紫色不含硫光合細菌與單獨培養之藍綠細菌個自累積產氫量相加後之總累計產氫量為56.77 ml,紫色不含硫光合細菌WP3-5與藍綠細菌CH3混合比為1:1時累積產氫量為83.04 ml,而在共培養中,當紫色不含硫光合細菌WP3-5與藍綠細菌CH3混合比為2:1時,為產氫最佳混合比,其最大氫氣累積量為140.83 ml,為兩單獨培養之總累積產氫量之2.48倍,顯示將紫色不含硫光合細菌與藍綠細菌共培養於含有機酸及果糖的培養基中,可以得到比兩者單獨培養時更多的產氫量。
Nowadays, the aggravation of greenhouse effect by combustion of non-renewable sources of energy such as fossil fuel, coal, oil, and nature gas has become a global issue. However, hydrogen can be an alternative and sustainable energy source due to the properties of clean and high energy yield(122 kJ/g), which is an environmentally friendly technology in the future. Biohydrogen, comparing with the other technologies of hydrogen production, has the advantages of organic waste recycling and cost- effectiveness. Therefore, the aim of this study focuses on the combination of three different types of microorganisms and trying to enhance the efficiency of hydrogen production. This study was divided into two parts. Firstly, after anaerobic fermentation of leftovers, the possibility of using effluent as substrate for phototrophic hydrogen production was evaluated. Secondly, the feasibility of biohydrogen production from co-culture of purple nonsulfur bacterium, Rhodopseudomonas palustris WP3-5, and heterocyst-forming filamentous cyanobacteria, Anabaena sp. CH1, was estimated.
In the first part, the inoculum of anaerobic fermentation was isolated from the sludge from wastewater treatment plant via heat treatment and BMP medium enrichment. The results show that the maximum cumulative volume of biohydrogen from semi-continuous anaerobic fermentation system is 248 ml, which is utilizing the leftovers as substrates. The results also indicate that the effluent contains large amount of volatile fatty acid but little amount of ammonium(5 mg/L). Because the ammonium concentration in effluent is lower than the inhibition threshold(17 mg/L)of Rhodopseudomonas plaustris WP3-5 during biohydrogen production, phototrophic biohydrogen system could be successfully compatible with anaerobic fermentation system as two-stage biohydrogen production system.
