跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 20:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇美如
研究生(外文):Mei-Ru Su
論文名稱:武陵地區溪流潭、流及瀨之石附生矽藻生物量及群集結構分析
論文名稱(外文):Biomass and Community Structure of Epilithic Diatoms in Pool, Run, and Riffle of Streams in Wuling Area
指導教授:林幸助林幸助引用關係
指導教授(外文):Hsing-Juh Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:100
中文關鍵詞:石附生矽藻流速生物量群集組成功能群
外文關鍵詞:poolrunriffleepilithic diatomwater velocitybiomasscommunity structureguil
相關次數:
  • 被引用被引用:4
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
溪流中瀨、流及潭等棲地單元在水深、流速、底質特徵上具有明顯差異,此環境上的差異可能造成生物群集組成的不同,本研究目的欲比較不同棲地單元間石附生藻類生物量及群集結構的差異,及此差異與環境因子的關係。在流量穩定時期(冬季)於武陵地區桃山北溪、七家灣溪、有勝溪選擇具有瀨、流及潭三種棲地單元的溪段共三處進行研究。每個溪段以5-6條橫越不同棲地單元的穿越線所形成的矩陣式採樣點進行環境因子測量及石附生藻類採集。
結果發現武陵地區冬季石附生矽藻以適應寡營養鹽、頻繁擾動環境的單殼縫藻種為主要組成,最優勢藻種為Achnanthes biasolettiana var. biasolettiana,其次為Planothidium lanceolatum及Achnanthidium minutissimum三種即佔總相對豐度的64.2%。但是有勝溪因上游有來自農耕區的營養鹽輸入,因此優勢物種組成上多了一些適應較高營養鹽、污染水域的藻屬如Nitzschia。
棲地單元間藻種群集分析結果顯示石附生矽藻生物量及群集結構在棲地單元間存在差異,而流速為造成此差異的最主要因子。生物量最低通常出現在流速最快的棲地單元(瀨區或流區),因為急快的水流使得附生藻生物量難以累積。在流速偏低的桃山北溪(平均流速25cm/s)藻類群集組成在棲地單元間並無差異,但在流速相對較高的七家灣溪(平均流速47 cm/s)及有勝溪(平均流速35 cm/s),棲地單元間藻種組成差異之形成主要因某些適應高流速的物種,如Cocconeis placentula var. euglypta、Mayamaea atomus及Reimeria sinuata等,在流速最快的棲地(有勝溪為瀨區、七家灣溪為流區)出現相對較高的豐度。
若以矽藻生長型式的功能群來區分,各棲地單元仍以低矮著生型為主要組成(相對豐度69-88%),直立生長型及移動型相對豐度則低很多;各功能群相對豐度在溪段內的棲地單元間差異不大,但在不同的採樣溪段間則具有明顯差異,在流速最快的七家灣溪低矮黏著型有最高豐度(88%);相較於其他兩溪段,直立生長型在流速較緩的桃山北溪有最高的相對豐度(22%);而移動型在則營養鹽較高有勝溪有較高豐度(16%)。
由本研究結果指出,在武陵地區,流速為溪段尺度下造成棲地單元間石附生矽藻群集生物量及物種組成差異的重要因子,而流速的效應出現在較高流速的情況下。此外由我們的結果也了解到,當在評估湍急溪流的物種組成時,兼顧不同棲地單元間的採樣才能忠實反應該河段物種組成概況。
Channel units that differ in water depth, velocity and substratum characteristics may influence the distribution of riverine organisms. In this study, I compared the biomass and composition of diatom communities in the riffle, run and pool of stream channels, and to determine the relationships between the heterogeneity of diatom community and environmental factors. Three reaches that consist of 3 types of channel units were selected from Taoshan North, Cijiawan and Yousheng stream in the Wuling Area. There were 5-6 transects across each reach, and sampling points separated at a distance of 50 cm along transects were set for periphyton sampling and environmental factors measurement.
