跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 14:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李承錄
研究生(外文):Chen-Lu Lee
論文名稱:墾丁大光泰來草(Thalassiahemprichii)與單脈二藥草(Haloduleuninervis)海草床之魚類群聚變化與魚類胃內含物研究
論文名稱(外文):Temporal and spatial changes of fish assemblages and fish stomach content in two seagrass beds (Thalassia hemprichii and Halodule uninervis) at Dakwan, Kenting National Park
指導教授:林幸助林幸助引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:93
中文關鍵詞:海草床單脈二藥草(Halodule uninervis)泰來草(Thalassia hemprichii)魚類群聚胃內含物
外文關鍵詞:seagrass bedHalodule uninervisThalassia hemprichiifish communitystomach content
相關次數:
  • 被引用被引用:3
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了解台灣熱帶地區海草床中的魚類群聚和各種魚的生態區位,本研究於墾丁大光海岸,選擇泰來草(Thalassia hemprichii)、單脈二藥草(Halodule uninervis)海草床中以穿越線記錄一年間的魚類群聚變化;且解剖各種常見優勢魚種的胃內含物以了解這些魚類的食性。結果顯示兩區海草床的魚類以各種珊瑚礁魚的幼魚佔大多數,明顯地比無植被的沙地區有更多的物種數和個體數:泰來草區受到潮汐與珊瑚礁石底質的影響,魚種大多體型較小,並有較多的岩礁性物種,以隆頭魚科和雀鯛科的魚種為主;單脈二藥草區受潮汐影響較小且底床為細沙底質,有較多的大型物種,物種和個體數皆顯著地比泰來草區多,以龍占科和鬚鯛科的魚種為優勢。本區雖屬熱帶氣候,但季節變化明顯,隨溫度的變化在春夏季(六月至八月)有幼魚進入海草床的高峰期,以單脈二藥草區最為明顯,又隨著秋季溫度的下降,魚類個體數也漸漸下降。胃內含物的結果顯示大多數魚種皆以海草床中的微小甲殼動物為主食;少數草食性魚種以海草的附生藻和大型藻為主食,食用海草者僅一種;而食魚性的魚種僅兩種。整體上,本區海草床的面積與海草生物量雖較其他研究的海草床還小,但仍有許多週遭的珊瑚礁魚類會在此棲息,並且是重要的幼魚棲息和覓食環境。
To understand the fish communities and their niches of tropical seagrass beds in Taiwan, we surveyed transects through two species of seagrass beds (Thalassia hemprichii and Halodule uninervis) of Dakwan bay, southern Taiwan. From January to December, 2008, we recorded species, number and size of fish and the microhabitat for each individual. We also recorded stomach content of some dominant species in seagrass bed. Our results showed that most fish living in seagrass beds were juvenile coral reef fish. Both fish species and individual numbers were significantly more than sandy area. We found that shallow depth and reef substrate causing more small-size species and reef associated species like Labridae and Pomacentridae in Thalassia area. On the other hand, more bigger-size species like Lethrinidae and Mullidae were found in Halodule area and had more species and individual numbers than Thalassia area. Fish communities were changed significantly by season. School of juvenile coral reef fish appeared in seagrass bed between June and August causing greatest number of species and individual numbers in a year, especially Halodule area. Those numbers then declined by the temperature change in fall. Stomach content analyses show that most juvenile fish in seageass beds were small-crustacean feeders. Only three herbivorous fish were recorded and fed mostly on epiphytic algae or filamentous macroalgae. Leptoscarus vaigiensis was the only species that fed seagrass leaves. Finally, only two piscivorous fish were found in this seagrass beds. Our results demonstrate the functioning of small area seagrass beds still as shelters for settling areas and feeding grounds for some juvenile fish.
