(18.207.253.100) 您好!臺灣時間:2021/05/06 08:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張媛婷
研究生(外文):Yuan-Ting Chang
論文名稱:鼠緻密骨組織微結構與機械性質之研究
論文名稱(外文):Microstructure and Mechanical Properties of Cortical Bone Tissues of Mice
指導教授:張守一
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:108
中文關鍵詞:骨骼機械性質
外文關鍵詞:bonemechanical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
骨骼是由多層次的結構複合而成,釐清其內部各微細結構與機械性質之間的關連性,對於骨骼病理學之研究以及仿生材料之開發皆有相當大的助益。因此,本研究採用五種不同條件之老鼠,透過高解析 X 光微型電腦斷層掃瞄及掃描式電子顯微鏡,分析鼠骨之礦物質密度及其微結構與成分,並以穿透式電子顯微鏡觀察緻密骨內側與外側氫氧基磷灰石晶體與膠原纖維之排列形貌,比較不同條件之鼠骨其結構上的差異;同時以動態機械分析與奈米壓痕測試量測鼠骨之巨觀與微觀機械性質,並分析緻密骨內側至外側之機械性質變化,釐清骨骼微細結構與機械性質之間的關連性,並探討骨質流失與營養補充對於鼠骨微結構與機械性質之影響。
研究結果發現,正常鼠與假手術鼠之股骨緻密骨結構緊密,由許多氫氧基磷灰石晶體附著在膠原纖維上成束排列構成,鈣磷含量較高,且纖維排列方向大致相同,因此其機械強度較高。切除卵巢鼠因受體內雌激素下降之影響,導致骨質流失,因此結構較為鬆散,且膠原纖維與氫氧基磷灰石晶體之排列凌亂,鈣磷含量亦較低,故機械強度較差。切除卵巢後之老鼠分別以酪蛋白及發酵乳餵養,發現部份老鼠對酪蛋白的吸收效果不佳,而部份老鼠則可吸收酪蛋白、降低骨質流失之發生,但其成效有限。發酵乳則可有效促進切除卵巢鼠對鈣磷的吸收與補充,可抑制其骨質流失,使其骨礦物質密度及機械性質皆可維持與正常鼠相當。
To clarify the relation between the microstructures and mechanical properties of hierarchical bone structures benefits the research of skeletal pathology and the development of biomimic materials. Thus in this study, the mineral densities, microstructures and compositions, as well as the arrangement of hydroxyl appetites and collagens, of mouse cortical bones were examined by micro-computed tomography and electron microscopy. The macroscopic and microscopic mechanical properties of these mouse bones were measured by dynamic mechanical analyses and instrumented nanoindentation to clarify their relation to bone structures and to realize the effects of osteoporosis and nutritional supplement on bone structures and mechanical properties.
The dense thigh bone structures of control and sham-operated mice composed of aligned collagen fibers and hydroxyl appetite crystals with high calcium and phosphorous contents had high mechanical properties. On the contrary, due to the osteoporosis caused by decreased estrogen, the bone structures of ovariectomy mice was loose with random arrangement of hydroxyl appetite crystals and collagen fibers and also low calcium and phosphorous contents, thus lowering the mechanical properties. Some of the nutrition-supplemented ovariectomy mice presented a poor absorption efficiency to casein, while the others had a positive but limited effect to inhibit osteoporosis. In comparison, fermented milk effectively enhanced the absorption of calcium and phosphorous, and inhibit osteoporosis, thus improving the mineral density and mechanical properties of the bones of variectomy mice.
