(44.192.66.171) 您好!臺灣時間:2021/05/18 00:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱仕涵
研究生(外文):Shih-Han Chiu
論文名稱:墾丁大光潮間帶泰來草床之無脊椎動物群集及碳收支模式
論文名稱(外文):Invertebrate assemblages and carbon budget model of the intertidal Thalassia hemprichii meadow in Dakwan, Southern Taiwan.
指導教授:林幸助林幸助引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:80
中文關鍵詞:海草草食者碳收支表土無脊椎底土無脊椎
外文關鍵詞:seagrassherbivorecarbon budgetepifaunainfauna
相關次數:
  • 被引用被引用:5
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
海草生長於沿岸淺海域,是主要的初級生產者之一。海草床承載多種生物,為高多樣性之環境。儘管大光地區的泰來草床處於環境嚴苛之潮間帶,其豐富的食物來源及多樣的棲地環境,仍為許多無脊椎動物的棲所。表土無脊椎動物共觀察到30科43種,群集結構在季節及潮位間均有所不同。季節上可分成冬春季及夏秋季,均以菟葵為其優勢種,冬春季有較多的花冠芋螺及薄氏大眼蟹;夏秋季則有較多之大指蝦蛄及整潔鏟足蟹。高潮位處有較多之腹足類及海膽;而低位有較多的甲殼類動物。隨海草的生產力及密度增加表土無脊椎動物而有較多的個體數,然而物種數及多樣性則反之。底土無脊椎動物共觀察到33科42種。海草覆蓋處明顯有較多的物種及個體數。其中海葵為其優勢物種,附著於海草地下莖。底土無脊椎動物在群聚組成上較無季節性變化。本研究再以墾丁大光地區的泰來草床為例,探討海草葉片之生產及其碳收支。結果顯示,海草之生產及其流向隨季節及潮位的不同而有所差異。冬春季約有43.6 g C m-2 month-1之生產量,32%以草食作用進入能量循環,其餘因衰老而成落葉。其中有69%之落葉留在海草床中;32%漂離至鄰近的生態系統。而夏秋季之落葉生產力約為冬春季的4倍,其中只有20%直接被草食動物所利用;68%之落葉都將漂離海草床。魚類及無脊椎動物所消耗之百分比在潮位間有所差異,高位魚類消耗佔草食作用量的81%,無脊椎動物佔19%;低位魚類及無脊椎動物所消耗之比例相當,分別為53%及47%。海草床不僅提供魚類及無脊椎動物食物來源及棲息空間,漂離海草床之碎屑更成為鄰近生態系統的碳源,為沿岸重要的棲地環境,應加以保育。
Seagrass is one of major primary producers in coastal ecosystems. It is known that seagrass meadows may serve as nursery habitats for a variety of fauna. However, the invertebrates in the intertidal seagrass bed of Thalassia hemprichii at Dakwan has not been quantified. One year survey found that there were about 30 families and 43 species of epifauna. The assemblage varied with season and location. In winter-spring, Conus coronatus and Macrophthalmus boscii were more abundant, but Gondactylus chiragra and Palapedia integra were more abundant in summer-fall. In the high-elevation bed, Gastropod and sea urchin were more abundant, but crustacean were more abundant in the low-elevation bed. The abundance of epifauna correlated positively with productivity and shoot density of seagrass, but species number and diversity index correlated negatively. There were about 33 families and 42 species of infauna. The abundance and species richness were significantly higher in seagrass beds than in unvegetated areas. The infauna assemblage showed little seasonal variation. Sea anemone was the most dominant species, growing on the rhizomes of seagrass. We also quantified the carbon budget of T. hemprichii. The results showed that significant effects of season and location on leaf production and detritus flows of T. hemprichii. In winter-spring, seagrass produced 43.6 g C m-2 month-1, herbivores removed about 31% of that, and the remainder became detritus. About 69% of the detritus remained on the seagrass meadow, and the rest were exported outside to neighboring ecosystems by waves and currents. In summer-fall, the leaf production of seagrass was 4 times higher than that in winter-spring. Only 20% entered the food web via grazing pathways and 68% of the detritus were exported outside. Consumption by fish and invertebrates differed between high- and low-elevation bed. In the high-elevation bed, about 81% was consumed by fish, and only 19% was consumed by invertebrates. In the low-elevation bed, consumptions by fish and invertebrates were about the same percentages. Our results showed that the importance of seagrass in providing food and habitat for fish and invertebrates, but also exporting significant carbon sources to neighboring coastal ecosystems.