目次
中文摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。i
英文摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。ii
目次。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。iii
表目次。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。vi
圖目次。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。vii
第一章、前言。。。。。。。。。。。。。。。。。。。。。。。。。。。1
一、海草的特性與種類。。。。。。。。。。。。。。。。。。。。。。1
二、海草床生態系與魚類。。。。。。。。。。。。。。。。。。。。。1
三、研究目的。。。。。。。。。。。。。。。。。。。。。。。。。。4
第二章、材料與方法。。。。。。。。。。。。。。。。。。。。。。。。6
一、樣區。。。。。。。。。。。。。。。。。。。。。。。。。。。。6
二、穿越線調查。。。。。。。。。。。。。。。。。。。。。。。。。7
三、魚類胃內含物分析。。。。。。。。。。。。。。。。。。。。。。8
四、統計分析。。。。。。。。。。。。。。。。。。。。。。。。。。9
(一)歸群分析。。。。。。。。。。。。。。。。。。。。。。。。。。。9
(二)SIMPER分析。。。。。。。。。。。。。。。。。。。。。。。。。10
(三)變方分析(Analysis of variance, ANOVA)。。。。。。。。。。。。。。10
(四)相關分析(Correspondence analysis,CA)與典型相關分析(Canonical correspondence analysis,CCA) 。。。。。。。。。。。。。。。。。。。。10
第三章、結果。。。。。。。。。。。。。。。。。。。。。。。。。。。12
一、環境因子與生物因子。。。。。。。。。。。。。。。。。。。。。。12
(一)環境因子。。。。。。。。。。。。。。。。。。。。。。。。。。。12
(二)生物因子。。。。。。。。。。。。。。。。。。。。。。。。。。。13
二、魚類群聚。。。。。。。。。。。。。。。。。。。。。。。。。。。14
(一)物種數與個體數。。。。。。。。。。。。。。。。。。。。。。。。14
(二)魚類群聚分群。。。。。。。。。。。。。。。。。。。。。。。。。15
三、魚類群聚與海草床環境。。。。。。。。。。。。。。。。。。。。。17
(一)微棲地選擇。。。。。。。。。。。。。。。。。。。。。。。。。。17
(二)與環境因子的關係。。。。。。。。。。。。。。。。。。。。。。。17
(三)季節變化。。。。。。。。。。。。。。。。。。。。。。。。。。。18
四、胃內含物。。。。。。。。。。。。。。。。。。。。。。。。。。。20
(一)小型甲殼類食性群。。。。。。。。。。。。。。。。。。。。。。。20
(二)蝦蟹食性群。。。。。。。。。。。。。。。。。。。。。。。。。。20
(三)魚食性群。。。。。。。。。。。。。。。。。。。。。。。。。。。21
(四)草食性群。。。。。。。。。。。。。。。。。。。。。。。。。。。21
(五)食性寬度與重疊度。。。。。。。。。。。。。。。。。。。。。。。21
第四章、討論。。。。。。。。。。。。。。。。。。。。。。。。。。。23
一、魚類群聚與環境因子。。。。。。。。。。。。。。。。。。。。。。23
(一)海草床環境。。。。。。。。。。。。。。。。。。。。。。。。。。23
(二)兩種海草床的差異。。。。。。。。。。。。。。。。。。。。。。。24
(三)邊際效應。。。。。。。。。。。。。。。。。。。。。。。。。。。26
二、魚類群聚組成和季節變化。。。。。。。。。。。。。。。。。。。。27
(一)物種組成。。。。。。。。。。。。。。。。。。。。。。。。。。。27
(二)季節變化。。。。。。。。。。。。。。。。。。。。。。。。。。。30
(三)不同體長的海草魚類其棲地變化。。。。。。。。。。。。。。。。。31
三、魚類食性。。。。。。。。。。。。。。。。。。。。。。。。。。。33
第五章、結論。。。。。。。。。。。。。。。。。。。。。。。。。。。37
第六章、參考文獻。。。。。。。。。。。。。。。。。。。。。。。。。38
附錄1、會議紀錄。。。。。。。。。。。。。。。。。。。。。。。。。76
附錄2、大光海草床常見魚類圖鑑。。。。。。。。。。。。。。。。。。81














表目次
表1、不同季節與樣點之環境因子與生物因子的2-way ANOVA分析結果。。49
表2、SIMPER分析結果顯示各區優勢物種與其所佔的貢獻百分比(%)。。。50
表3、僅以海草相關優勢物種(分成長階段)SIMPER分析結果顯示兩區海草床優勢物種與其所佔的貢獻百分比(%)。。。。。。。。。。。。。。。。。。。51
表4、大光海草床環境因子。。。。。。。。。。。。。。。。。。。。。。52
表5、各種魚類食性寬度(Diet breadth;BA)與胃內含物組成。。。。。。。。53
表6、各種魚類之間食性重疊度(Diet overlap;O)的比較。。。。。。。。。54
表7、大光海草床與世界各熱帶海草床之比較。。。。。。。。。。。。。。55











圖目次
圖1、研究地點:墾丁國家公園後壁湖大光位置示意圖。。。。。。。。。。56
圖2、後壁湖大光地圖與各樣區位置示意圖。。。。。。。。。。。。。。。57
圖3、研究樣區照片。。。。。。。。。。。。。。。。。。。。。。。。。58
圖4、大光海草床各區深度變化。。。。。。。。。。。。。。。。。。。。59
圖5、恆春一年氣溫變化。。。。。。。。。。。。。。。。。。。。。。。59
圖6、大光海草床流速變化。。。。。。。。。。。。。。。。。。。。。。60
圖7、兩區海草床覆蓋度變化。。。。。。。。。。。。。。。。。。。。。61
圖8、兩區海草床植株密度變化。。。。。。。。。。。。。。。。。。。。61
圖9、兩區海草床植株高度變化。。。。。。。。。。。。。。。。。。。。62
圖10、2008年間1-12月大光海草床中(a):魚類物種數與(b):魚類個體數。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。63
圖11、2008年間1-12月大光海草床與珊瑚礁區(a):魚類物種數與(b):魚類個體數之比較。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。64
圖12、大光海草床魚類群聚(a):Cluster(灰色分群為新生單脈二藥草區)與(b):MDS分析結果。。。。。。。。。。。。。。。。。。。。。。。。。。。65
圖13、對應相關分析(Correspondence analysis;CA)顯示各種魚類對於微棲地的偏好。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。66
圖14、典型相關分析典型相關分析(Canonical correspondence analysis;CCA)顯示各種魚類對於海草床生物因子與環境因子之間的關係。。。。。。。。。。。67
圖15、各種魚類利用海草床的時間。。。。。。。。。。。。。。。。。。68
圖16、各種優勢魚種在海草床活動的時間、體長和數量。。。。。。。。。69
圖17、幾種有明顯成長遷移的魚類,各體長的時期在海草床與珊瑚礁活動的百分比(%)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。70
圖18、各種魚類胃內含物的食性組成依Cluster分析分為4群。。。。。。。71
圖19、颱風後對於海草床植被影響。。。。。。。。。。。。。。。。。。72
圖20、大光兩種海草床受到潮汐影響的情形不同。。。。。。。。。。。。73
圖21、海草床魚類活動相片。。。。。。。。。。。。。。。。。。。。。74
圖22、纖鸚鯉的食痕。。。。。。。。。。。。。。。。。。。。。。。。75
王振君。(2007)。高美溼地大型水生植物的豐度與空間分布。國立中興大學生命科學院碩士在職進修專班碩士論文。
吉田正人、河內直子、仲岡雅裕、小林愛、大野正人。(2006)。沖繩海草。日本自然保護協會(NACS-J)。
沈世傑。(1993)。台灣魚類誌。國立台灣大學動物系。台北。
邱仕涵。(2009)。墾丁潮間帶泰來草(Thalassia hemprichii)的碳收支模式。國立中興大學生命科學院碩士論文。
邵廣昭。(2007)。台灣魚類資料庫 網路電子版version 2005/5 http://fishdb.sinica.edu.tw。
邵廣昭、陳正平、沈世傑。(1993)。墾丁國家公園海域 魚類圖鑑。內政部營建署墾丁國家公園管理處。高雄。
紀郁如。(2002)。墾丁潮間帶海草床豐度與生產力之研究。國立中興大學生命科學院碩士在職進修專班碩士論文。
柯智仁。(2004)。台灣海草分類與分布之研究。國立中山大學生物科學系碩士論文。
黃永吉。(2008)。甘草在台灣的族群動態。國立中興大學生命科學院碩士論文。
黃添敏。(1995)。台灣泰來草族群內與族群間之遺傳變異。國立中山大學生物科學系碩士論文。
藍秋月。(2003)。墾丁潮間帶海草豐度與生產力之時空變化及空間生態區位差異。國立中興大學生命科學院碩士論文。