In the second part, the results from co-cultured system show that the maximum cumulative volume of biohydrogen reaches 140.83 ml in the WP3-5/CH1 mixed ratio of 2/1, which increases 2.48 fold comparing with the sum of cumulative volume(56.77 ml)from individual biohydrogen systems. Acetate, the metabolite of fructose via heterotrophic metabolism of Anabaena sp. CH1, could be taken by Rhodopseudomonas plaustris WP3-5 as energy source to produce biohydrogen. Therefore, the results from this study indicate that the co-culture biohydrogen system combining those two phototrophic bacteria is exactly feasible and the efficiency of biohydrogen production by co-cultured system is better than that of the single culture system.
目 錄
中文摘要 I
英文摘要 Ⅲ
目錄 Ⅴ
表目錄 Ⅸ
圖目錄 Ⅹ
第一章 前言 1
第二章 文獻回顧 3
2-1 全球環境與能源危機 3
2-2 可再生能源 4
2-3 氫能源 5
2-4 氫能源的利用 5
2-5 微生物產氫 6
2-5-1厭氧醱酵產氫 8
2-5-1-1厭氧醱酵菌 8
2-5-1-2厭氧醱酵產氫代謝機制 10
2-5-1-3影響厭氧醱酵產氫之因素 13
2-5-2紫色不含硫光合細菌 15
2-5-2-1紫色不含硫光合細菌光合作用與產氫機制 16
2-5-2-2影響紫色不含硫光合細菌產氫之因素 18
2-5-3藍綠細菌 21
2-5-3-1藍綠細菌光合作用與產氫機制 22
2-5-3-2影響藍綠細菌光合產氫之因素 25
2-6結合不同產氫微生物之研究 27
2-7生物產氫之基質 30
第三章 材料與方法 33
3-1實驗架構 33
3-2菌種來源 34
3-2-1厭氧醱酵細菌來源 34
3-2-2紫色不含硫光合細菌來源 34
3-2-3藍綠細菌來源 35
3-3菌種保存與培養 35
3-3-1厭氧醱酵細菌 35
3-3-2紫色不含硫光合細菌 37
3-3-3藍綠細菌 39
3-3-4藍綠細菌與紫色不含硫光合細菌共培養 40
3-4實驗方法 41
3-4-1半連續式厭氧暗醱酵產氫試驗 42
3-4-2 連續式光合產氫試驗 44
3-4-3紫色不含硫光合細菌與藍綠細菌於共培養系統產氫可行性試驗 45
3-4-3-1單獨培養紫色不含硫光合細菌與藍綠細菌產氫批次試驗 45
3-4-3-2共培養紫色不含硫光合細菌與藍綠細菌產氫批次試驗 47
3-5分析設備與方法 49
3-5-1 O.D.值(Optical density)與細胞乾重 49
3-5-2 pH 50
3-5-3 sCOD 50
3-5-4 NH4+濃度 50
3-5-5可溶性碳水化合物濃度 51
3-5-6果糖濃度 52
3-5-7有機酸濃度 52
3-5-8氣體組成 53
3-5-9血球計數器 54
3-5實驗用水與鹼洗液 55
第四章 結果與討論 56
4-1細胞密度與細胞乾重 56
4-1-1菌株Rhodopseudomonas palustris WP3-5 細胞密度(O.D.660)與細胞乾重 56
4-1-2菌株Anabaena sp. CH3 細胞密度(O.D.900)與細胞乾重 57
4-2厭氧醱酵產氫系統 58
4-2-1菌種篩選試驗 58
4-2-2廚餘厭氧醱酵產氫試驗 60
4-2-3廚餘厭氧醱酵產氫系統出流水分析 62
4-3利用廚餘厭氧醱酵出流水結合光合連續流產氫試驗 64
4-4紫色不含硫光合細菌與藍綠細菌共培養於產氫系統中可行性試驗 67
4-4-1紫色不含硫光合細菌與藍綠細菌共培養最佳產氫混合比試驗 67
4-4-1-1單獨紫色不含硫光合細菌於共培養系統產氫試驗 67
4-4-1-2 單獨藍綠細菌於共培養系統產氫試驗 69
4-4-1-3紫色不含硫光合細菌與藍綠細菌混合比例為1:1於共培養系統產氫試驗 70
4-4-1-4紫色不含硫光合細菌與藍綠細菌混合比例為2:1於共培養系統產氫試驗 73
4-4-1-5紫色不含硫光合細菌與藍綠細菌混合比例為1:2於共培養系統產氫試驗 76
4-4-1-6紫色不含硫光合細菌與藍綠細菌混合比例為3:1於共培養系統產氫試驗 78
4-4-1-7紫色不含硫光合細菌與藍綠細菌共培養於不同混合比例下之綜合結果探討 81
4-4-2紫色不含硫光合細菌與藍綠細菌混合比例為1:1於共培養系統只利用果糖做為碳源產氫試驗 86
4-4-3藍綠細菌單獨培養於共培養系統提供乙酸做為碳源利用情形 89
4-4-4紫色不含硫光合細菌WP3-5與藍綠細菌CH3混合比例為1:1時,利用糖蜜廢水做為基質之試驗 92
第五章 結論與建議 96
5-1 結論 96
5-2 建議 98
參考文獻 99
Adams, M.W.W., Mortenson, L. E., and Chen, J. S. 1980. Hydrogenase. Biochimica et Biophysica Acta 594:105-176