目次
中文摘要……………………………………………………………………………….i
英文摘要………………………………………………………………………………ii
目次…………………………………………………………………………………...iii
表目次…………………………………………………………………….…...……...v
圖目次………………………………………………………………….………..…...vi
ㄧ、前言…………………………………………………………………………….....1
1. 海草介紹與分布………………………………………………………………..1
2. 海草生態功能…………………………………………………………………..1
3. 海草床無脊椎動物相…………………………………………………………..2
4. 海草的碳收支…………………………………………………………………..3
5. 研究動機與目的………………………………………………………………..4
二、材料與方法………………………………………………………………………5
1. 研究地點與時間………………………………………………………………..5
1-1 研究地點與材料………………..………………………………………….5
1.2 研究採樣時間………………………………………...……………………5
2. 環境因子………………………………………………………………...……...5
2-1 水層環境因子……………………………………..……………………….5
2-2 海草型質……………………………………..…………………………….6
2-3 底土環境因子………………………………………………………..…….8
3. 無脊椎動物相調查……………………………………………..…………...….9
3-1 表土無脊椎動物……………………………………………………….......9
3-2 底土無脊椎動物....……………………………………………..………...10
4. 泰來草碳收支模式…………………………….………..…………………….10
4-1 草食作用量…………………………………..…………………………...10
4-2 碎屑殘留量……………………………………………………..………...10
5. 數據分析…………………………………………………..………………….11
5-1 雙向變方分析………………………………………………..…………...11
5-2 群集分析………………………………………………..………………...11
5-3 物種與環境因子………………………………………………..………...12
三、結果…………………………………………………..…………………………13
1. 環境因子………………………………………………………...…………….13
1-1 水溫………………………………………………………..……………...13
1-2 鹽度……………………………………………………..…………...……13
1-3 光遞減係數……………………………………………………..………...13
1-4 海草形質………………………………………………………..………...13
1-5 潮汐、波高…………………………………………………………………14
2. 表土無脊椎動物……………………………..……………………………….14
2-1 表土無脊椎動物相調查……………………………………..…………...14
2-2 表土無脊椎動物群集組成……………………………………..………...15
2-3 表土無脊椎動物與環境因子間的關係……………………..…………...15
2-3.1 斯皮爾曼等級相關分析………………..……………………………15
2-3.2 BIOENV分析………………..……………………………………….16
3. 底土無脊椎動物…………………...………………………………………….16
3-1 環境因子………………………………..………………………………...16
3-2 底土無脊椎動物相調查………………………………………………….16
3-3 底土無脊椎生物量…………………………………………………..…...17
3-4 底土無脊椎動物與環境因子間的關係………………………………….18
3-4.1 斯皮爾曼等級相關分析……………………………………………..18
3-4.2 BIOENV分析…………………………………………………………18
3.4.3 冗餘分析……………………………………………………………..18
4. 碳收支……………………………………………………...………………….19
4-1 葉面積……………………………………………………………..……...19
4-2 草食作用量…………………………………………………………..…...19
4-3 單位時間之草食作用量………………………………………………….20
4-4 魚類及無脊椎動物之草食作用量…………………………………….....20
4-5 碎屑…………………………………..……………………………….…..20
4-6 碳收支………………………………………..…………………………...21
四、討論……………………………………………………………………………..22
1. 環境因子………………………………………………...…………………….22
2. 無脊椎動物調查……………….………………………………..…………….23
2-1 多樣性.......……………………………………………………………….23
2-2 環境因子對無脊椎動物之影響………………………………………….25
2-3 海草與無脊椎動物的交互作用………………………………………….25
3. 碳收支……………………………………………………………...………….26
3-1 草食作用………………………………………………………………….26
3-2 碎屑……………………………………………………………………….28
3-3 海草碳收支……………………………………………………………….29
4. 泰來草之重要性及保育…………………………………………...………….29
五、結論……………………………………………………………………………..31
六、參考文獻………………………………………………………………………..32
會議紀錄…………………………………………………………………………….79
表目次
表1、底質粒度中間值分類表。……………………………………………………42
表2、底質粒徑篩選度分級表。……………………………………………………42
表3、表土環境因子之雙向變方分析。……………………………………………43
表4、表土生物因子之雙向變方分析。……………………………………………44
表5、大光泰來草區高低位表土無脊椎動物種類及數量。………………………46
