(34.226.234.102) 您好!臺灣時間:2021/05/12 10:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李維特
研究生(外文):Wei-Te Li
論文名稱:以植入法合成單一分散中空Al2O3暨Pt-Al2O3微球之研究
論文名稱(外文):Synthesis of Monodispersed Al2O3 and Pt-Al2O3 Hollow Microspheres by Implantation of Precursor
指導教授:曾文甲
指導教授(外文):Wenjea J. Tseng
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:73
中文關鍵詞:PtAl2O3有機微球核殼結構
外文關鍵詞:PtAl2O3organic microspherecore-shell structure
相關次數:
  • 被引用被引用:2
  • 點閱點閱:101
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以C2Cl4為反應溶劑,AlCl3為合成Al2O3之前驅物,有機微球為模板,藉由植入之方式使AlCl3前驅物存在於有機微球模板內,形成核殼結構微球,經由高溫煅燒移除有機模板,可得Al2O3中空微球。另外吾人採用AlCl3、H2PtCl6.nH2O作為合成Pt-Al2O3中空微球之前驅體,C2Cl4作為系統溶劑,採用兩種實驗製程,將獲得之改質有機微球經由空氣的氣氛煅燒,移除內部有機核,合成Pt-Al2O3中空複合微球。由ESCA縱深分析結果得知,含Pt或Al前驅物皆以植入方式存在於有機微球;改變AlCl3改質微球之反應溫度並改變煅燒溫度及持溫時間,將獲得之中空微球粉體,利用穿透式電子顯微鏡(TEM)觀察其殼層表面。此外並利用X光繞射分析儀(XRD)、拉曼分析儀(Raman)、場發射掃描式電子顯微鏡(FE-SEM)、穿透式電子顯微鏡(TEM)與比表面積分析儀(BET)等分析其表面微結構;以感應耦合電漿質譜分析儀(ICP-MS)分析Pt金屬之負載量。
由AlCl3改質有機微球的TEM分析得知,當合成反應溫度由25℃增加至75℃與95℃時,球殼厚度在高於25℃之合成溫度後有顯著增厚趨勢,從約30nm增加至約80nm;當反應溫度在75℃,隨著煅燒之持溫時間從2小時增加至24小時,微孔洞有逐漸減少趨勢,從約50nm減少至約10nm直至最後完全消失,猜測為α-Al2O3晶粒成長所造成。
由TEM及ICP結果顯示,經過1100℃煅燒後,製程I及製程II兩種製程皆可得到Pt-Al2O3複合微球,由製程I Pt/α-Al2O3發現,Pt負載量較低,Pt粒子粒徑小(約5nm)且較均勻,製程II Pt/α-Al2O3雖然Pt負載量較高,但Pt粒子粒徑較大(約40~180nm)且不均勻。由Raman結果顯示,經1000℃煅燒後,製程I Pt-Al2O3 即有Al2O3的α與θ相形成,並於1100℃煅燒後,結晶相完全轉變為α相,但製程II Pt-Al2O3在1000℃煅燒後只有θ相,於1100℃煅燒後,才形成α與θ相,要完全形成α相則需要1200℃。XRD結果顯示製程I與製程II Pt-Al2O3只發現會有α-Al2O3結晶相,但製程II Pt-Al2O3須在1100℃煅燒後方形成α相,而製程II Pt-Al2O3須在1200℃煅燒後形成α相,和XRD結果吻合。
This research uses C2Cl4 as a reactive solvent, AlCl3 as a precursor for Al2O3, and organic microspheres as a template in a way that the AlCl3 is implanted into surface of organic cores to form a core-shell structure. Al2O3 microspheres with hollow interiors are formed after thermal pyrolysis to remove the organic core. In addition, this research also uses C2Cl4 as a reactive solvent, AlCl3 and H2PtCl6.nH2O as precursors for synthesis of Pt-Al2O3 composite hollow particles. Two processes (processes I and II) have been used for the synthesis, and Pt-Al2O3 hollow microspheres are formed after thermal pyrolysis which removes the organic core. From the depth profile of ESCA analysis, the precursors used in the process are located beneath the surface of organic cores by an implantation of Al or Pt ions. The reaction temperature, calcination temperature and calcination time have been changed to examine the microstructure, phase transformation, and specific surface area of the hollow microspheres by TEM, FESEM, XRD, Raman and BET. The loading amount of Pt element is analyzed by ICP.