The results revealed that Achnanthes biasolettiana var. biasolettiana, Planothidium lanceolatum and Achnanthidium minutissimum that are adapted to low nutrient and high disturbance were the most abundant diatom species in the Wuling Area. They contributed to 64.17% of the total relative abundance. However, in Yousheng stream, there are more abundant of Nitzschia spp. that are the bioindicators of eutrophication and organic polluted water, which can be attributed to the stream draining from an intense agricultural area and suffering high nutrient loading.
The results of community structure analysis show that eplithic diatom biomass and community structure was significantly different among channel units, and water velocity was the major factor to explain the differences. Biomass was lowest in runs or riffles with higher velocity, due to shear stress caused the lose of biomass under the condition of fast water velocity. When diatom community approached the late stage of succession, community structure did not differ among channel units in Taoshan North Stream where water velocity averaged 25 cm/s. However, community structure were significantly different among channel units in Cijiawan and Yousheng stream where water velocity averaged 47 cm/s and 35 cm/s, respectively. The diatom species, Cocconeis placentula var. euglypta、Mayamaea atomus and Reimeria sinuate, that are adapted to high water velocity, were more abundant in the channel units with higher water velocity.
The epilithic diatoms were categorized into 3 ecological guilds based on their potential to tolerate nutrient limitation and physical disturbance, the low profile guild was most abundant in all microhabitats (relative abundance 69-88%). The relative abundance of guilds were similar among channel units within each sampling reach, but differed among sampling reaches. Low profile guild was most abundant in Cijiawan Stream (88%) with highest water velocity, High profile guild was most abundant in Taoshan North Stream (22%) with lowest water velocity and motile guild was most abundant in Yousheng Stream (16%) with highest nutrient concentrations.
The results show that water velocity was the major factor determining the variations of biomass, abundance and community structure among channel units at the reach scale in the Wuling Area, and the effect of velocity emerged in the channel units where the water velocity was fast. In addition, the results show the importance of sampling in different channel units, particularly in streams with fast water velocity, in order to properly assess the diatom community of a reach in a stream.
目 次
中文摘要………………………………………….…………………….............i
英文摘要………………………………………………………………………iii
目次…………………………………………………………………………….v
表目次………………………………………………………………………...vii
圖目次…………………………………………………………………………ix
第一章 前言
1-1 研究動機………………………………………………………………1
1-2 文獻回顧……...……………………………………………………….2
1-3 研究目的…………......…………......…………………………………9
第二章 材料與方法
2-1 研究地點……………………………………………………………. 11
2-2 採樣方法……………………………………………………………. 12
2-3 實驗室分析………...………………………………………………...14
2-4 統計分析……………………...……………………...……………... 16
第三章 結果
3-1 環境因子差異分析……………….………………………………….19
3-2 生物量分布差異分析…………………………..………..…………..21
3-3 矽藻功能群差異分析………………………...…..…….……………23
3-4 採樣溪段藻類群集組成……..……………………….............…….. 24
3-5 藻類群集組成差異比較…………………..………….…………...…25
第四章 討論
4-1 環境因子…..…………………..……………………......…………... 29