表6、無脊椎動物於冬春及夏秋季之優勢物種及其貢獻百分比。………………46
表7、造成表土無脊椎動物於高低位間差異之物種及其貢獻度。………………47
表8、表土無脊椎動物個體數、物種數及多樣性與環境因子之相關係數。……48
表9、底棲無脊椎生物及環境因子之雙向變方分析。……………………………49
表10、大光泰來草及沙地區底土間無脊椎動物種類及數量。……………………50
表11、底土無脊椎動物於海草及沙地區之優勢物種及其貢獻百分比。……..…51
表12、造成底土無脊椎動物於海草及沙地間差異之物種及貢獻度。……………53
表13、底土無脊椎動物個體數、物種數及多樣性與環境因子之相關係數。...…53
表14、底土無脊椎動物與環境因子之冗餘分析摘要。……………………………53
表15、底土無脊椎與環境因子之蒙特卡羅檢驗的顯著相關。……………………54
表16、底土無脊椎之環境因子與冗餘分析排序軸之相關程度。…………………54
表17、各地區之海草能量流向比較。………………………………………………55
圖目次
圖1、實驗地點墾丁大光地區位置圖。……………………………………………56
圖2、水溫之季節變化。……………………………………………………………56
圖3、鹽度之季節變化。……………………………………………………………57
圖4、光遞減係數之季節變化。……………………………………………………57
圖5、海草覆蓋度之季節變化。……………………………………………………58
圖6、海草植株密度之季節變化。…………………………………………………58
圖7、海草庇護高度之季節變化。…………………………………………………59
圖8、地上部生物量之季節變化。…………………………………………………59
圖9、地下部生物量之季節變化。………….…..…………………………………60
圖10、地上部與地下部生物量比值之季節變化。……..…….……………………60
圖11、海草生長速率之季節變化。………….………...……………………………61
圖12、海草附生藻之季節變化。……………...……….……………………………61
圖13、大光海草床各實驗月份之潮係變化圖。……………………………………62
圖14、各季節海草暴露於空氣中佔實驗時間之百分比。…………………………62
圖15、墾丁後壁湖於實驗期間之最大示性波高及平均波高。……………………62
圖16、高低位表土無脊椎動物總個體數之季節變化。……………………………63
圖17、高低位表土無脊椎總物種數之季節變化。…………………………………63
圖18、高低位表土無脊椎多樣性指數之季節變化。………………………………63
圖19、大光海草床表土無脊椎於高低位之物種組成MDS分析結果。…..………64
圖20、大光海草床表土無脊椎動物之clustering分析結果。……………………64
圖21、大光海草床海草及沙地區底土粒徑中間值之季節變化。…………………65
圖22、大光海草床海草及沙地區底土粉泥黏土含量之季節變化。………………65
圖23、大光海草床海草及沙地區底土篩選係數之季節變化。……………………65
圖24、大光海草床底海草及沙地區土有機質之季節變化。………………………66
圖25、海草地上部及地下部生物量亁重與海草株密度之季節變化。……………66
圖26、海草及沙地區底土無脊椎動物總個體數之季節變化。……………………67
圖27、海草及沙地區底土無脊椎動物總物種數之季節變化。……………………67
圖28、海草及沙地區底土無脊椎動物多樣性指數之季節變化。…………………68
圖29、海草及沙地區底土無脊椎動物生物量之季節變化。………………………68
圖30、底土無脊椎動物於海草及沙地區之物種組成MDS分析結果。…….……69
圖31、底土無脊椎動物之clustering分析結果。….…………………..…………69
圖32、海草區底土無脊椎動物之豐度及生物量累積曲線之比較。………………70
圖33、沙地區底土無脊椎動物之豐度及生物量累積曲線之比較。………………70
圖34、底棲無脊椎動物與環境因子之冗餘分析。…………………………………71
圖35、海草葉面積及草食面積於高低位之季節變化。……………………………72
圖36、草食作用佔海草葉面積百分比之季節變化。………….…………………72
圖37、海草之生產力與草食面積在單位時間內的季節變化。……..….…………73
圖38、草食作用佔海草生產力百分比之季節變化。……………...………………73
圖39、將沒有咬痕之泰來草餵食臭肚魚。…………………………………………74
圖40、將沒有咬痕之泰來草餵食海膽。……………………………………………74
圖41、野外泰來草咬痕。……………………………………………………………74
圖42、魚類及無脊椎動物之草食作用量於高低位的季節變化。…………………75
圖43、魚類及無脊椎動物之草食百分比於高低位的季節變化。…………………75
圖44、碎屑亁重之季節變化。………………………………………………………76
圖45、泰來草生產面積流向之季節變化。…………………………………………76
圖46、泰來草生產亁重之季節變化。………………………………………………77
圖47、泰來草碳流向佔其生產力百分比之季節變化。……………………………77
圖48、大光海草床冬春季之碳收支。………………………………………………78
圖49、大光海草床夏秋季之碳收支。………………………………………………78
Abele, L. G. (1974). Species diversity of decapod crustaceans in marine habitats. Ecology 55: 156-161.
Alongi, D. M. (1998). Seaweed and seagrass ecosystems. In: Kennish, M. J., and Lutz, P. L. (ed), Coastal Ecosystems Processes. CRC Press, Boca Raton, FL, USA. P. 93-135.
Attrill, M. J., Strong, J. A., and Rowden, A. A. (2000). Are macro- invertebrate communities influenced by seagrass structural complexity? Ecography 23: 114-121.
Baldwin, J. R., and Lovvorn, J. R. (1994). Expansion of seagrass habitat by the exotic Zostera japonica, and its use by dabbling ducks and brant in Boundary Bay, British Columbia. Mar. Ecol. Prog. Ser. 103: 119-127.