Adams, S. M. (1976a) The Ecology of Eelgrass, Zostera Marina (L.), Fish Communities. I. Structural Analysis. Journal of Experimental Marine Biology and Ecology 22: 269-291
Adams, S. M. (1976b) The Ecology of Eelgrass, Zostera marina (L.), Fish Communities. II. Functional Analysis. Journal of Experimental Marine Biology and Ecology 22: 293-311
Aguilar-Perera, A., Appeldoorn, R. S. (2007) Variation in juvenile fish density along the mangrove–seagrass–coral reef continuum in SW Puerto Rico. Marine Ecology Progress Series 348: 139–148
Aguilar-Perera, A., Appeldoorn, R. S. (2008) Spatial distribution of marine fishes along a cross-shelf gradient containing a continuum of mangrove-seagrass-coral reefs off southwestern Puerto Rico. Estuarine, Coastal and Shelf Science 76: 378-394
Arvedlund, M., Takemura, A. (2006) The importance of chemical environmental cues for juvenile Lethrinus nebulosus Forsskål (Lethrinidae, Teleostei) when settling into their first benthic habitat. Journal of Experimental Marine Biology and Ecology 338: 112–122
Baelde, P. (1990) Differences in the structures of fish assemblages in Thalassia testudinum beds in Guadeloupe, French West Indies, and their ecological significance. Marine Biology 105: 163-173
Bell, J. D., Harmelin-Vivien, M. L. (1982) Fish fauna of French Mediterranean Posidonia oceanica seagrass meadows. 1. Community structure. TETHYS 10: 337-347
Bell, J. D., Harmelin-Vivien, M. L. (1983) Fish fauna of French Mediterranean Posidonia oceanica seagrass meadows. 2. Feeding habits. TETHYS 11: 1-14
Bell, J. D., Pollard, D. A. (1989) Ecology of fish assemblages and fisheries associated with seagrasses. In: Larkum, A. W. D., McComb, A. J., and Shepherd, S. A. (ed.), Biology of seagrasses: a treatise on the biology of seagrasses with reference to the Austrealian region. Aquatic Plant Studies 2, Elsevier, Amesterdam, 565-609
Bell, J. D., Westoby, M., Steffe, A. S. (1987) Fish larvae settling in seagrass: Do they discriminate between beds of different leaf density? Journal of Experimental Marine Biology and Ecology 111(2): 133-144
Bonaldo, R. M., Krajewski, J. P., Sazima, C., Sazima, I. (2006) Foraging activity and resource use by three parrotfish species at Fernando de Noronha Archipelago, tropical West Atlantic. Marine Biology 149: 423–433
Booth, D. J., Wellington, G. (1998) Settlement preferences in coral-reef fishes: Effects on patterns of adult and juvenile distributions, individual fitness and population structure. Aiistruitaiijourii.il of Ecotogy 23: 274-279
Chittaro, P. M., Usseglio, P., M., Sale, P. F. (2005) Variation in fish density, assemblage composition and relative rates of predation among mangrove, seagrass and coral reef habitats. Environmental Biology of Fishes 72: 175-187
Cocheret de la Moriničre, E., Pollux, B. J. A., Nagelkerken, I., van der Velde, G. (2002) Post-settlement life-cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuarine, Coastal and Shelf Science 55: 309-321
Cocheret de la Moriničre, E., Pollux, B. J. A., Nagelkerken, I., Hemminga, M. A., Huiskes, A. L., van der Velde, G. (2003) Ontogenetic dietary changes of coral reef fish during life cycle migrations in the mangrove-seagrass-reef continuum: stable isotopes and gut contents analysis. Marine Ecology Progress Series 246: 279-289
Cocheret de la Moriničre, E., van der Meij, H., Nagelkerken, I., van der Velde, G. (2004) What attracts nursery fish to mangroves: habitat complexity or shade? Marine Biology 144:139-145
den Hartog, C. (1970) The seagrasses of the world. Northe-Holland, Amsterdam, London, 275
Dorenbosch, M., Grol, M. G. G., Christianen, M. J. A., Nagelkerken, I., van der Velde, G. (2005a) Indo-Pacific seagrass beds and mangroves contribute to fish density and diversity on adjacent coral reefs. Marine Ecology Progress Series 302: 63-76
Dorenbosch, M., Grol, M. G. G., Nagelkerken, I., van der Velde (2005b) Distribution of coral reef fishes along a coral reef–seagrass gradient: edge effects and habitat segregation. Marine Ecology Progress Series 299: 277-288
Dorenbosch, M., Grol, M. G. G., Nagelkerken, I., van der Velde (2006) Different surrounding landscapes may result in different fish assemblages in East African seagrass beds. Hydrobiologia 563: 45-60