From TEM analysis, the shell thickness of the Al2O3 hollow microspheres increases with the increasing reaction temperature. When the reaction temperature is held at 75oC, pores on the shell appear to decrease with the increasing calcination time, presumably caused by grain growth of α-Al2O3.
From TEM and ICP results, at 1100oC, Pt loading is lower in the Process I Pt/α-Al2O3 and Pt particle size is smaller and disperses more uniform in alumina matrix. The Pt particle size is about 5nm. On the other hand, the Pt loading is higher for the Process II Pt/α-Al2O3, but the Pt particle size is larger (about 40~180nm). From Raman analyses, at 1000oC, αphase and θ phase Al2O3 are formed in the Process I Pt-Al2O3 and at 1100oC, the crystalline phase is completely transformed intoαphase. But after calcination at 1000oC, onlyαphase is formed in the Process II Pt-Al2O3. At 1100oC, the θphase is formed and theαphase is completely formed at 1200oC. From XRD results, only α-Al2O3 phase is found, but for the Process I Pt-Al2O3, the complete formation of α-Al2O3 phase occurs at 1100oC. On the other hand,αphase is formed at 1200oC for the Process II.

Key word:Pt, Al2O3, organic microsphere, core-shell structure
目錄
第一章 緒論.................................................................................................. 1
1-1 前言................................................................................................... 1
1-2 研究動機........................................................................................... 1
第二章 文獻回顧.......................................................................................... 2
2-1 中空球之製程文獻........................................................................... 2
2-1-1 硬質模板....................................................................................... 3
2-1-1-1 層接層法(layer by layer)............................................................... 3
2-1-1-2 化學沉積法(chemical deposition).................................................. 4
2-1-1-3 化學吸附法(chemical adsorption)................................................. 5
2-1-1-4 奈米鑄型(nanocasting).................................................................. 6
2-1-2 軟質模板....................................................................................... 7
2-1-2-1 乳液微滴(emulsion droplets)......................................................... 7
2-1-2-2 囊泡(vesicles)................................................................................. 8
2-1-2-3 氣泡(gas bubbles).......................................................................... 8
2-1-3 未使用模板................................................................................... 8
2-1-4 犧牲模板....................................................................................... 9
2-2 Al2O3中空球之製程文獻............................................................. 10
2-2-1 硬質模板............................................................................... 11
2-2-1-1 層接層法(layer by layer).......................................................... 11
2-2-1-2 化學沉積法(chemical deposition)............................................. 12
2-2-2 軟質模板...........................................................................................13
2-2-2-1 乳液微滴(emulsion droplets)................................................. 13
第三章 實驗流程與分析儀器介紹................................................... 17
3-1 實驗藥品....................................................................................... 17
3-2 製程設備....................................................................................... 17