Bell, J. D., and Pollard, D. A. (1989). Ecology of fish assemblages and fisheries associated with seagrasses. In: Larkum, A. D. W., McComb, A. J., and Shepherd, S. A. (ed), Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australian region. Aquatic Plant Studies 2, Elsevier, Amsterdam. p.565-609.
Bjorndal, K. A. (1980). Nutrition and grazing behavior of the green turtle Chelonia rnydas. Mar. Biol. 56:147-154.
Cebrian, J., and Duarte, C. M. (2001). Detrital stocks and dynamics of the seagrass Posidonia oceanica (L.) Delile in the Spanish Mediterranean. Aqua. Bot. 70: 295-309.
Cebrián, J., Duarte, C. M., and Pascual, J. (1996). Marine climate on the Costa Brava (northwest Mediterranean) littoral. In: Duarte, C .M. (ed), Seasonality in blanes bay: a paradigm of the northwest Mediterranean Littoral, Publicaciones Especiales. Instituto Español de Oceanografía p. 9-21.
Charpentier et al. ( 2005). A. Charpentier. In: Grillas, P. F. Lescuyer, Coulet E., and Auby, I. (ed), Spatio-temporal dynamics of a Zostera noltii dominated community over a period of fluctuating salinity in a shallow lagoon, southern France. Estuarine, Coastal and Shelf Science 64 (2–3), p. 307-315.
Charpy, L., and Charpy-Roubaud, C. J. (1990). Trophic structure and productivity of the lagoonal communities of Tikehauatoll (Tuamotu Archipelago, French Polynesia). Hydrobiologia 207: 43-52.
Clarke, K. R., and Gorley, R. N. (2006). PRIMER v6: user manual/tutorial. PRIMER-E Ltd, Plymouth, UK.
Close, D. C., and McArthur, C. (2002). Rethinking the role of many plant phenolics-protection from photodamage not herbivores? Oikos 99: 166-172.
Cyr, H., and Pace, M. (1993). Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361: 148-150.
Dahl, A. L. (1971). Ecology and community structure of some tropical reef algae. Proc. Intl. Seaweed. Symp. VII: 36-39.
Dawes, C. J. (1998). Marine Botany. In: Wiley, J., and Sons, C. (ed), 2nd edition. New York, 480 pp.
De Wreede, R. E. (1976). The phenology of three species of Sargassam (Sargassaceae, Phaeophyta) in Hawaii. Phycol. 15: 175-183.
den Hartog, C. (1970). The seagrass of the world. North-Holland, Amsterdam, London, 275 pp.
den Hartog, C., and McMillan, C. (1997). Production ecology and physiology of seagrass. In: McRoy, C. P., and Helfferich, C. (ed), Seagrass ecosystems. Marcel Dekker, Inc., New York. p. 53-87.
Doty, M. S. (1971). Antecedent event influence on benthic marine algae standing crops in Hawaii. J. Exp. Mar. Biol. Ecol. 6: 161-166.
Duarte, C. M., and Chiscano, C. L. (1999). Seagrass biomass and production: a reassessment. Aquat. Bot. 1334: 1-16.
Dumbauld B. R., and Wyllie-Echeverria, S. (2003). The influence of burrowing thalassinid shrimps on the distribution of intertidal seagrasses in Willapa Bay, Washington, USA. Aquat. Bot. 77: 27-42.
DUNTON, K. H. (1994). An annual quantum budget for the subtropical seagrassHalodule wrightii. Mar. Biol. 120: 479-489.
Edgar, G. J. (1990). Population regulation, population dynamics and competition amongst mobile epifauna associated with seagrass. J. Exp. Mar. Biol. Ecol. 144: 205-234.
Edgar, G. J., and Shaw, C. (1995). The production and trophic ecology of shallow-water fish assemblages in southern Australia: III. General relationships between sediments, seagrasses, invertebrates and fishes. J. Exp. Mar. Biol. Ecol. 194: 83-106.
Edgar, G. J., Shaw, C., Watson, G. F., and Hammond, L. S. (1994). Comparisons of species richness, size-structure and production of benthos in vegetated and unvegetated habitats in Western Port, Vict. J. Exp. Mar. Biol. Ecol. 176: 201-226.
Erftemeijer, P. L. A., and Herman, P. M. J. (1994). Seasonal changes in environmental varibles, biomass, production and nutrient contents in two contrasting tropical intertidal seagrass bed in south Sulawesi, Indonesia. Bull. Mar. Sci. 54(2): 403-419.
Fenchel, T. (1970). Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinurn. Limnol. Oceanogr. 15: 14-20.
Fenchel, T. (1977). Aspects of the decomposition of seagrasses. In: McRoy, C.P., Helferich, C. (ed), Seagrass ecosystems, A scientific perspective. Marcel Dekker, Inc., New York. p. 123-145.
Folk, R. L. (1966). A review of grain-size parameters. Sedimentology 6: 73-93.