Dorenbosch, M., van Riel, M.C., Nagelkerken, I., van der Velde, G. (2004) The relationship of reef sh densities to the proximity of mangrove and seagrass nurseries. Estuarine, Coastal and Shelf Science 60: 37-48
Dorenbosch, M., Verberk, W. C. E. P., Nagelkerken, I. van der Velde, G. (2007) Influence of habitat configuration on connectivity between fish assemblages of Caribbean seagrass beds, mangroves and coral reefs. Marine Ecology Progress Series 334: 103-116
Duarte, C. M., Chiscano, C. L. (1999) Seagrass biomass and production: a reassessment. Aquatic Botany 65: 159-174
Duffy, J. E. (2006) Biodiversity and the functioning of seagrass ecosystems. Marine Ecology Progress Series 311: 233-250
Fagan, W. F., Cantrell, R. S., Cosner, C. (1999) How habitat edges change species interactions. American Naturalist 153: 165-182
Ferrell, D. J., Bell, J. D. (1991) Differences among assemblages of fish associated with Zostera capricorni and bare sand over a large spatial scale. Marine Ecology Progress Series 72: 15-24
Francour, P. (1997) Fish assemblages of Posidonia oceanica beds at Port-Cros (France, NW Mediterranean): Assessment of composition and long-term fluctuations by visual census. Marine ecology 18: 157-173
Grol, M. G. G., Dorenbosch, M., Kokkelmans, E. M. G., Nagelkerken, I. (2008) Mangrove and seagrass beds do not enhance growth of early juveniles of coral reef fish. Marine Ecology Progress Series 366: 137-146
Guidetti, P. (2000) Differences among fish assemblages associated with nearshore Posidonia oceanica seagrass beds, rocky–algal reefs and unvegetated sand Habitats in the Adriatic Sea. Estuarine, Coastal and Shelf Science 50: 515–529
Gullström, M., Dahlberg, M. (2004) Fish community structure of seagrass meadows around Inhaca Island, southern Mozambique. Stockholm University, SE-106 91 Stockholm, Sweden
Gullström, M., Bodin, M., Nilsson, P. G., Öhman., M. C. (2008) Seagrass structural complexity and landscape configuration as determinants of tropical fish assemblage composition. Marine Ecology Progress Series 363: 241–255
Heck K. L. (1977) Comparative species richness, composition, and abundance of invertebrates in Caribbean seagrass (Thalassia testudinum) meadows (Panamá) Marine Biology 41(4): 335-348
Heck, K. L. Jr, Wetstone, G. S. (1977) Habitat Complexity and Invertebrate Species Richness and Abundance in Tropical Seagrass Meadows. Journal of Biogeography 4: 135-142
Heck, K. L. Jr, Orth, R. J. (1980) Seagrass habitats: the role of habitat complexity, competition and predation in structuring associated fish and motile macroinvertebrate assemblages. In: Kennedy, V.S. (ed.), Estuarine Perspectives. Academic Press, New York
Heck, K. L. Jr, Hays, G., Orth, R. J. (2003) Critical evaluation of the nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series 253: 123-136
Heck, K. L. Jr, Valentine, J. F. (2006) Plant–herbivore interactions in seagrass meadows. Journal of Experimental Marine Biology and Ecology 330: 420–436
Hemminga, M. A., Duarte, C. M. (2000) Seagrass ecology. The University Press, Cambridge, United Kingdom. 298
Horinouchi, M. (2007) Review of the effects of within-patch scale structural complexity on seagrass fishes. Journal of Experimental Marine Biology and Ecology 350:111-129
Horinouchi, M., Sano, M (1999)Effects of changes in seagrass shoot density and leaf height on abundances and distribution patterns of juveniles of three gobiid fishes in a Zostera marina bed. Marine Ecology Progress Series 183: 87-94
Horinouchi, M., Sano, M (2000) Food habits of fishes in a Zostera marina bed at aburatsubo, central japan. Ichthyological Research 47: 163-173
Horinouchi, M., Sano, M (2001) Effects of changes in seagrass shoot density and leaf height on the abundance of juveniles of Acentrogobius pflaumii in a Zostera marina bed. Ichthyological Research 48:179-185
Horinouchi, M., Nakamura, Y., Sano, M. (2005) Comparative analysis of visual censuses using different width strip-transects for a sh assemblage in a seagrass bed. Estuarine, Coastal and Shelf Science 65: 53-65