3-3 合成氧化鋁中空微球實驗流程................................................... 18
3-4 合成Pt-Al2O3複合殼層中空微球實驗流程................................. 20
3-5 分析儀器....................................................................................... 23
3-5-1 X光光電子能譜儀(ESCA).....................................................23
3-5-2 穿透式電子顯微鏡(TEM)..................................................... 23
3-5-3 場發射掃描式電子顯微鏡(FE-SEM).................................... 23
3-5-4 X光繞射分析儀(XRD).......................................................... 23
3-5-5 表面積分析儀(BET).............................................................. 24
3-5-6 拉曼光譜分析儀(Raman Spectrophotometer)....................... 24
3-5-7 傅立葉轉換紅外線光譜儀(FTIR-ATR)................................ 24
3-5-8 感應耦合電漿質譜分析儀(ICP-MS)..................................... 25
3-5-9 CO氧化測試.......................................................................... 25
第四章 結果與討論.............................................................................26
4-1 Al2O3中空微球結構分析.................................................................26
4-1-1 X光光電子能譜儀(ESCA)縱深分析..............................................26
4-1-2 傅立葉轉換紅外線光譜儀分析(FTIR)............................................28
4-1-3 拉曼(Raman)結構分析.....................................................................30
4-1-4 中空微球TEM顯微觀察.................................................................31
4-2 Pt- Al2O3中空微球結構分析............................................................41
4-2-1 X光光電子能譜儀(ESCA)縱深分析...............................................41
4-2-2 傅立葉轉換紅外線光譜儀分析(FTIR-ATR).................................. 45
4-2-3 拉曼(Raman)結構分析..................................................................... 47
4-2-4 X光繞射分析(XRD)........................................................................ 49
4-2-5 中空微球SEM顯微觀察................................................................. 52
4-2-6 中空微球TEM顯微觀察................................................................. 56
4-2-7 感應耦合電漿質譜分析儀(ICP-MS)............................................... 62
4-2-8 比表面積分析(BET)......................................................................... 62
4-2-9 CO氧化測試..................................................................................... 65
第五章 結論................................................................................................... 66
參考文獻 ........................................................................................................... 69

圖目錄
圖2-1. Caruso等人研究合成SiO2中空微球實驗流程圖.......................... 4
圖2-2. Eiden等人合成之TiO2中空微球結構之REM圖......................... 5
圖2-3. Yang等人合成SiO2中空微球以及PANi/SiO2複合結構中空微球示意圖...........................................................................................6
圖2-4. Suarez等人合成SiO2中空球之流程示意圖.................................. 7
圖2-5. Fuji等人合成SiO2中空微球流程示意圖...................................... 7
圖2-6. Du等人合成有機/無機複合結構中空微球.................................... 8
圖2-7. Peng等人合成ZnSe中空微球流程示意圖.................................... 8
圖2-8. 為Yang等人未使用模板合成於反應溫度180 oC並改變反應時間之TiO2中空微球TEM圖(A)示意圖(B)反應2小時(C)反應20小時(D)反應50小時........................................................................9
圖2-9. Xia等人製備PbS中空球之實驗示意圖........................................10
圖2-10. Ras等人研究合成Al2O3中空微球流程示意圖............................. 10
圖2-11. Ras等人研究合成Al2O3中空微球EM圖譜(a-c)TEM(d)SEM....11
圖2-12. Xia等人合成之Al2O3中空微球結構(a-b)SEM(c-d)TEM影像....12
圖2-13. 在Wu等人的研究中合成之Al2O3中空微球經煅燒800 oC之SEM圖..............................................................................................12
圖2-14. Feldmann等人合成AlO(OH)之中空微球(A)SEM(B)TEM(C) HRTEM (D)SAD..............................................................................13