4-2 生物量分布差異與環境因子……………........………….………… 29
4-3 藻種組成差異……………………………………………..…...…….35
4-4 水棲昆蟲可能的影響………………….………...........…………….38
4-5 生態上的應用……………………..……………………...………….40
4-6 本研究之檢討…………………..…………………………...……….40
第五章 結論…………..……………………………………...………...……42
第六章 文獻參考……………..……………………………...…………...... 43
1. 中文部份
于淑芬。2008。武陵地區水生昆蟲對石附生藻影響之研究。國立中興大學生命科學系博士論文。
林幸助、陳建宏、鄭佾展、蘇美如、林良瑾。2007。武陵地區長期生態監測暨生態模式建立成果報告-藻類、資料整合分析與生態模式建構。內政部營建署雪霸國家公園管理處。
官文惠、呂佩珊、江美貞、林彥均、陳淳圓、鄭宗誠、盧麒丞、蕭翔懌。2007。 武陵地區長期生態監測暨生態模式建立成果報告-水質研究。內政部營建署雪霸國家公園管理處。
高樹基、黃誌川、李宗祐、簡偉如、郭鎮維、黃昶斌。2008。武陵地區長期生態監測暨生態模式建立成果報告-流量、水溫模式與主要元素通量研究。內政部營建署雪霸國家公園管理處。
郭美華、丘明智。2007。武陵地區長期生態監測暨生態模式建立成果報告-水棲昆蟲研究。內政部營建署雪霸國家公園管理處。
葉昭憲、黃立文。2007。武陵地區長期生態監測暨生態模式建立成果報告-水文與物理棲地研究。內政部營建署雪霸國家公園管理處。
曾晴賢、楊正雄。2007。武陵地區長期生態監測暨生態模式建立成果報告-櫻花 鉤吻鮭族群監測與動態分析。內政部營建署雪霸國家公園管理處。
蔡尚惪、郭礎嘉。2007。武陵地區長期生態監測暨生態模式建立成果報告-濱岸植群研究。內政部營建署雪霸國家公園管理處。
鄭佾展。2007。蘭陽溪與七家灣溪流域生態系模式之比較分析。國立中興大學生命科學系碩士論文。146頁。
上野益三。1937。台灣大甲溪の鱒關の食性と寄生蟲。台灣博物學會會報27(116):153-159。
2. 西文部份
Abe, S., T. Nagumo, and J. Tanaka. 2000. Effects of current on the development of loosely and tightly attached layers in periphyton communities. Phycological Research 48:261-265.
Barmuta, L. 1990. Interaction between the effects of substratum, velocity and location on Stream Benthos: and experiment. Australian Journal of Marine and Freshwater Research 41:557-573.
Bergey, E. A. 1999. Crevices as refugia for stream diatoms: effect of crevice size on abraded substrates. Limnology and Oceanography 44:1522-1529.
Bergey, E. A. 2004. Crevice refuges as a source for algal colonists of disturbance-affected substrates. Archiv fuer Hydrobiologie 161:235-243.
Bergey, E. A. 2005. How protective are refuges? Quantifying algal protection in rock crevices. Freshwater Biology 50:1163-1177.
Berkman, H. E., and C. F. Rabeni. 1987. Effect of siltation on stream fish communities. Environmental Biology of Fishes 18:285-294.
Bernhardt, E. S., and G. E. Likens. 2004. Controls on periphyton biomass in heterotrophic streams. Freshwater Biology 49:14-27.
Biggs, B. J. F. 1995. The contribution of flood disturbance, catchment geology and land use to the habitat template of periphyton in stream ecosystems. Freshwater Biology 33:419-438.
Biggs, B. J. F. 1996. Patterns in Benthic Algae of Streams. Pages 31-56 in R. J. Stevenson, Bothwell, M. L., Lowe, R. L., editors. Algal Ecology, Freshwater Benthic Ecosystems. Academic Press, San Diego, California, USA.
Biggs, B. J. F. 1998. Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form. Journal of Phycology 34:598.
Biggs, B. J. F. 2000. Eutrophication of streams and rivers: dissolved nutrient-chlorophyll relationships for benthic algae. Journal of the North American Benthological Society 19:17-31.
Biggs, B. J. F., and C. W. Hickey. 1994. Periphyton responses to a hydraulic gradient in a regulated river in New Zealand. Freshwatrer Biology 32:49-59.
Biggs, B. J. F., and P. Gerbeaux. 1993. Periphyton development in relation to macro-scale (geology) and micro-scale (velocity) limiters in two gravel-bed rivers, New Zealand. New Zealand Journal of Marine and Freshwater Research 27:39-53.
Biggs, B. J. F., and S. Stokseth. 1996. Hydraulic habitat suitability for periphyton in rivers. Regulated Rivers: Research & Management 12:251-261.
Boston, H. L., and W. R. Hill. 1991. Photosynthesis-light relations of stream periphyton communities. Limnology and Oceanography 36:644-656.