Akkerman, I., Janssen, M., Rocha, J. M. S., Reith, J. H., and Wijffels, R. H. 2002. Photobiological hydrogen production:photochemical efficiency and bioreactor design. International Journal of Energy 27:1195-1208

Akkerman, I., Janssen, M., Rocha, J. M. S., Reith, J. H., and Wijffels, R. H. 2003. Photobiological hydrogen production:photochemical efficiency and bioreactor design, In Bio-methane and Bio-hydrogen. Dutch Biological Hydrogen Foundation, pp 124-145

Allen, M. B., and Arnon, D. I. 1955. Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrical LEMM. Plant Physiol 30:366-372

Anastasios, M., and Matthew, R. M. 2006. Integrated biological hydrogen production. International Journal of Hydrogen Energy 31:1563-1573

Antal, T. K., and Lindblad, P. 2005. Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. Journal of Applied Microbiology 98:114-120

Argun, H., Kargi, F., and Kapdan I. K. 2008. Light fermentation of dark fermentation effluent for bio-hydrogen production by different Rhodobacter species at different initial volatile fatty acid (VFA) concentrations. International Journal of Hydrogen Energy 33:7405-7412

Axellson, R., Oxelfelt, F., and Lindblad, P. 1999. Transcriptional regulation of Nostoc uptake hydrogenase. FEMS Microbiology Letters 190:77-81

Bai, M. D., Cheng, S. S., and Tseng, I. C. 2001. Biohydrogen produced due to peptone degradation by pretreated seed sludge. The IWA Asia-Pacific Regional Conference (WaterQual 2001), Fukuoka, Japan

Baronofsky, J. J., Schreurs, W. J. A., and Kashket, E.V. 1984. Uncoupling by acetic acid limit growth of and acetogenesis by Clostridium thermaceticum, Applied and Environmental Microbiology 48:1134-1139

Barreto, L., Makihira, A., and Riahi, K. 2003. The hydrogen economy in the 21st century:a sustainable development scenario. International Journal of Hydrogen Energy 28:267-284

Basar, U., Inci, E., Meral, Y., Ufuk, G., and Lemi, T. 2007. Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. International Journal of Hydrogen Energy 32:4670-4677

Beneman, J. 1996. Hydrogen biotechnology-progress and prospect. Nature Biotechnol. 14:1110

Brosseau, J. D., and Zajic, J. E. 1982. Hydrogen-gas production with Citrobacter intermedius and Clostridium pasteurianum. Journal of Chemical Technology and Biotechnology 32:496-502

Carolyn, C. E., and Catherine, E. G. P. 2001. International energy agency agreement on the production and utilization of hydrogen. Proceedings of the 2001 DOE Hydrogen Program Review. Nrel/ CP-570-30535

Chen, J. S., and Mortenson, L. E. 1974. Purification and properties of hydrogenase from Clostridium pasteurianum W5. Biochimica et Biophysica Acta 371:283-298

Cheng, S. S., Tseng, I. C., and Bai, M. D. 1999. Behavior study of anaerobic hydrogenation from different organic substrates with selected hydrogen production bacteria. Proc. of the 7th IWA Asic-Pacific Regional Conference, Taipei, Taiwan. pp 759-764

Das, D., and Veziroglu, T. N. 2001. Hydrogen production by biology processes:a survey of literature. International Journal of Hydrogen Energy 26:13-28.

Datta, M., Nikki, G., and Vishal, S. 2000. Review of Cyanobacterial hydrogen production. World Jounal of Microbiology and Biotechology 16:757-767

Debabrata D., and Veziroğlu, T. N. 2001. Hydrogen production by biological process:a survey of literature. International Journal of Hydrogen Energy 26:13-28.

Dutta, D. D. D., Surabhi, C., and Sanjoy, K. B. 2005. Hydrogen production by Cyanobacteria – review. Microbial Cell Factories 4:36

Ernst, A., Kerfin, W., Spiller, H., and Boger, P. 1979. External factors influencing light-induced H2 evolution by the blue green algae, Nostoc muscorum. Zeitschrift fur Naturforschung 34:820-825

Fang, H. H. P., and Liu, H. 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology 82:87-93

Fascetti, E., D`addario, E., Todini, O., and Robertiello, A. 1998. Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid waste. International Journal of Hydrogen Energy 23:753-760

Girbal, L., Croux, C., Vasconcelos, I., and Soucaille, P. 1995. Regulation of metabolism shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiology Review 17:287-297

Gottschalk, G. 1979. Bacterial Metabolism. America:Spirnger-Verlag New York Inc.167-224

Hallenback, P. C., Kochian, L. V., Weissmann, J. S., and Benemann, J. R. 1978. Solar energy conversion with Hydrogen producing cultures of the blue green algae, Anabaena cylindrica. Bioengineering Symposium 8:283-297

Hallenbeck, P. C. 1983. Nitrogenase reduction by electron carriers:Influence of redox potential on activity and ATP/2e- ratio.Archives of Biochemistry and Biophysics 200:657-660

Hefner III, R. A. 2002. The age of energy gases. International Journal of Hydrogen Energy 27:1-29.