圖2-15. ISI Web of Knowledge資料庫中,2002~2009.4之間合成Al2O3、AlOOH中空微球之論文數............................................................. 14
圖3-1. 製備氧化鋁中空微球實驗流程圖................................................... 19
圖3-2. 採製程I製備Pt-Al2O3複合殼層中空微球實驗流程圖................ 21
圖3-3. 採製程II製備Pt-Al2O3複合殼層中空微球實驗流程圖............... 22
圖4-1. 改變合成時之反應溫度(25oC至95oC),對於以AlCl3改質處理之有機微球(3μm)內部元素之Binding energy關係圖(a)Al元素(b)O元素........................................................................................... 27
圖4-2. 改變合成時之反應溫度(25至95 oC),對於以AlCl3改質處理之有機微球內部Al與O元素之縱深分佈曲線圖............................ 28
圖4-3. 改變合成時之反應溫度(25oC至95oC),對有機微球之表面官能基影響............................................................................................... 29
圖4-4. 改變煅燒溫度對以AlCl3改質處理之有機微球的拉曼光譜圖,合成之反應溫度固定在75 oC..........................................................31
圖4-5. 改變合成時之反應溫度(25至95 oC),將以AlCl3改質處理之有機微球,經500 oC煅燒恆溫2小時之TEM圖(a-b)為反應溫度25 oC (c-d)為反應溫度75 oC (e-f)為反應溫度95 oC.....................33
圖4-6. 反應溫度固定在25 oC,以AlCl3改質有機微球經1000 oC恆溫不同時間煅燒之TEM圖(a-b)恆溫2小時(c-d)恆溫12小時(e-f) 恆溫24小時.....................................................................................35
圖4-7. 反應溫度固定在25 oC,以AlCl3改質有機微球經1000 oC恆溫不同時間煅燒之 SAD圖(a)恆溫2小時(b)恆溫12小時(c)恆溫24小時.............................................................................................36
圖4-8. 反應溫度固定在75 oC,以AlCl3改質有機微球經1000 oC恆溫不同時間煅燒之TEM圖(a-b)恆溫2小時(c-d)恆溫12小時(e-f)恆溫24小時....................................................................................37
圖4-9. 反應溫度固定在75 oC,以AlCl3改質有機微球經1000 oC恆溫不同時間煅燒之SAD圖(a)恆溫2小時(b)恆溫12小時(c)恆溫24小時.............................................................................................38
圖4-10. 反應溫度固定在95 oC,以AlCl3改質有機微球經1000 oC恆溫不同時間煅燒之TEM圖(a-b)恆溫2小時(c-d)恆溫12小時(e-f)恆溫24小時....................................................................................39
圖4-11. 反應溫度固定在25 oC,以AlCl3改質有機微球經1000 oC恆溫不同時間煅燒之SAD圖(a)恆溫2小時(b)恆溫12小時(c)恆溫24小時.............................................................................................40
圖4-12. 反應溫度固定在75oC,改變製程對於以AlCl3、H2PtCl6改質處理之有機微球(500μm)內部元素之Binding energy關係圖(a)Pt元素(b)O元素..................................................................................42
圖4-13. 反應溫度固定在75oC,改變製程對於以AlCl3、H2PtCl6改質處理之有機微球(500μm)內部Pt與O元素之縱深分佈曲線圖.......43
圖4-14. 改變合成時之反應溫度(25至95 oC),對於以H2PtCl6改質處理之有機微球(500μm)內部元素之Binding energy關係圖(a)Pt元素(b)O元素......................................................................................44
圖4-15. 改變合成時之反應溫度(25至95 oC),對於以H2PtCl6改質處理之有機微球(500μm)內部Pt與O元素之縱深分佈曲線圖...........45
圖4-16. 為吾人使用之兩種不同尺寸有機微球的ATR光譜圖................. 46
圖4-17. 為吾人使用之DVB分子結構式....................................................46
圖4-18. 改變煅燒溫度對以Pt-Al2O3改質後之有機微球的拉曼光譜圖,合成之反應溫度固定75oC(a)製程I Pt-Al2O3 (b)製程II Pt-Al2O3..48
圖4-19. 合成反應溫度固定在75 oC,不同改質處理後之有機微球經1000℃恆溫2小時煅燒後之拉曼光譜..................................................... 49
圖4-20. 固定反應溫度在75 oC時,改變煅燒溫度對以Pt-Al2O3改質處理後之有機微球的XRD圖(a)製程I Pt-Al2O3 (b)製程II Pt-Al2O3............................................................................................51
圖4-21. 固定反應溫度在75 oC,改變煅燒溫度對以製程I Pt-Al2O3改質處理之有機微球SEM圖(a-b)為煅燒900 oC (c-d)為煅燒1000 oC (e-h)為煅燒1100 oC (i-j)為煅燒1200oC........................................54
圖4-22. 固定反應溫度在75 oC,改變煅燒溫度對以製程II Pt-Al2O3改質處理之有機微球SEM圖(a-b)為煅燒900 oC (c-d)為煅燒1000 oC (e-f)為煅燒1100 oC (g-h)為煅燒1200 oC....................................... 55
圖4-23. 固定反應溫度75 oC,改變煅燒溫度對製程I Pt-Al2O3改質處理之有機微球之TEM圖(a-c)為煅燒900 oC (d-e)為煅燒1000 oC (f-g)為煅燒1100 oC (h-i)為煅燒1200 oC (j)為煅燒900 oC SAD (k)為煅燒1000 oC SAD(l)為煅燒1100 oC SAD (m)為煅燒1200 oC SAD............................................................................................. 59