Bourassa, N., and A. Cattaneo. 1998. Control of periphyton biomass in Laurentian Streams (Quebec). Journal of the North American Benthological Society 17:420-429.
Brooks, A. J., T. Haeusler, I. Reinfelds, and S. Williams. 2005. Hydraulic microhabitats and the distribution of macroinvertebrate assemblages in riffles. Freshwater Biology 50:331-344.
Buffagni, A., G. A. Crosa, D. M. Harper, and J. L. Kemp. 2000. Using macroinvertebrate species assemblages to identify river channel habitat units: an application of the functional habitats concept to a large, unpolluted Italian river (River Ticino, northern Italy). Hydrobiologia 435:213-225.
Bult, T. P., S. C. Riley, R. L. Haedrich, R. J. Gibson, and J. Heggenes. 1999. Density-dependent habitat selection by juvenile Atlantic salmon (Salmo salar) in experimental riverine habitats. Canadian Journal of Fisheries and Aquatic Sciences 56:1298-1306.
Cattaneo, A., P. Legendre, and T. Niyonsenga. 1993. Exploring periphyton unpredictability. Journal of the North American Benthological Society 12:418-430.
Cattaneo, A., T. Kerimian, M. Roberge, and J. Marty. 1997. Periphyton distribution and abundance on substrata of different size along a gradient of stream trophy de Montreal. Hydrobiologia 354:101-110.
Cazaubon, A., T. Rolland, and M. Loudiki. 1995. Heterogeneity of periphyton in French Mediterranean rivers. Hydrobiologia 300:105-114.
Chetelat, J., F. R. Pick, A. Morin, and P. B. Hamilton. 1999. Periphyton biomass and community composition in rivers of different nutrient status. Canadian Journal of Fisheries and Aquatic Sciences 56:560-569.
Clarke, K. R., and R. M. Warwick. 2001. Changes in marine communities: an approach to statistical analysis and interpretation. 2nd edition. Plymouth Marine Laboratory, UK.
DeNicola, D. M., and C. D. McIntire. 1990. Effects of substrate relief on the distribution of periphyton in laboratory streams. 1. Hydrology. Journal of Phycology 26:624-633.
DeNicola, M., K. D. Hoagland, and S. C. Roemer. 1992. Influences of canopy cover on spectral irradiance and periphyton assemblages in a prairie stream. Journal of the North American Benthological Society 11:391-404.
Dodds, W. K., R. E. Hutson, A. C. Eichem, M. A. Evans, D. A. Gudder, K. M. Fritz, and L. Gray. 1996. The relationship of floods, drying, flow and light to primary production and producer biomass in a prairie stream. Hydrobiologia 333:151-159.
Fleming, W. D. 1954. Naphrax: A synthetic mounting medium of high refractive index. New and improved methods of preparation. Journal of the Royal Microscopical Society 74:42-44.
Frazer, G. W., C. D. Canham, and K. P. Lertzman. 1999. Gap Light Analyzer (GLA): Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, CANADA & Institute of Ecosystem Studies, Millbrook, New York, USA.
Frissell, C. A., and D. Bayles. 1996. Ecosystem management and the conservation of aquatic biodiversity and ecological integrity. Journal of the American Water Resources Association 32:229.
Frissell, C. A., W. J. Liss, C. E. Warren, and M. D. Hurley. 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management 10:199-214.
Bisson, p. A., D. R. Montgomery, and J. M. Buffington. 2007. Valley segments, stream reachs, and channel units Pages 23-50 in F. R. Hauer and G. A. Lamberti, editors. Methods in stream ecology. Academic Press, San Diego, California, USA.
Hawkins, C. P., J. L. Kershner, P. A. Bisson, M. D. Bryant, L. M. Decker, S. V. Gregory, D. A. McCullough, C. K. Overton, G. H. Reeves, and R. J. Steedman. 1993. A hierarchical approach to classifying stream habitat features. Fisheries 18:3-12.