Fong, C. W., Lee, S. Y., and Wu, R. S. S. (2000). The effects of epiphytic algae and their grazers on the intertidal seagrass Zostera japonica. Aquat. Bot. 67: 251-261.
Fonseca, M. S. (1989). Regional analysis of the creation and restoration of seagrass systems. In: Kusler, J. A., Kentula, M. E. (ed), Wetland creation and restoration: the status of the science. Regional Reviews, vol. I. EPA/600/3-89/038a. Environmental Research Laboratory, Corvallis, OR, p. 175-198.
Fourqurean, J. W., Willsie, A., Rose, C. D., and Rutten, L. M. (2000). Spatial and temporal pattern in seagrass community composition and productivity in south Florida. Mar. Biol. 138: 341-354.
Fry, B., and Sherr, E. B. (1984). δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contr. Mar. Sci. 27: 15-47.
Goecker, M. E., Heck, K. L. Jr., and Valentine, J. F. (2005). Effects of nitrogen concentrations in turtlegrass, Thalassia testudinum, on consumption by the bucktooth parrotfish, Sparisoma radians. Mar. Ecol. Prog. Ser. 286: 239-248.
Grice, K., Schaeffer, P., Schwark, L., and Maxwell, J. R. (1996). Molecular indicators of palaeoenvironmental conditions in an immature Permian shale (Kupferschiefer, Lower Rhine Basin, N.W. Germany) from free and S-bound lipids. Org. Geochem. 25: 131-147.
Hawkins, S. J., and Price, J. H. (ed). Plant-animal interactions in the marine benthos. Systematics Association Clarendon, Oxford, Spec. Vol No. 46, p. 147-164.
Heck, K. L. Jr., Pennock, J. R., Coen, L. D. and Sklenar, S. A. (2000). Effects of nutrient enrichment and small predator density on seagrass ecosystems: An experimental assessment. Limnol. Oceanogr. 45: 1041-1057.
Heck, K. L., and Valentine, J. F. (2006). Plant-herbivore interactions in seagrass meadows. J. Exp. Mar. Biol. Ecol. 330: 420-36.
Hemminga, M. A., and Duarte, C. M. (2000). Seagrass ecology. The University Press Cambridge, United Kingdom. 298 pp.
Hillman, K., Walker, D I., Larkum, A. W. D., and McComb, A. J. (1989). Productivity and nutrient limitation. In: Larkum. A. W. D., McComb, A. J., and Shepherd, S. A. (ed), Biology of seagrasses: a treatise on the biology of seagrasses wlth special reference to the Australian region. Elsevler, Amsterdam. p: 635-685.
Hindell J. S., Jenkins, G. P., and Keough, M. J. (2000). Evaluating the impact of predation by fish on the assemblage structure of fishes associated with seagrass (Heterozostera tasmanica) (Martens ex Ascherson) den Hartog, and unvegetated sand habitats. J. Exp. Mar. Biol. Ecol. 255: 153-174.
Howard, R. K., Edgar, G. J., and Hutchings, P. A. (1989). Faunal assemblages of seagrass beds. In: Larkum, A. W. D., McComb, A. J. and Sheperd, S. A. (ed), Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australian region. Elsevier, The Netherlands. p. 536-564.
Hurtdo-Ponce, A. Q., and Umezaki, I. (1987). Growth rate studies of Gracilaria verrucosa (Gigartinales, Rhodophyta). Bot. Mar. 30: 223-226.
Hutchings, P. A., Wells, F. E., Walker, D. I., and Kendrick, G. A., (1991). Seagrass, sediment and infauna—a comparison of Posidonia australis, Posidonia sinuosa and Amphibolis antarctica in Princess Royal Harbour, South-Western Australia: II. Distribution, composition and abundance of macrofauna. In: Wells, F.E., Walker, D.I., Kirkman, H., Lethbridge, R. (ed), Proc. 3rd Int. Mar. Biol. Workshop: the Flora and Fauna of Albany, Western Australia. Western Australian Museum. 2, p. 611-633.
Jackson, J. B. C. (1972). The ecology of the molluscs; the Thalassia communities, Jamaica, West Indies: II. Molluscan population variability along an environmental stress gradient. Mar. Biol. 14: 304-377.
Jernakoff. P., and Nielsen, J. (1998). Plant-animal associations in two species of seagrasses in Western Australia. Aquat. Bot. 60: 359-376.
Kenworthy, W. J., and Fonseca, M. S. (1996). Light requirements of seagrasses Halodule wrightii and Syringodium filiforme derived from the relationship between diffuse light attenuation and maximum depth distribution. Estuaries 19: 740-750.
Kirsch, K. D., Valentine, J. F., and Heck, K. L. (2002). Parrotfish grazing on turltegrass (Thalassia testudinum): evidence for the importance of seagrass consumption in food web dynamics of the Florida Keys National Marine Sanctuary. Mar. Ecol. Prog. Ser. 227: 71-85.