圖4-24. 固定反應溫度75 oC,改變煅燒溫度對製程II Pt-Al2O3改質處理之有機微球之TEM圖(a-c)為煅燒900 oC (d-e)為煅燒1000 oC (f-g)為煅燒1100 oC (h-i)為煅燒1200 oC (j)為煅燒900 oC SAD (k)為煅燒1000 oC SAD (l)為煅燒1100 oC SAD (m)為煅燒1200 oC SAD...................................................................................................61
圖4-25. 為反應溫度75 oC合成之Pt-Al2O3微球經1100 oC煅燒恆溫2小時之氮氣吸脫曲線...................................................................... 64
圖4-26. 為反應溫度75 oC合成之Pt-Al2O3微球經1100 oC煅燒恆溫2小時之孔徑分佈曲線圖.................................................................. 64
圖4-27. 為反應溫度75 oC合成之3.51wt% Pt-Al2O3微球經900 oC煅燒恆溫2小時之CO氧化效率........................................................... 65

表目錄
表2-1. 各種模板合成中空球之優缺點比較表.......................................... 2
表2-2. 近8年來合成Al2O3、AlOOH中空球之合成方法...................... 15
表4-1. FTIR圖譜不同波數之官能基變化................................................ 30
表2-2. ICP-MS元素分析表........................................................................ 62
1.C. Hu, Z. Gao, and X. Yang, “Hematite Hollow Spheres with Excellent Catalytic Performance for Removal of Carbon Monoxide,” Chem. Lett., 35, 1288-1289, 2006.
2.N. K. Mal, M. Fuji., and Y. Tanaka, “Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica,” Nature, 421, 350-353, 2003.
3.Q. Q. Qiu, P. Duch., and P. S. Ayya., “Fabrication, Characterization and Evaluation of Bioceramic Hollow Microspheres Used as Microcarriers for 3-D Bone Tissue Formation in Rotating Bioreactors,”Biomaterials, 20, 989-1001, 1999.
4.K. Kamata, Y. Xia.,“Synthesis and Characterization of Monodispersed Core-Shell Spherical Colloids with Movable Cores,” J. Am. Chem. Soc., 125, 2384-2385, 2003
5.F. Caruso, A. S. Susha, M. Giersig, H. Möhwald, “Magnetic core-shell particles: preparation of magnetite multilayers on polymer latex microspheres,”Adv. Mater., 11, 950-953,1999.
6.F. Caruso, M. Spasova, A. Susha, M. Giersig, R. A. Caruso, “Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approachh”Chem. Mater., 13, 109-116,2001.
7.Y. W. Wang and W. J. Tseng,“A Novel Technique for Synthesizing Nanoshell Hollow AluminaParticles,”J. Am. Ceram. Soc., 92, S32-S37,2009.
8.C. Meeph., C. Chais., P. Sampa.,P. Prase,“Effect of phase composition between nano γ- and χ-Al2O3 on Pt/Al2O3 catalyst in CO oxidation,” Catal. Commun., 9, 546-550, 2008
9.S. Erik., U. Nylén, S. Rojas, M.Bout.,“Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis,” Appl. Catal., A, 265, 207-219,2004

10.Z. Yang, Z. Niu, Y. Lu, Z. Hu, C. C. Han, “Templated Synthesis of Inorganic Hollow Sphereswith a Tunable Cavity Size onto Core–Shell Gel Particles”Angew. Chem. Int. Ed., 42, 1943-1945, 2003.
11.Z. Niu, Z. Yang, Y. Lu, C. C. Han, “Polyaniline -silica composite conductive capsules and hollow spheres,”Adv. Funct. Mater., 13, 949-954, 2003.
12.F. Caruso, R. A. Caruso, H. Möhwald, “Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating,”Science, 282, 1111-1114, 1998.
13.F. Caruso, R. A. Caruso, H Möhwald, “Production of Hollow Microspheres from Nanostructured Composite Particles,”Chem. Mater., 11, 3309-3314, 1999
14.R. A. Caruso, A. Susha, F. Caruso, Chem. Mater.,“Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres,” 13, 400-409, 2001.
15.A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Möhwald, A. Eychmüller, H. Weller, “Nano- and Microengineering: Three-Dimensional Colloidal Photonic Crystals Prepared from Submicrometer-Sized Polystyrene Latex Spheres Pre-coated with Luminescent Polyelectrolyte/Nanocrystal Shells,” Adv. Mater., 12, 333-337, 2000.