Hepinstall, J. A., and R. L. Fuller. 1994. Periphyton reactions to different light and nutrient levels and the response of bacteria to these manipulations. Archiv für Hydrobiologie 131:161-173.
Hill, B. H., F. H. McCormick, A. T. Herlihy, P. R. Kaufmann, R. J. Stevenson, and C. B. Johnson. 2000. Use of periphyton assemblage data as an index of biotic integrity. Journal of the North American Benthological Society 19:50-67.
Hill, W. R. 1996. Effects of light. Pages 121-148 in R. J. Stevenson, Bothwell, M. L., Lowe, R. L., editors. Algal Ecology, Freshwater Benthic Ecosystems. Academic Press, San Diego, California, USA.
Hoagland, K. D., S. C. Roemer, and J. R. Rosowski. 1982. Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). American Journal of Botany 69:188-213.
Holomuzki, J. R., and S. H. Messier. 1993. Habitat selection by the stream mayfly Paraleptophlebia guttata. Journal of the North American Benthological Society 12:126-135.
Horner, R. R., E. B. Welch, M. R. Seeley, and J. M. Jacoby. 1990. Responses of periphyton to changes in current velocity, suspended sediment and phosphorus concentration. Freshwater Biology 24:215-232.
Hudon, C. 1987. The ecological implications of growth forms in epibenthic diatoms. Journal of Phycology 23:434.
Humphries, P., P. E. Davies, and M. E. Mulcahy. 1996. Macroinvertebrate assemblages of littoral habitats in the Macquarie and Mersey Rivers, Tasmania: implications for the management of regulated rivers. Regulated Rivers: Research & Management 12:99-122.
Jowett, I. G. 1993. A method for objectively identifying pool, run, and riffle habitats from physical measurements. New Zealand Journal of Marine and Freshwater Research 27:241-248.
Jowett, I. G., and B. J. F. Biggs. 1997. Flood and velocity effects on periphyton and silt accumulation in two New Zealand rivers. New Zealand Journal of Marine and Freshwater Research 31:287-300.
Kahlert, M., A. T. Hasselrot, H. Hillebrand, and K. Pettersson. 2002. Spatial and temporal variation in the biomass and nutrient status of epilithic algae in Lake Erken, Sweden. Freshwater Biology 47:1191-1215.
Kelly, M. G., and B. A. Whitton. 1995. The trophic diatom index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7:433-444.
Kiffney, P. M., and J. P. Bull. 2000. Factors controlling periphyton accrual during summer in headwater streams of Southwestern British Columbia, Canada. Journal of Freshwater Ecology 15:339-352.
Kiffney, P. M., J. S. Richardson, and J. P. Bull. 2003. Responses of periphyton and insects to experimental manipulation of riparian buffer width along forest streams. Journal of Applied Ecology 40:1060-1076.
Korte, V. L. 1983. Diatom colonization on artificial substrata in pool and riffle zones studied by light and scanning electron microscopy. Journal of Phycology 19:332.
Krammer, K. and H. Lange-Bertalot 1986-1991. Bacillariophyceae. 1-4. Süsswasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, New York.
Krammer, K. 2000 - Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats. Vol.1. The genus Pinnularia. A.R.G. Gantner Verlag K.G, Ruggell. 703pp.
Krammer, K. 2002. Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats. Vol. 3. Cymbella. A.R.G. Gantner Verlag K.G, Ruggell. 584pp.
Krammer, K. 2003. Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats. Vol. 4. Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella. A.R.G. Gantner Verlag K.G, Ruggell. 530pp.
Kutka, F. J., and C. Richards. 1996. Relating diatom assemblage structure to stream habitat quality. Journal of the North American Benthological Society 15:469-480.
Lalonde, S., and J. A. Downing. 1991. Epiphyton biomass is related to lake trophic status, depth, and macrophyte architecture. Canadian Journal of Fisheries and Aquatic Sciences 48:2285-2291.
Lamb, M. A., and R. L. Lowe. 1987. Effects of current velocity on the physical structuring of diatom (Bacillariophyceae) communities. Ohio Journal of Science 87:72-78.