Kneer, D., Asmus, H., Ahnelt, H., and Vonk, J. A. (2008). Records of Austrolethops wardi Whitley (Teleostei: Gobiidae) as an inhabitant of burrows of the thalassinid shrimp Neaxius acanthus in tropical seagrass beds of the Spermonde Archipelago, Sulawesi. Indonesia, Journal of Fish Biology 72 p. 1095-1099.
Kohn, A. J. (1967). Environmental complexity and species diversity in the gastropod genus Conus on Indo-West Pacific reef platforms. Am. Nat. 101: 251-259.
Kotler, B. P., and Brown, J. S. (1988). Environmental heterogeneity and the coexistence of desert rodents. Annu. Rev. Ecol. Syst. 19: 281-307.
Lan, C. Y., Kao, W. Y., Lin, H. J., and Shao, K. T. (2005). Measurement of chlorophyll fluorescence reveals mechanisms for habitat niche separation of the intertidal seagrass Thalassia hemprichii and Halodule uninervis. Mar. Biol. 148: 25-34.
Lanyon J. M., and Marsh, H. (1995). Temporal changes in the abundance of some tropical intertidal seagrass in North Queensland. Aquat. Bot. 49: 217-237.
Lanyon, J. M., Limpus, C. J., and Marsh, H. (1989). Dugongs and turtles: grazers in the seagrass system. In: Larkum, A. W. D., McComb, A. J., and Shepherd, S. A. (ed), Biology of seagrass: a treaties on the biology of seagrasses with special reference to the Austrealian region. Aquatic Plant Studies 2, Elsevier, Amesterdam. p. 610-634.
Lee, S. Y., Fong, C. W., and Wu, R. S. S. (2001). The effects of seagrass (Zostera japonica) canopy structure on associated fauna: a study using artificial seagrass units and sampling of natural beds. J. Exp. Mar. Biol. Ecol. 259: 23-50.
Lemmens, J. W. T. J., Clapin, G., Lavery, P., and Cary, J. (1996). Filtering capacity of seagrass meadows and other habitats of Cockburn Sound, Western Australia. Mar. Ecol. Prog. Ser. 143: 187-200.
Lin, H. J., and Shao, K. T. (1998). Temporal changes in the abundance and growth of intertidal Thalassia hemprichii seagrass beds in southen Taiwan. Bot. Bull. Acad. Sinica 39: 191-198.
Longstaff, B. J., and Dennison, W. C. (1999). Seagrass survival during pulsed turbidity events: The effects of light deprivation on the seagrasses Halodule pinifolia and Halophila ovalis. Aquat. Bot. 65: 105-121.
Lovvorn, J. R., and Baldwin, K. R. (1996). Intertidal and farmland habitats of ducks in the Puget Sound region: a landscape perspecitve. Biol. Cons. 77: 97-114.
Mazzella, L., Blia, M. C., Gambi, M. C., Lorenti, M., Russo, G. F., Scipione, M. B., and Zupo, V. (1992). Plant–animal trophic relationships in the Posidonia oceania ecosystem of the Mediterranean sea: a review. In: John, D. M., Hawkins, S. J. and Price, J. H. (ed), Plant–animal interactions in the marine benthosm. Systematics Association Special Volume 46, Clarendon Press, Oxford, p. 165-187.
McRoy, C. P., and Helfferich, C. (1977). Seagrass ecosystems. Marcel Dekker, New York. 314 pp.
Moran, N., and Hamilton, W. D. (1980). Low nutritive quality as defense against herbivores. J. Theor. Biol. 86: 247-254.
Neckles, H. A., Wetzel, R. L., and Orth, R. J. (1993). Relative effects of nutrient enrichment and grazing on epiphyte-macrophyte (Zostera marina) dynamics. Oecologia 93: 285-295.
Ogden, J. C. (1980). Faunal relationships in caribbean seagrass beds. In: Phillips, R.C. and McRoy, C. P. (ed), Handbook of seagrass biology, garland. STPM Press, New York. p. 173-197.
Orth, R. J. (1977). The importance of sediment stability in seagrass communities. In: Coull, B. C., and Baruch, B. W., (ed), Ecology of marine benthos. University of South Carolina Press, Columbia. p. 281-300.
Orth, R. J. (1992). A perspective on plant-animal interactions in seagrasses: physical and biological determinants influencing plant and animal abundance. In: John, D. M., Hawkins, S. J., and Price, J. H. (ed), Plant–animal interactions in the marine benthosm. Systematics Association Special Volume 46, Clarendon Press, Oxford, p. 147-164.
Peres, J. M. (1953). Les formations detritiques infralittorales Issues des herblers de Posidonies. Rec. Trav. Stn mar. Endoume 9(4): 29-38
Pergent, G., Romero. J., and Pergent-Martini, C. (1997). Fate of primary production, stocks and fluxes in the Mediterranean seagrass Posidonia oceanica. Mar. Ecol. Prog. Ser. 106: 139-146.