16.S. Eiden, G. Maret, “Preparation and Characterization of Hollow Spheres of Rutile,” J. Colloid Interface Sci., 250, 281-284, 2002.
17.D. Wang, C. Song, Z. Hu, X. Fu, “Fabrication of Hollow Spheres and Thin Films of Nickel Hydroxide and Nickel Oxide with Hierarchical Structures,” J. Phys. Chem. B, 109, 1125-1129, 2005.
18.S. W. Kim, M. Kim, W. Y. Lee, T. Hyeon, “Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions,” J. Am. Chem. Soc., 124, 7642-7643, 2002.
19.S. Ikeda, K. Tachi, Y. H. Ng, Y. Ikoma, T. Sakata, H. Mori, T. Harada, M. Matsumura, “Selective Adsorption of Glucose-Derived Carbon Precursor on Amino-Functionalized Silica Surface for Fabrication of Hollow Carbon Spheres with Porous Walls,” Chem. Mater., 19, 4335-4340, 2007.
20.F. J. Suarez, M. Sevilla, S. Alvarez, T. Valdes-Solis, A. B. Fuertes, “Synthesis of Highly Uniform Mesoporous Sub-Micrometric Capsules of Silicon Oxycarbide and Silica,” Chem. Mater., 19, 3096-3098, 2007.
21.M. Fujiwara, K. Shiokawa, Y. Tanaka, Y. Nakahara, “Preparation and Formation Mechanism of Silica Microcapsules (Hollow Sphere) by Water/Oil/Water Interfacial Reaction,” Chem. Mater., 16, 5420-5426, 2004.
22.J. Du, Y. Chen, Y. Zhang, C. C. Han, K. Fischer, M. Schmidt, “OrganicInorganic Hybrid Vesicles Based on A Reactive Block Copolymer” J. Am. Chem. Soc., 125, 14710-14711, 2003.
23.Q. Peng, Y. Dong, Y. Li, “ZnSe Semiconductor Hollow Microspheres,” Angew. Chem. Int. Ed., 42, 3027-3030, 2003.
24.H. G. Yang, H. C. Zeng, “Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening,” J. Phys. Chem. B, 108, 3492 -3495,2004.
25.Y. Wang, L. Cai, Y. Xia, “Monodispersed Spherical Colloids of Pb and Their Use as Chemical Templates to Produce Hollow Particles,” Adv. Mater., 17, 473-477, 2005.
26.R. H. A. Ras,*M. Kemell, J. d. Wit, M. Ritala, G. t. Brinke, M. Leskelä, O. Ikka., “Hollow Inorganic Nanospheres and Nanotubes with Tunable Wall Thicknesses by Atomic Layer Deposition on Self-Assembled Polymeric Templates,” Adv. Mater., 19, 102-106, 2007.
27.Y. Xia, R. Mokaya, “Hollow spheres of crystalline porous metal oxides: A generalized synthesis route via nanocasting with mesoporous carbon hollow shells,” J. Mater. Chem., 15, 3126-3131, 2005.
28.L. P. Pang, R. H. Zhao, F. Guo, J. F. chen, W. G. Cui, “Preparation and Characterization of Novel Alumina Hollow Spheres,” Acta Phys. Chim. Sin., 24, 1115-1119, 2008.
29.X. Wu , D. Wang , Z. Hu, G. Gu, “Synthesis of γ-AlOOH (γ-Al2O3) self-encapsulated and hollow architectures,” Mater. Chem. Phys., 109, 560-564, 2008.
30.Daniel H. M. Buchold, C. Feldmann, “Nanoscale γ-AlO(OH) Hollow Spheres: Synthesis and Container-Type Functionality,” Nano Lett., 7, 3489-3492, 2007.
31.T. Kato,. H. Ushijima, M. Katsumata, T. Hyodo, Y. Shirnizu, “Effect of Core Materials on the Formation of Hollow Alumina Microspheres by Mechanofusion Process,” J. Am. Ceram. Soc., 87, 60-67, 2004.