Horinouchi, M., Mizuno N., Jo, Yuka, Fujita, M., Sano, M. Suzuki, Y. (2009) Seagrass habitat complexity does not always decrease foraging efficiencies of piscivorous fishes. Marine Ecology Progress Series 377: 43-49
Hyslop, E. J. (1980) Stomach contents analysis: a review of methods and their applications. Journal of Fish Biology, 17: 411-429
Jackson, E.L., Attrill, M. J., Rowden, A. A., Jones, M.B. (2006) Seagrass complexity hierarchies: Influence on fish groups around the coast of Jersey (English Channel). Journal of Experimental Marine Biology and Ecology 330: 38-54
Jones, R. S., Chase, J. A. (1975) Community structure and distribution of fishes in an enclosed high island lagoon in Guam. Micronesica 11: 127-148
Juanes F. (1994) What determines prey size selectivity in piscivorous fishes? In: Stouder, D. J., Fresh, K. L., Feller, R. J. (ed.), Theory and application in fish feeding ecology. University of South Carolina Press. Columbia
Kieckbusch, D. K., Koch, M. S., Serafy, J. E., Anderson, W. T. (2004) Trophic linkages among primary producersand consumers in fringing mangroves of subtropical lagoons. Bulletin of Marine Science 74(2): 271-285
Kikuchi, T. (1974) Japanese contributions on consumer ecology in eelgrass (Zostera marina L.) beds, with special reference to trophic relationships and resources in inshore fisheries. Aquaculture 4: 145-160
Kingsford, M. J., Leis, J. M., Shanks, A., Lindeman, K. C., Morgan, S. G., Pineda, J. (2002) Sensory environments, larval abilities and local self-recruitment. Bulletin of Marine Science 70(1): 309-340
Kirsch, K. D., Valentine, J. F., Heck, K. L. Jr (2002) Parrotfish grazing on turtlegrass Thalassia testudinum: evidence for the importance of seagrass consumption in food web dynamics of the Florida Keys National Marine Sanctuary. Marine Ecology Progress Series 227: 71-85
Kopp, D., Bouchon-Navaro, Y., Louis, M., Bouchon, C. (2007) Diel differences in the seagrass fish assemblages of a Caribbean island in relation to adjacent habitat types. Aquatic Botany 87: 31-37
Kramer, D. L., Bryant, M. J. (1995) Intestine length in the fishes of a tropical stream: 2. Relationships to diet-the long and short of a convoluted issue. Environmental Biology of Fishes 42(2): 129-141
Kreb, C. J. (1989) Ecological Methodology, 2nd ed. Addison Wesley Longman, Menlo Park, Canada
Lan, C. Y., Kao, W. Y., Lin, H. J., Shao, K. T. (2005) Measurement of chlorophyll fluorescence reveals mechanisms for habitat niche separation of the intertidal seagrasses Thalassia hemprichii and Halodule uninervis. Marine Biology 148(1): 25-34
Larkum, A. W. D., Orth, R. J., Duarte, C. M. (2006) Seagrasses: Biology, Ecology and Conservation. 503-536. In Larkum, A. W. D., Orth, R. J., Duarte, C. M. (ed.), Seagrasses: Biology, Ecology and Conservation. Springer
Leis, J. M. (1991) The pelagic stage of fishes: the larval biology of coral reef fishes. In Sale, P.F. (Ed.), The Ecology of Fishes on Coral Reefs Academic Press, San Diego
Leis, J. M. (2002) Pacific Coral-reef Fishes The Implications of Behaviour and Ecology of Larvae for Biodiversity and Conservation, and a Reassessment of the Open Population Paradigm. Environmental Biology of Fishes 65: 199-208
Leis, J. M., Carson-Ewart, B. M. (1998) Complex behaviour by coral-reef fish larvae in open-water and near-reef pelagic environments. Environmental Biology of Fishes 53(3): 259-266
Leis, J. M., Carson-Ewart, B. M. (2002) In situ settlement behaviour of damselfish (Pomacentridae) larvae. Journal of Fish Biology 61: 325-346
Leis, J. M., Carson-Ewart, B. M., Webley, J. (2002a) Settlement behaviour of coral-reef fish larvae at subsurface artificial-reef moorings. Marine and Freshwater Research 53: 319-327
Leis, J. M., Carson-Ewart, B. M., Cato, D. H. (2002b) Sound detection in situ by the larvae of a coral-reef damselfish (Pomacentridae). Marine Ecology Progress Series 232: 259–268
Lin, H.J., Shao, K.T. (1998) Temporal changes in the abundance and growth of intertidal Thalassia hemprichii seagrass beds in southern Taiwan. Botanical Bulletin of Academia Sinica 39: 191-198