目錄
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XI
壹、前言 1
貳、文獻回顧 3
2-1 骨骼組織 3
2-1-1 骨骼多層結構 3
2-1-2 骨骼成份 11
2-1-3 骨礦物質密度 12
2-1-4 骨骼再塑機制 13
2-2 骨骼強度與韌化機制 15
2-2-1 骨骼強度 15
2-2-2 骨骼韌化機制 15
2-2-3 骨質疏鬆及其治療 19
2-3 骨骼機械性質分析 20
2-3-1 彎曲試驗 20
2-3-2 動態機械分析試驗 (DMA) 25
2-3-3 奈米壓痕試驗原理 27
2-3-4 骨骼奈米壓痕試驗 34
2-5 研究目的 34
2-5 研究目的 35

參、實驗步驟 37
3-1 實驗規劃 37
3-2 鼠骨試片 38
3-2-1 正常鼠 38
3-2-2 假手術鼠 38
3-2-3 切除卵巢鼠 38
3-2-4 營養補充鼠 38
3-3 鼠骨試片處理 40
3-3-1 組織固定 40
3-3-2 磷酸緩衝液 41
3-3-3 組織脫水處理 41
3-3-4 掃描式電子顯微鏡試片處理 41
3-3-5 穿透式電子顯微鏡觀察試片處理 41
3-4 分析儀器 42
3-4-1 高解析度微型 X 光電腦斷層掃瞄儀 (Micro-CT) 42
3-4-2 場發射掃描式電子顯微鏡 (FE-SEM) 43
3-4-3 穿透式電子顯微鏡 (TEM) 43
3-4-4 動態機械分析儀 (DMA) 43
3-4-5 奈米壓痕測試儀 44
肆、結果與討論 48
4-1骨骼微結構分析 48
4-1-1股骨巨觀結構Micro-CT 觀察 48
4-1-2股骨緻密骨橫截面微結構 SEM 觀察 56
4-1-3脛骨緻密骨橫截面微結構 TEM 觀察 63
4-2 骨骼礦物質密度與成份分析 78
4-2-1 骨礦物質密度 78
4-2-2鼠骨成分 80
4-3 骨骼機械性質分析 83
4-3-1 股骨動態機械分析 83
4-3-2 緻密骨奈米機械性質 86
4-4 骨骼之變形行為分析 95
伍、結論 101
陸、參考文獻 103
[1] L.P. Hiller, S.M. Stover, V.A. Gibson, J.C. Gibeling, C.S. Prater, S.J. Hazelwood, O.C. Yeh, and R.B. Martin, “Osteon pullout in the equine third metacarpal bone: Effects of ex-vivo fatigue”, J. Orthop. Res., 21 (2003) 481-488
[2] P. Braidotti, E. Bemporad, T.D. Alessio, S.A. Sciuto, and T. Stagni “Tensile experiments and SEM fractography on bovine subchondral bone” J. Biomech., 33 (2000) 1153-1157
[3] A. Dumas, C. Gaudin-Audrain, G. Mabilleau, P. Massin, L. Hubert, M.F. Basle, and D. Chappard, “The influence of processes for the purification of human bone allografts on the matrix surface and cytocompatibility”, Biomaterials, 27 (2006) 4204–4211
[4] C.Y. Ooi, M. Hamdi, and S. Ramesh, “Properties of hydroxyapatite produced by annealing of bovine bone”, Ceramics International, 33 (2007) 1171–1177
[5] A.J. Bushby, V.L. Ferguson, and A. Boyde, “Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate”, J. Mater. Res., 19 (2004) 249-259
[6] J. Norman, J.G. Shapter, K. Short, L.J. Smith, and N.L. Fazzalari, “Micromechanical properties of human trabecular bone:A hierarchical investigation using nanoindentation”, J. Biomed. Mater. Res. A , 87 (2008) 196-202
[7] Z. Fan, J.G. Swadener, J.Y. Rho, M.E. Roy, and G.M. Pharr, “Anisotropic properties of human tibial cortical bone as measured by nanoindentation”, J. Orthop Res., 20 (2002) 806-810
[8] L. Mulder, J.H. Koolstra, J.M.J.d. Toonder, and T.M.G.J. van Eijden, “Intratrabecular distribution of tissue stiffness and mineralization in developing trabecular bone”, Bone 41 (2007) 256-265
[9] J. John, and M.D. Gartland, “Fundamentals of orthopaedics”, Saunders, Philadelphia, (1987). 賴祐平 編譯,“基礎骨科學”, 藝軒圖書出版社,台北市 (1994) p. 4-10
[10] M.A. Rubin, and I. Jasiuk, “The TEM characterization of the lamellar structure of osteoporotic human trabecular bone”, Micron, 36 (2005) 653–664
[11] D. Taylor, J.G. Hazenberg, and T.C. Lee “Living with cracks: Damage and repair in human bone”, Nature Materials, 6 (2007) 263-268