Langdon, C. 1988. On the causes of interspecific differences in the growth-irradiance relationship for phytoplankton. II. A general review. Journal of Plankton Research 10:1291-1312.
Lange-Bertalot, H. 2001. Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats. Vol. 2. Navicula sensu stricto. 10 Genera Separated from Navicula sensu lato. Frustulia. A.R.G. Gantner Verlag K.G, Ruggell. 526pp.
Leland, H. V. 2003. The influence of water depth and flow regime on phytoplankton biomass and community structure in a shallow, lowland river. Hydrobiologia 506:247-255.
Lock, M. A., R. R. Wallace, J. W. Costerton, R. M. Ventullo, and S. E. Charlton. 1984. River epilithon: toward a structural-functional model. Oikos 42:10-22.
Luttenton, M. R., and C. Baisden. 2006. The relationships among disturbance, substratum size and periphyton community structure. Hydrobiologia 561:111-117.
Maberly, S. C., L. King, M. M. Dent, R. I. Jones, and C. E. Gibson. 2002. Nutrient limitation of phytoplankton and periphyton growth in upland lakes. Freshwater Biology 47:2136-2152.
Martinez De Fabricius, A. L., N. Maidana, N. Gomez, and S. Sabater. 2003. Distribution patterns of benthic diatoms in a Pampean river exposed to seasonal floods: the Cuarto River (Argentina). Biodiversity and Conservation 12:2443-2454.
Martin-Smith, K. M. 1998. Relationships between fishes and habitat in rainforest streams in Sabah, Malaysia. Journal of Fish Biology 52:458-482.
McIntire, C. D. 1966. Some effects of current velocity on periphyton communities in laboratory streams. Hydrobiologia 27:559-570.
Miller, A. R., R. L. Lowe, and J. T. Rotenberry. 1987. Succession of diatom communities on sand grains. The Journal of Ecology 75:693-709.
Noga, T. 2003. Dispersion of Didymosphaenia in the flowing waters of southern Poland-new sits of species occurrence in the Oramska watershed and the Orawska basin. Oceanological and Hydrobiological Studies 32:159-170.
Oemke, M. P., and T. M. Burton. 1986. Diatom colonization dynamics in a lotic system. Hydrobiologia 139:153-166.
Pan, Y., A. Herlihy, P. Kaufmann, J. Wigington, J. van Sickle, and T. Moser. 2004. Linkages among land-use, water quality, physical habitat conditions and lotic diatom assemblages: A multi-spatial scale assessment. Hydrobiologia 515:59-73.
Parsons, T.R., Maita, Y., and Lalli, C. M. 1984. Fluorometric determination of chlorophylls. in A manual of chemical and biological methods for seawater analysis. Pergamon Press Inc., New York, USA.
Hill, W. R. 1996. Effects of light. Pages 121-148 in R. J. Stevenson, Bothwell, M. L., Lowe, R. L., editors. Algal Ecology, Freshwater Benthic Ecosystems. Academic Press, San Diego, California, USA.
Passy, S. I. 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany 86:171-178.
Peterson, C. G. 1996. Response of benthic algal communities to natural physical disturbance. Pages 375-398 in R. J. Stevenson, Bothwell, M. L., Lowe, R. L., editors. Algal Ecology, Freshwater Benthic Ecosystems. Academic Press, San Diego, California, USA.
Peterson, C. G., and R. J. Stevenson. 1990. Post-spate development of epilithic algal communities in different current environments. Canadian Journal of Botany 68:2092–2102.
Power, M. E., and A. J. Stewart. 1987. Disturbance and recovery of an algal assemblage following flooding in an Oklahoma stream. American Midland Naturalist 117:333-345.
Pringle, C. M. 1990. Nutrient spatial heterogeneity: effects on community structure, physiognomy, and diversity of stream algae. Ecology 71:905.
Pringle, C. M., R. J. Naiman, G. Bretschko, J. R. Karr, M. W. Oswood, J. R. Webster, R. L. Welcomme, and M. J. Winterbourn. 1988. Patch dynamics in lotic Systems: the stream as a mosaic. Journal of the North American Benthological Society 7:503-524.