Lin, H.J., Hsieh, L. Y., Liu, P. J. (2005) Seagrasses of Tongsha Island, with descriptions of four new records to Taiwan. Botanical Bulletin of Academia Sinica 46: 163-168
Liu, H. T. H., Kneer, D., Asmus, H., Ahnelt, H. (2008) The feeding habits of Austrolethops wardi, a gobiid fish inhabiting burrows of the thalassinidean shrimp Neaxius acanthus. Estuarine, Coastal and Shelf Science 79: 764-767
Livingston, R. J. (1982) Trophic Organization of Fishes in a Coastal Seagrass System. Marine Ecology Progress Series 7: 1-12
Livingston, R. J. (1984) Trophic response of fishes to habitat variability in coastal seagrass systems. Ecology 65(4): 1258-1275
Lugendo, B. R. Nagelkerken, I., van der Velde, Mgaya, Y. D. (2006) The importance of mangroves, mud and sand flats, and seagrass beds as feeding areas for juvenile fishes in Chwaka Bay, Zanzibar: gut content and stable isotope analyses. Journal of Fish Biology 69: 1639–1661
Maciá, S., Robinson, M. P. (2005) Effects of habitat heterogeneity in seagrass beds on grazing patterns of parrotfishes. Marine Ecology Progress Series 303: 113-121
Marguillier, S., van der Velde, G., Dehairsl, F., Hemminga, M. A., Rajagopal, S., (1997) Trophic relationships in an interlinked mangrove-seagrass ecosystem as traced byδ13C and δ15 N. Marine Ecology Progress Series 151: 115-121
Martin, F. D., Cooper, M. (1981) A comparison of fish faunas found in Pure Stands of two tropical Atlantic seagrasses, Thalassia testudinum and Syringodium filiforme. Northeast Gulf Science 5: 31-37
Mattila, J., Chaplin, G., Eilers, M. R., Heck, K. L., O'' Neal, J. P., Valentine, J. F. (1999) Spatial and diurnal distribution of invertebrate and fish fauna of a Zostera marina bed and nearby unvegetated sediments in Damariscotta River, Maine (USA). Journal of Sea Research 41: 321-332
Mellin, C., Kulbicki, M., Ponton, D. (2007) Seasonal and ontogenetic patterns of habitat use in coral reef fish juveniles. Estuarine, Coastal and Shelf Science 75: 481-491
Moranta, J., Palmer, M., Morey, G., Ruiz, A., Morales-Nin, B. (2006) Multi-scale spatial variability in fish assemblages associated with Posidonia oceanica meadows in the Western Mediterranean Sea. Estuarine, Coastal and Shelf Science 68: 579-592
Nakamura, Y., Horinouchi, M., Nakai,T., Sano, M. (2003) Food habits of fishes in a seagrass bed on a fringing coral reef at Iriomote Island, southern Japan. Ichthyological Research 50: 15-22
Nakamura, Y., Sano, M. (2004a) Overlaps in habitat use of fishes between a seagrass bed and adjacent coral and sand areas at Amitori Bay, Iriomote Island, Japan: Importance of the seagrass bed as juvenile habitat. Fisheries Science 70: 788-803
Nakamura, Y., Sano, M. (2004b) Is there really lower predation risk for juvenile fish in a seagrass bed compared with an adjacent coral area? Bulletin of marine science 74(2): 477-482
Nakamura, Y., Sano, M. (2004c) Comparison between community of fishes Enhalus acoroides- and Thalassia hemprichii- dominated seagrass beds on fring coral reefs in Ryukyu Islands, Japan. Ichthyological Research 51: 38-45
Nakamura, Y., Sano, M. (2005) Comparison of invertebrate abundance in a seagrass bed and adjacent coral and sand areas at Amitori Bay, Iriomote Island, Japan. Fisheries Science 71: 543-550
Nakamura, Y., Kawasaki, H., Sano, M. (2007) Experimental analysis of recruitment patterns of coral reef fishes in seagrass beds: Effects of substrate type, shape, and rigidity. Estuarine, Coastal and Shelf Science 71: 559-568
Nakamura, Y., Tsuchiya, M. (2008) Spatial and temporal patterns of seagrass habitat use by fishes at the Ryukyu Islands, Japan. Estuarine, Coastal and Shelf Science 76: 345-356
Nagelkerken, I., Dorenbosch, M., Verberk, W. C. E. P., de la Moriniere, E. C., van der Velde, G. (2000a) Importance of shallow-water biotopes of a Caribbean bay for juvenile coral reef fishes: patterns in biotope association, community structure and spatial distribution. Marine Ecology Progress Series 202: 175-192
Nagelkerken, I., van der velde, G., Gorissen, M. W., Meijer, G. J., Van’t hof, T., Den Hartog, C. (2000b) Importance of Mangroves, Seagrass Beds and the Shallow Coral Reef as a Nursery for Important Coral Reef Fishes, Using a Visual Census Technique. Estuarine, Coastal and Shelf Science 51(1): 31-44