Hillmer, P., and Gest, H. 1977. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulate - H2 production by growing culture. Journal of Bacteriology 129:724-731

Hippe, H., Andreesen, J. R., and Gottschalk, G. 1992. The Genus Clostridium – Nonmedical. In the Prokaryotes, 2nd ed, Vol.3, New York. pp 1800-1825

Horiuchi, J., Shimizu, T., Kanno, T. and Kobayashi M. 1999. Dynamic behavior in response to pH shift anaerobic acidogenesis with a chemstat culture. Biotechnology and Bioengineering 13:155-157

Imhoff, J. F., and Truper, H. G. 1992. The genus Rhodospirillum and related Genera. In:H. Balows, H. G. Truper., M. Dworkin, W. Hareder and K. H. Schleifer(2nd ed.),The Prokaryotes. Springer-Verlag, New York 3, 2141-2155

Kataoka, N., Miya, A., and Kiriyama, K. 1997. Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria. Water Science and Technology 36:41-47

Khatipov, E., Miyake, M., Miyake, J., and Asada, Y. 1998. Accumulation of poly-β-hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrates. FEMS Microbiology Letters 162:39-45

Kim, M. S., Baek, J. S., Yun, Y. S., and Sim, S. J. 2006. Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process:Anaerobic conversion and photosynthetic fermentation. International Journal of Hydrogen Energy 31:812 – 816

Kirk, J. T. O. 1994. Light and photosynthesis in aquatic ecosystems. Cambridge:Cambridge University Press:1-401

Kojima, E., and Yamaguchi, Y. 1988. Photoproduction of hydrogen by adapted cells of Chlorella pyrenoidosa. Journal of Fermentation Technology 66:19-25

Lambert, G. R., and Smith, G. D. 1977. Hydrogen formation by marine blue-green algae. FEMS Microbiology Letters 83:159-162

Lay, J. J. 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnology and Bioengineering 68:269-278

Lay, J. J. 2001. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnology and Bioengineering 74:280-287

Lay, J. J., Lee, Y. J. and Noike, T. 1999. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research 11:2579-258

Lee, C. M., Chen, P. C., Wang, C. C., and Tung, Y. C. 2002. Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. International Journal of Hydrogen Energy 27:1309-1303

Lee, Y. J., Miyahara, T., and Noike, T. 2001. Effect of iron concentration on hydrogen fermentation. Bioresource Technology 80:227-231

Li, C., and Fang, H. H. P. 2007. Fermentative hydrogen production from wastewater and solid wastes by mixed culture. Critical Reviews in Environmental Science and Technology 37:1-39

Lin, C.Y., and Lay, C. H. 2004. Carbon/nitrogen-ratio elect on fermentative hydrogen production by mixed microflora. International Journal of Hydrogen Energy 29:41-45

Lovitt, R. W., Shen, G. J., and Zeikus, J. G. 1988. Ethanol production by thermophilic bacteria:biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. Journal of Bacteriology 170:2809-2815

Macler, B. A., Pelroy, R. A., and Bassham, J. A. 1978. Hydrogen formation in nearly stoichiometric amounts by a Rhodopseduomonas sphaeroides mutant. Journal of Bacteriology 138:446-452

Madigan, M. T., Martinko, J. M., and Parker, J. 2006. Brock biology of Microorganisms. Pearson Education, Inc., 11th edition

Maeland, A. J. 2003. Approaches to increasing gravimetric hydrogen storage capacities of solid hydrogen storage materials. International Journal of Hydrogen Energy 28:821-824

Mckee, T., and McKee, J. R. 1999. Biochemistry:an introduction. 2nd ed. McGraw-Hill Book Co., New York, 329-365

Mckee, T., and McKee, J. R. 2003. Biochemistry:an introduction. 3nd ed. McGraw-Hill Book Co., New York, 417-448

Michael, T. M., John, M. M., and Jack, P. 2000. Brock Biology of Microorganisms. 9th ed. Prentice-Hall Inc., New Jersey. 524-529

Misui, A., Matsunaga, T., Ikemoto, H., and Renuka, B. R. 1985. Organic and inorganic waste treatment and simultaneous photoproduction of hydrogen by immobilized photosynthetic bacteria. Developments in Industrial Microbiology 26:209-222

Miyake, J. 1998. The science of biohydrogen:an energetic view. Plenum Press, New York, pp7-18.

Miyake, J., Veziroglu, T. N., and Takashashi, P. K. 1990. Application of photosynthetic systems for energy conversion. In:editors. Hydrogen energy progress VIII. Proceedings 8th WHEC,Hawaii.New York:Pergamon Press. pp 755

Momirlan, M., and Veziroglu, T. N. 2002. Current status of hydrogen energy. Renewable & Sustainable Energy Reviews 6:141-179.

Odom, J. M., and Wall J. D. 1983. Photoprodution of H2 from cellulose by an anaerobic bacteria Co-culture. Applied Environmental Microbiology 45:1300-1350.