32.H. Kou, J. Wang, Y. Pan, J. Guo, “Hollow Al2O3 Microspheres Derived from Al/AlOOH•nH2O Core-Shell Particles,” J. Am. Ceram. Soc., 88, 1615–1618, 2005.
33.W. Yang, F. Gao, H. Wang, X. Cheng, Z. Xie, F. Xing, L. An, “Hollow Alumina Microsphere Chain Networks,” J. Am. Ceram. Soc., 92, 280–282, 2009.
34.Y. Li, J. Shi, Z. Hua, H. Chen, M. Ruan, D. Yan, “Hollow Spheres of Mesoporous Aluminosilicate with a Three-Dimensional Pore Network and Extraordinarily High Hydrothermal Stability,” Nano Lett., 3, 609-612, 2003.
35.Y. Jiang, X. Ding, J. Zhao, H. Bala, X. Zhao, Y. Tian, K. Yu, Y. Sheng,Y. Guo, Z. Wang, “A facile route to synthesis of hollow SiO2/Al2O3 spheres with uniform mesopores in the shell wall,” Mater. Lett., 59, 2893-2897, 2005.
36.L. Zhang, W. Lu, L. Yan, Y. Feng, X. Bao, J. Ni, X. Shang, Y. Lv., “Hydrothermal synthesis and characterization of core/shell ALOOH microspheres,” Microporous Mesoporous Mater., 119, 208-216, 2009.
37.J. Shen, Z. Huang, J. Li, L. Gao, H. Zhou, Y. Qian, “Thin graphite skin on glass-like carbon fiber prepared at high temperature from cellulose fiber,” Carbon,43, 2817-2833, 2005.
38.J. Li, Y. Pan, C. Xiang, Q. Ge, J. Guo, “Low temperature synthesis of
ultrafine α-Al2O3 powder by a simple aqueous sol-gel process” Ceram. Int. 32, 587-591, 2006.
39.J . Kákos ,L.Baca,P. Veis , L. Pach, “Photoluminescence Spectra and Crystallization of θ-Al2O3 and α-Al2O3 from AlOOH-Fe(NO3)3 Gels,”J. Sol-Gel Sci. Techn. 21, 167-172, 2001.

40.A. Morrtensen , D.H. Christensen , O. F. Nielsen, “Raman spectra of amorphous Al2O3 and Al2O3/MoO3 obtained by visible and infrared excitation,”J . Raman. Spectrosc., 22, 47-49,1991.
41.A. Aminzadeh, “Excitation Frequency Dependence and Fluorescence in the Raman Spectra of Al2O3,” Appl. Spectrosc., 51, 817-819, 1997.
42.M. F. Luo, P. Fang, M. He, Y. L. Xie, “Fluorescence spectroscopic study of the phase transformationof γ-Al2O3 at high temperatures,” phys. stat. sol., 203, 2065-2072, 2006.
43.王彥文,以植入前驅物於膠體模板方式合成單一分散中空氧化鋁暨其他無機物微球之研究,中興大學材料科學與工程研究所碩士論文,中華民國九十七年七月
44.鄭功傑,氧化鋁微粉之基礎晶徑觀察 ,成功大學資源工程學系碩士論文,中華民國88年
45.F. W. Dynys and J. W. Halloran, in Ultrastructure Processing of Ceramics, Glasses and Composites,edited by L.L. Hench and D.R. Ulrich, John Wiely, New York, 1984, Chap.11, pp. 142-151.
46.H. Wang, S. Y. Zheng, X. D. Li, D. P. Kim, “Preparation of three-dimensional ordered macroporous SiCN ceramic using sacrificing template method,” Microporous Mesoporous Mat. 80, 357-362, 2005.
47.J. Singh, E. M. C. Alayon, M. Tromp, O. V. Safonova, P. Glatzel, M. Nachtegaal, R. Frahm, J. A. van Bokhoven, “Generating Highly Active Partially Oxidized Platinum during Oxidation of Carbon Monoxide over Pt/Al2O3 : In Situ, Time-Resolved,and High-Energy-Resolution X-Ray Absorption Spectroscopy” Angew. Chem. Int. Ed., 47, 9260-9264, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