Raven, J. A. 1992. How benthic macroalgae cope with flowing freshwater: resource acquisition and retention. Journal of Phycology 28:133-146.
Resh, V. H., A. V. Brown, A. P. Covich, M. E. Gurtz, H. W. Li, G. W. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace, and R. C. Wissmar. 1988. The role of disturbance in stream ecology. Journal of the North American Benthological Society 7:433-455.
Rosemond, A. D., P. J. Mulholland, and J. W. Elwood. 1993. Top-down and bottom-up control of stream periphyton: effects of nutrients and herbivores. Ecology 74:1264-1280.
Sabater, S., S. V. Gregory, and J. R. Sedell. 1998. Community dynamics and metabolism of benthic algae colonizing wood and rock Substrata in a forest stream. Journal of Phycology 34:561-567.
Sobczak, W. V., and T. M. Burton. 1996. Epilithic bacterial and algal colonization in a stream run, riffle, and pool: a test of biomass covariation. Hydrobiologia 332:159-166.
Soininen, J. 2005. Assessing the current related heterogeneity and diversity patterns of benthic diatom communities in a turbid and a clear water river. Aquatic ecology 38:495-501.
Sommer, U. 1999. The impact of herbivore type and grazing pressure on benthic microalgal diversity. Ecology Letters 2:65-69.
Steinman, A. D. 1986. Effects of current velocity and light energy on the structure of periphyton assemblages in laboratory streams. Journal of Phycology 22:352.
Steinman, A. D., and C. D. McIntire. 1987. Effects of irradiance on the community structure and biomass of algal assemblages in laboratory streams. Canadian Journal of Fisheries and Aquatic Sciences 44:1640-1648.
Steinman, A. D., C. David McIntire, S. V. Gergory, and G. A. Lamberti. 1989. Effects of irradiance and grazing on lotic algal assemblages. Journal of Phycology 25:478-485.
Steinman, A. D., P. J. Mulholland, and W. R. Hill. 1992. Functional responses associated with growth form in stream algae. Journal of the North American Benthological Society 11:229-243.
Stelzer, R. S., and G. A. Lamberti. 2001. Effects of N: P ratio and total nutrient concentration on stream periphyton community structure, biomass, and elemental composition. Limnology and oceanography 42:356-367.
Stevenson, R. J., C. G. Peterson, D. B. Kirschtel, C. C. King, and N. C. Tuchman. 1991. Density-dependent growth, ecological strategies, and effects of nutrients and shading on benthic diatom succession in streams. Journal of Phycology 27:59-69.
Stevenson, R. J. 1996. The Stimulation and Drag of Current. Pages 321-340 in R. J. Stevenson, Bothwell, M. L., Lowe, R. L., editors. Algal Ecology, Freshwater Benthic Ecosystems. Academic Press, San Diego, California, USA.
Stevenson, R. J. 1997. Scale-Dependent Determinants and Consequences of Benthic Algal Heterogeneity. Journal of the North American Benthological Society 16:248-262.
Tett, P., C. Gallegos, M. G. Kelly, G. M. Hornberger, and B. J. Cosby. 1978. Relationships among substrate, flow, and benthic microalgal pigment density in the Mechums River, Virginia. Limnology and oceanography 22:785-797.
Uehlinger, U. 1991. Spatial and temporal variability of the periphyton biomass in a prealpine River(Necker, Switzerland). Archiv fuer Hydrobiologie 123:219-237.
Van Dam, H., A. Mertens, and J. Sinkeldam. 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Aquatic ecology 28:117-133.
Wendker, S. 1992. Influence of current velocity on diatoms of a small softwater Stream. Diatom research 7:387-396.
Yu, S. F., and H. J. Lin. 2009. Effects of agriculture on the abundance and community structure of epilithic algae in mountain streams of subtropical Taiwan. Botanical Studies 50:73-87.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top