Nagelkerken, I., Dorenbosch, M., Verberk, W. C. E. P., de la Moriniere, E. C., van der Velde, G. (2000c) Day-night shifts of fishes between shallow-water biotopes of a Caribbean bay, with emphasis on the nocturnal feeding of Haemulidae and Lutjanidae. Marine Ecology Progress Series 194: 55-64
Nagelkerken, I., Kleijnen, S., Klop, T., van den Brand, R. A. C. J., Cocheret de la Moriničre, E., van der Velde, G. (2001) Dependence of Caribbean reef fishes on mangroves and seagrass beds as nursery habitats: a comparison of fish faunas between bays with and without mangroves/seagrass beds. Marine Ecology Progress Series 214: 25-35
Nagelkerken, I., Roberts, C. M., van der velde, G., Dorenbosch, M., van Riel, M. C., Cocheret de la Morinière, E., Nienhuis, P. H. (2002) How important are mangroves and seagrass beds for coral-reef fish The nursery hypothesis tested on an island scale. Marine Ecology Progress Series 244: 299-305
Nagelkerken, I., van der velde, G. (2002) Do non-estuarine mangroves harbour higher densities of juvenile fish than adjacent shallow-water and coral reef habitats in Curaçao (Netherlands Antilles)? Marine Ecology Progress Series 245: 191-204
Nagelkerken, I., Van der velde, G. (2004a) Relative importance of interlinked mangroves and seagrass beds as feeding habitats for juvenile reef fish on a Caribbean island. Marine Ecology Progress Series 274:153-159
Nagelkerken, I., Van Der velde, G. (2004b) Are Caribbean mangroves important feeding grounds for juvenile reef fish from adjacent seagrass beds? Marine Ecology Progress Series 274: 143-151
Nagelkerken, I., van der Velde, G., Verberk, W. C. E. P., and Dorenbosch, M. (2006). Segregation along multiple resource axes in a tropical seagrass fish community. Marine Ecology Progress Series 308: 79-89
Nagelkerken, I., Faunce, C. H. (2007) Colonisation of artificial mangroves by reef fishes in a marine seascape. Estuarine, Coastal and Shelf Science 75: 417-422
Nagelkerken, I., Bothwell, J., Nemeth, R. S., Pitt, J. M., Van Der velde, G. (2008) Interlinkage between Caribbean coral reefs and seagrass beds through feeding migrations by grunts (Haemulidae) depends on habitat accessibility. Marine Ecology Progress Series 368: 155–164
Ogden, J. C., Buckman, N. S. (1973) Movements, Foraging Groups, and Diurnal Migratons of the Striped Parrotfish Scarus Croicensis Bloch (Scaridae). Ecology, 54 589-596
Ogden, J. C., Ehrlich, P. R. (1977) The behavior of heterotypic resting schools of juvenile grunts (Pomadasyidae). Marine Biology 42(3) 273-280
Orth, R. J., Heck, K. L. (1980) Structural components of eelgrass ( Zostera marina ) meadows in the lower Chesapeake Bay—Fishes. Estuaries and Coasts 3(4) 278-288
Orth, R. J., Heck, K. L. Jr, Montfrans van, J. (1984) Faunal communities in seagrass beds: A review of the influence of plant structure and prey characteristics on predator-prey relationship. Estuaries 7(3): 339-350
Orth, R. J., Carruthers, T. J. B., Dennison, W. C., Duarte, C. M., Fourqurean, J. W., Heck, K. L. Jr, Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Olyarnik, S., Short, F. T., Waycott, M., Williams, S. L. (2006) A Global Crisis for Seagrass Ecosystems. BioScience 56(12): 987-996
Parrish, J. D. (1989) Fish communities of interacting shallow-water habitats in tropical oceanic region. Marine Ecology Progress Series 58: 143-160
Patriquin, D. G. (1975) ‘Migration’ of blowouts in seagrass beds at Barbados and Carriacou, West Indies, and its ecological and geological implications. Aquatic Botany 1: 163-189
Pollard, D. A. (1984) A review of ecological studies on seagrass-fish communities, with particular reference to recent studies in Australia. Aquatic Botany 18: 3-42
Rooker, J. R., Dennis, G. D. (1991) Diel, Lunar and Seasonal Changes in a Mangrove Fish Assemblage off Southwestern Puerto Rico. Bulletin of Marine Science 49(3): 684-698
Sala, E., Ballesteros, E. (1997) Partitioning of space and food resources by three fish of the genus Diplodus (Sparidae) in a Mediterranean rocky infralittoral ecosystem. Marine Ecology Progress Series 152: 273-283