Pergent-Martini, C., Pergent, G., and Romero, J. (1990). Standard procedure for the study of Posidonia oceanica leaf litter. Rapp. P.-v. Reun. Comm. int. Explor. scient. Mediterr. 32(1) B-19: 7.
Peterson, B. J., and Heck, K. L. Jr. (1999). The potential for suspension feeding bivalves to increase seagrass productivity. J. Exp. Mar. Biol. Ecol. 240: 32-52.
Peterson, B. J., and Heck, K. L. Jr. 2001a. Interactions between suspension feeding bivalves and seagrass assemblages - a facultative mutualism. Mar. Ecol. Prog. Ser. 213: 143-155.
Peterson, B. J., and Heck, K. L. Jr. 2001b. An experimental test of the mechanism by which suspension feeding bivalves elevate seagrass productivity. Mar. Ecol. Prog. Ser. 218: 115-125.
Peterson, B. J., and Howarth, R. W. (1987). Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia. Limnol. Oceanogr. 32: 1195-1213.
Peterson, B. J., Howarth, R. W., and Garritt, R. H. (1985). Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227: 1361-1363.
Pollard, P. C., and Moriarty, D. J. M. (1991). Organic carbon decomposition, primary and bacterial productivity, and sulphate reduction, in tropical seagrass beds of the Gulf of Carpentaria, Australia. Mar. Ecol. Prog. Ser. 69: 149-159.
Pollard, P. C., and Moriarty, D. J. W. (1984). Validity of isotope dilution of tritiated thymidine during incorporation into DNA as an estimate of bacterial growth rates. Appl. environ. Microbiol. 48: 1076-1083.
Prado, P., Tomas, F., Alcoverro, T., and Romero, J. (2007). Extensive direct measurements of Posidonia oceanica defoliation confirm the importance of herbivory in temperate seagrass meadows. Mar. Ecol. Prog. Ser. 340: 63-71.
Pwegent, G., Rico-Raimondino, V., and Pergent-Martini, C. (1997). Fate f primary production in posidonia oceanica meadows of the Mediterranean. Aquqt. Bot. 59: 307-321.
Raffaelli, D., and Hawkins, S. (1996). Intertidal ecology. Chapman & Hall. London, UK. 356 pp.
Romero, J., Pergent, G., Pergent-Martini, C., Mateo. M. A., and Regnier, C. (1992). The detritic compartment in a Posidonia oceanica meadow: Litter features, decomposition rates, and mineral stocks. P.S.Z.N.I. Mar. Ecol. 13(1): 69-83.
Saito, Y., and Atobe, S. (1970). Phytosociological study of intertidal marine algae, I. Usujiui Benten-Jima, Hokkaido. Bulletine of the faculty of Fisheries, Hakkaido Unerversity. 21: 37-69.
Salita, J. T., Ekau, W., and Saint-Paul, U. (2003). Field evidence on the influence of seagrass landscapes on fish abundance in Bolinao, northern Philippines. Mar. Ecol. Prog. Ser. 247: 183-195.
Short, F. T., Coles, R. G., and Pergent-Martini, C. (2001). Global seagrass research methods. Elsevier Science B. V., Amsterdam, p. 5-10.
ter Break, C. J. F., and Ŝmilauer, P. (1998). CANOCO reference manual and user’s guide to CANOCO for windows. Software for canonical community ordination (version 4). Microcomputer Power, Ithaca, NY, USA, 351 pp.
Terrados T., Duarte, C. M., Kamp-Nielsen, L., Agawin, N. S. R., Gacia, E., Lacap, D., Fortes M. D., Borum, J., Lubanski, M., and Greve, T. (1999). Are seagrass growth and survival constrained by the reducing consitions of the sediment? Aquat. Bot. 65: 175-197.
Thayer, G. W., Kenworthy, W. J., and Fonseca, F. S. (1984). The ecology of eelgrass meadows of the Atlantic coast: a community profile. U. S. Fish Wildl. Serv. FWS/OBS-84/02. 147 pp.
Thayer, G. W., Wolfe, D. A., and Williams, R. B. (1975). The impact of man on seagrass systems. Am. Sci. 63: 288-296.
Thom, B., Miller, B., and Kennedy, M. (1995). Temporal patterns of grazers and vegetation in a temperate seagrass system. Aquat. Bot. 50: 201-205.
Tomas, F., Turon, X., and Romero, J. (2005). Seasonal and small-scale variability of herbivory pressure on the temperate seagrass Posidonia oceanica (L.). Mar. Ecol. Prog. Ser. 301: 95–107.
Tomlinson, P. B. (1982). Helobiae (Alismatidae). In: Metoalife, C. R. (ed), Anatomy of the Monocotyledons. VII, Clarendon Press, Oxford. 599 pp.