Ohta, Y., Frank, and Mitsui, A. 1981. Hydrogen production by marine photosynthetic bacteria – Effect of environment factors and substrate specificity on growth of a hydrogen-producing marine photosynthetic bacterium, Chromatium sp. Miami PBS 1071. Journal of Hydrogen Energy 6:451-460

Owen, W. F., Stuckey, D. C., Herly, J. B., Young, L. Y., and McCarty, P. L. 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Research 13:485-492

Peguin, S., and Soucaille, P. 1995. Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition. Applied and Environmental Microbiology 61:403-405

Peters, J. W., William N. Lanzilotta, Brian J. Lemon, and Lance C. Seefeldt. 1998. X-ray crystal structure of the Fe-only hydrogenase(CpI)from Clostridium pasteurianum to 1.8 Angstrom Resolution. Science 282:1853-1858

Pfennig, N. 1978. Rhodocyclus purpureus gen. nov. and sp. Nov., a ring-shaped vitamin B12-requiring member of the family Rhodospirillaceae. International Journal of Systematic Bacteriology 28:283-288

Rai, A. K., and Abraham, G. 1995. Relationship of combined nitrogen sources to salt tolerance in freshwater cyanobacterium Anabena doliolum. Journal of Applied Bacteriology 78:501-506

Ramos, J. L., and Guerrero, M. G. 1983. Involvement of ammonium metabolism in the inhibition of nitrogen fixation in Anabaena sp. Strain ATCC 33047. Archives of Microbiology 136:81-83

Ramos, J. L., Madeno, F., and Guerrero, M. G. 1985. Regulation of nitrogenase levels in Anabaena sp. Strain ATCC 33047 and other filamentous cyanobacteria. Archives of Microbiology 141:105-111

Ren, N., Wang, B., and Ma, F. 1995. Hydrogen bio-production of carbohydrate fermentation by anaerobic sludge process. Proc. of 68th Annual Water environmental Federal Conference, Miami.

Rittmann B. E., and McCary P. L. 2001. Environmental Biotechnology:Principle and Applications. New York:McGraw-Hill Companies,Inc. 581-603

Sasikala, C. H., Ramana, C. H. V., and Raghuveer, P. 1995. Regulation of simultaneous hydrogen photoproduction during growth by pH and glutamate in Rhodobacter sphaeroides O.U.001. International Journal of Hydrogen Energy 20:123-126

Sasikala, K., Ramana, C. V., and Rao, P. R. 1991. Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy 16:597-601

Sasikala, K., Ramana, C. V., Raghuveer, R. 1992. Photoproduction of hydrogen Arom the wastewater of a distillery by Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy 17:23-27

Sasikala, K., Ramana, C. V., Rao, P. R., and Subrahmanyam, M. 1990. Effect of gas phase on the photoproduction of hydrogen and substrate conversion efficiency on the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy 154:795-797

Schoenheit, P., Brandis, A., and Thauer, R. K. 1979. Ferredoxin degradation in growing Clostridium pasteurianum during periods of iron deprivation. Archives of Microbiology 120:73-76

Schwartz, R. D., and Keller, F. A. 1982. Acetic acid production by Clostridium thermoacetium in pH-controlled batch fermentations at acidic pH, Applied and Environmental Microbiology 43:1385-1392

Shah, V., Garg, N., and Madamwar, D. 2001. Ultrastructure of the fresh water cyanobacterium Anabaena variabilis SPU 003 and its application for oxygen-free hydrogen production. FEMS Microbiology Letters 194:71-75

Stevens, P., Vertoghen, C., Vos, P. D., and Lay, J. D. 1984. The effect of temperature and light intensity on hydrogen gas production by different Rhodopseudomonas capsulate strains. Bacteriology 6:277-282

Taguchi, F., Mizukami, N., Saito-Takio, T., and Hasrgawa, K. 1995. Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. Strain No 2. Canadian Journal of Microbiology 41:536-540

Tanisho, S., Kuromoto, M., and Kadokura, N. 1998. Effect of CO2 removal on hydrogen production by fermentation. International Journal of Hydrogen Energy 23:559-563

Tanisho, S., Wakao, N., and Kosako, Y. 1983. Biological hydrogen production by Enterobacter aerogenes. International Journal of Hydrogen Energy 23:29-530

Terracciano, J. S., Schreurs, W. J. A. and Kashket, E. R. 1987. Membrance H+ conductance of Clostridium theroaceticum and Clostridium acetobutylicum. Applied and Environmental Microbiology 53:782-786