Sale, P. F. (1974) Overlap in resource use, and interspecific competition. Oecologia 17(3): 245-256
Salita, J. T., Ekau, W., Saint-Paul, U. (2003) Field evidence on the influence of seagrass landscapes on fish abundance in Bolinao, northern Philippines. Marine Ecology Progress Series 247: 183-195
Schoener, T. W. (1970) Nonsynchronous Spatial Overlap of Lizards in Patchy Habitats. Ecology 51: 408-418
Shibuno, T., Nakamura, Y., Horinouchi, M., Sano, M. (2008) Habitat use patterns of fishes across the mangrove-seagrass-coral reef seascape at Ishigaki Island, southern Japan. Ichthyological Research 55: 218-237
Short, F. T., Robert, G. C., Catherine, A .S. (2001) Global seagrass research methods, 79-100. In Short, F. T., Robert, G. C. (ed.), Global seagrass research methods. Elsevier Science B. V., Amsterdam
Shulman, M. J. (1985) Recruitment of coral reef fishes: effects of distribution of predators and shelter. Ecology 66(3): 1056-1066
Smith, T. M., Hindell, J. S., Jenkins, G. P., Connolly, R. M. (2008) Edge effects on fish associated with seagrass and sand patches. Marine Ecology Progress Series 359: 203-213
Sweatman, H (1988) Field evidence that settling coral reef fish larvae detect resident fishes using dissolved chemical cues. Journal of Experimental Marine Biology and Ecology 124(3): 163-174
Unsworth, R. K. F., Smith, D. J., Bell, J. J. (2007a) Tidal fish connectivity of reef and sea grass habitats in the Indo-Pacific. Journal of the Marine Biological Association of the United Kingdom U.K. 87: 1287-1296
Unsworth, R. K. F., Wylie, E., Smith, D. J., Bell, J. J. (2007b) Diel trophic structuring of seagrass bed fish assemblages in the Wakatobi Marine National Park, Indonesia. Estuarine, Coastal and Shelf Science 72: 81-88
Unsworth, R. K. F., Taylor, J. D., Powell, A., Bell, J. J., Smith, D. J., (2007c) The contribution of scarid herbivory to seagrass ecosystem dynamics in the Indo-Pacific. Estuarine, Coastal and Shelf Science 74: 53-62
Unsworth, R. K. F., De León, P. S., Garrard, S. L., Jompa, J., Smith, D. J., Bell, J. J. (2008) High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Marine Ecology Progress Series 353: 213-224
Valentine, J. F., Heck, K. L. Jr (1999) Seagrass herbivory: evidence for the continued grazing of marine grasses. Marine Ecology Progress Series 176: 291-302
van Montfrans, J., Wetzel, R. L., Orth, R. J. (1984) Epiphyte-Grazer Relationships in Seagrass Meadows: Consequences for Seagrass Growth and Production. Estuaries 7(4): 289-309
Verweij, M. C., Nagelkerken, I., Graaff, D. de., Peeters, M., Bakker, E. J., van der Velde, G. (2006a) Strocture, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: a field experiment. Marine Ecology Progress Series 306: 257-268.
Verweij, M. C., Nagelkerken, I., Wartenbergh, S. L. J., Pen, I. R. van der Velde, G. (2006b) Caribbean mangroves and seagrass beds as daytime feeding habitats for juvenile French grunts, Haemulon flavolineatum. Marine Biology 149: 1291-1299
Verweij, M. C., Nagelkerken, I., Hans, I., Ruseler, S. M. (2008) Seagrass nurseries contribute to coral reef fish populations. Limnology and Oceanography 53(4): 1540-1547
Vonk, J. A., Marjolijn J.A. Christianen, J. S. (2008) Redefining the trophic importance of seagrasses for fauna in tropical Indo-Pacific meadows. Estuarine, Coastal and Shelf Science 79: 653–660
Weinstein, M. P., Heck, K. L. (1979) Ichthyofauna of seagrass meadows along the Caribbean coast of Panamá and in the Gulf of Mexico: Composition, structure and community ecology. Marine Biology 50(2): 97-107
Worthington, D. G., Ferrell, D. J., McNeill, S. E., Bell, J. D. (1992) Effects of the shoot density of seagrass on fish and decapods: are correlation evident over larger spatial scales? Marine Biology 112(1): 139-146
Yang, Y. P. (1978) Hydrocharitaceae, Ruppiaceae, Zannichichelliaceae, and Zosteraceae. In: Li, H. L., Liu, T. S., Huang, T. C., Koyama, T., and Devol, C. E. (ed.), Flora of Taiwan, Vol. V, Monocotyledon. Epoch, Taipei, 14-35
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