Unsworth, R. K. F., Wylie, E., Smith, D. J., and Bell, J. J. (2006). Diel trophic structuring of seagrass bed fish assemblages in the Wakatobi Marine National Park, Indonesia. Estuar. Coast. Shelf Sci. 72: 81-88.
Valentine J. F., and Heck, K. L. Jr. (1993). Mussels in seagrass beds: their influence on macroinvertebrate abundance and production and macrophyte biomass in the northern Gulf of Mexico. Mar Ecol Prog Ser 96: 63-74.
Valiela, I. (1995). Marine Ecological Processes, 2nd edition. Springer Verlag.
Vergeer, L. H. T., and Develi, A. (1997). Phenolic acids in healthy and infected leaves Zostera marina and their growth-limiting properties towards Labyrinthula zosterae. Aquat. Bot. 58: 65-72.
Vergés, A., Becerro, M. A., Alcoverro, T., and Romero, J. (2007). Variation in multiple traits of vegetative and reproductive seagrass tissues influences plant-herbivore interactions. Oecologia 151: 675-686.
Virnstein, R. W., and Howard, R. K. (1987). Motile epifauna of marine macrophytes in the Indian River lagoon, Florida: II. Comparisons between drift algae and three species of seagrasses. Bull. Mar. Sci. 41: 13-26.
Vonk, A., Kneer, D., Stapel, J., and Asmus, H. (2008). Shrimp burrows in tropical seagrass meadows: an important sink for litter. Estuar. Coast. Shelf Sci. 79: 79-85.
Ward, L. G., Boynton, W. R., and Kemp, W. M. (1984). The influence of waves and seagrass community on suspended particulates in an estuarine embayment. Mar. Geol. 59: 85-103.
Watson, G. F., Robertson, A. I., and Littlejohn, M. J. (1984). Invertebrate macrobenthos of the seagrass communities in Western Port, Victoria. Aquatic Bot. 18: 175-195.
Webster, P. J., Rowden, A. A., and Attrill, M. J. (1998). Effect of shoot density on the infaunal macro-invertebrate community within a Zostera marina seagrass bed. Estuar. Coast. Shelf Sci. 47: 351-357.
Westoby, M. (1974). An analysis of diet selection by large generalist herbivores. Am. Nat. 108: 290-304.
Williams, S. L., and Ruckelshaus, M. H. (1993). Effects of nitrogen availability and herbivory on eelgrass (Zostera marina) and epiphytes. Ecol. 74: 904-918.
Wittmann, K ., Mazzella, L ., and Fresi, E. (1981). Age specific patterns of leaf growth : their determination and importance for epiphytic colonization in Posidonia oceanica (L .) Delile . Rapp . P .-v . Réun. Comm. int . Explor, scient . Méditerr. 27: 189-191.
Zieman, J. C. (1974). Methods for the study of the growth and production of turtle grass, Thalassia testudinum. Aquaculture 4: 139-143.
Zieman, J. C. (1982). The ecology of the seagrass of South Florida: a community profile. US Fish Widl. Serv. Biol. Serv. Program FWS/OBS-82/25, Washington, DC, vol. 124, p. 26.
Zieman, J. C., and Wetzel, R. G. (1980). Productivity in seagrasses: Methods and rates..In R. C. Phillips, R. G. and McRoy, C. P. (ed.), Handbook of Seagrass Biology, an Ecosystem Perspective. Garland STPM, New York. p. 87-116.
Zieman, J. C., Iverson, R. L., and Ogden, J. C. (1984). Herbivory effects on Thalassia testudinum leaf growth and nitrogen content. Mar. Ecol. Prog. Ser. 15: 151-158.
Ziman, J. C. (1975). Seasonal variation of turtle grass, Thalassia testudinum konig, with reference to temperature and salinity effects. Aquat. Bot. 1: 107-123.
六、參考文獻
吳旻燕。(2004)。墾丁珊瑚礁海域大型藻類群聚變動與環境因子之探討。國立屏東科技大學水產養殖系碩士論文,105頁。
李承錄。(2009)。墾丁大光泰來草(Thalassia hemprichii)與單脈二藥草(Halodule uninervis)海草床之魚類群聚變化與魚類胃內含物研究。國立中興大學生命科學所碩士論文,74頁。
柯智仁。(2004)。臺灣海草分類與分布之研究。國立中山大學生物科學所碩士論文,99頁。
紀郁如。(2002)。墾丁潮間帶海草床豐度度與生產力之研究。國立中興大學生命科學所碩士在職進修專班論文,69頁。
謝蕙蓮、黃守忠、李坤瑄、陳章波。(1993)。潮間帶底棲生態調查法。生物科學。第三十六卷 第二期:71-80頁。
藍秋月。(2003)。墾丁潮間帶海草豐度與生產力之時空變化及空間生態區位差異。國立中興大學生命科學所碩士論文,100頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