Troshina, O. Y., Larissa, T., Serebryakova, V., and Lindblad, P. 1996. Induction of H2-Uptake and Nitrogenase Activities in the Cyanobacterium Anabaena variabilis ATCC 29413:Effects of Hydrogen and Organic Substrate. Current Microbiol 33:11-15

Troshina, O. Y., Larissa, T., Serebryakova, V., and Lindblad, P. 1996. Induction of H2-Uptake and Nitrogenase Activities in the Cyanobacterium Anabaena variabilis ATCC 29413:Effects of Hydrogen and Organic Substrate. Current Microbiol 33:11-15

Ueno, Y., Haruta, S., Ishii, M., and Igarashi, Y. 2001. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Applied Microbiology and Biotechnology 57:555-562

Wang, G., and Wang, D. I. C. 1984. Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum. Applied and Environmental Microbiology 47:294-298

Wang, G., and Wang, D. I. C. 1984. Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum, Applied and Environmental Microbiology 47:294-298

Winter, C. J. 2005. Into the hydrogen energy economy-milestones. International Journal of Hydrogen Energy 30:681-685

Wu, S. Y., Hung, C. H., Lin, C.Y., Lin, P. J., Lee, K. S., Lin, C. N., Chang, F. Y., and Chang, J. S. 2008. HRT-dependent hydrogen production and bacterial community structure of mixed anaerobic microflora in suspend, granular and immobilized sludge systems using glucose as the carbon substrate. International Journal of Hydrogen Energy 33:1542-1549

Yakunin, A. F., Tsygankov, A. A., Troshina O.Y., and Gogotov, I. N. 1991. Growth and nitrogenase activity of continuous cultures of the purple bacteria Rhodobacter sphaeroides depending on the presence of Mo, V and W in the medium. Mikrobiyolgiya 60:41-46

Yokoi, H., Mori. S., Hirose, J. Hayashi, S., and Takasaki, Y. 1998. H2 production from starch by a mixed culture of Clostridium butyicum and Rhodobacter sp. M19. Biotechnology Letters 20:895-899

Yongzhen, T., Yang, C., Yongqlang, W., Yanling, H., and Zhihua, Z. 2007. High hydrogen yield from a two-step process of dark-and photo-fermentation of sucrose. International Journal of Hydrogen Energy 32:200-206

Yoon, J. H., Shin, J. H., Kim, M. S., Sim, S. J., and Park, T. H. 2006. Evaluation of conversion efficiency of light to hydrogen energy by Anabaena variabilis. International Journal of Hydrogen Energy 31:721-727

王炳南。2005。厭氧醱酵產氫與光合產氫之反應槽串聯可行性評估。碩士論文。國立中興大學。台中。

白明德。1999。厭氧生物產氫機制與程序操作策略之研究。碩士論文。國立成功大學。台南。

林建勝。2007。以生質能源程序探討廚餘厭氧氫發酵之研究。碩士論文。國立成功大學。台南。

林鈺傑。2008。紫色不含硫光合菌結合不同生物系統產生氫氣之研究。碩士論文。國立中興大學。台中。

林瑤玓。2002。紫色不含硫光合作用細菌於連續流產氫之研究。碩士論文。國立中興大學。台中。

洪國展。2004。光合產氫之程序組合及應用。碩士論文。國立中興大學。台中。
范欣惠。2006。藍綠菌最佳產氫生理條件及其反應器操作之研究。碩士論文。國立中興大學。台中。

郁揆民。2003。紫色不含硫光合作用細菌產氫限制因子之研究。碩士論文。國立中興大學。台中。

涂良君。1999。產氫光合作用細菌之分離與篩選。碩士論文。國立中興大學。台中。

張時雨。2004。碳源對藍綠菌Anabaena CH1、CH2、CH3光合產氫能力影響之研究。碩士論文。國立中興大學。台中。

郭世強。2006。廚餘厭氧醱酵產氫程序之功能評估。碩士論文。國立成功大學。台南。

陳伯中。1986。藻類與能源。藻類之研究與應用研討會論文集。台北。第67-76頁

蕭景庭。2000。產氫光合作用細菌之生理特性研究。碩士論文。國立中興大學。台中。

行政院環保署網站 http://www.epa.gov.tw/

經濟部能源局網站 http://www.moeaboe.gov.tw/oil102/cpknew/index.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