[12] J.W. Ager III, G. Balooch, and R.O. Ritchie “Fracture, aging, and disease in bone”, J. Mater. Res., 21 (2006) 1878-1892
[13] J.G. Hazenberg, D. Taylor, T.C. Lee “Mechanisms of short crack growth at constant stress in bone”, Biomaterials, 27 (2006) 2114–2122
[14] N.D. Sahara, S.I. Hongb, and D.H. Kohn, “Micro- and nano-structural analyses of damage in bone”, Micron, 36 (2005) 617–629
[15] B.L. Riggs, and L.J. Melton, “Osteoporosis: etiology, diagnosis, and management.”, Raven Press, New York, (1988). 楊榮森 編譯,“骨質疏鬆症:病因.診斷.治療”,合計圖書出版社,台北市 (1997) p. 1-73, 261-267, 369-375
[16] L.C. Junqueira, J. Carneiro, and R.O. Kelley, “Basic Histology, (9 edition)”, Mcgraw-hill, International. 賴昆成、徐淑媛、陳建行 編譯,“基礎組織學,(第九版)”,合計圖書出版社,台北市 (2000) p. 134-151
[17] A. Stevens, and J.S. Lowe, “Human Histology (3 edition)”, Mosby, English. 尹相姝 編譯,“人體組織學,(第三版)”,藝軒圖書出版社,台北縣,(2006) p. 251-263
[18] M.A. Rubin, I. Jasiuk, J. Taylor, J. Rubin, “TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone”, Bone, 33 (2003) 270-282
[19] J.M. Somerville, R.M. Aspden, K.E. Armour, K.J. Armour, and D.M. Reid, “Growth of C57Bl/6 Mice and the Material and Mechanical Properties of Cortical Bone from the Tibia”, Calcif. Tissue Int., 74 (2004) 469–475
[20] S.C. Manolagas, and R.L. Jilka, “Bone Marrow, Cytokines, and Bone Remodeling”, N. Engl. J. Med., 332 (2006) 305-311
[21] P. Ammann, “Bone strength and ultrastructure”, Osteoporos Int., (2009) 1081-1083
[22] C.L. Benhamou, “Bone ultrastructure: evolution during osteoporosis and aging”, Osteoporos Int., (2009) 1085-1087
[23] T. Wang, and Z. Feng “Dynamic mechanical properties of cortical bone: The effect of mineral content”, Materials Letters, 59 (2005) 2277 – 2280
[21] H. Peterlik, P. Roschger, K. Klaushofer, and P. Fratzl “From brittle to ductile fracture of bone”, Nature Materials, 5 (2006) 52-55
[22] M.T. Fondrk, E.H. Bahniuk, and D.T. Davy.” A damage model for nonlinear tensile behavior of cortical bone”, J. Biomech. Eng., 121 (1999) 533–41.
[23] S.P. Kotha, and N. Guzelsu, “Tensile behavior of cortical bone: Dependence of organic matrix material properties on bone mineral content”, J. Biomech., 40 (2007) 36–45
[24] S.P. Kotha, and N. Guzelsu, “Tensile damage and its effects on cortical bone”, J. Biomech., 36 (2003) 1683–1689
[25] V. Ebacher, C. Tang , H. McKay, T. R. Oxland, P. Guy, and R. Wang “Strain redistribution and cracking behavior of human bone during bending”, Bone, 40 (2007) 1265–1275
[26] J.L. Schriefer, A.G. Robling, S.J. Warden, A.J. Fournier, J.J. Mason, and C.H. Turner “A comparison of mechanical properties derived from multiple skeletal sites in mice”, J. Biomech., 38 (2005) 467–475
[30] A.H. Burstein, J.D. Currey, V.H. Frankel, and D.T. Reilly. “The ultimate properties of bone tissue: the effects of yielding”, J Biomech., 5 (1972) 35–44.
[31] R.M. Guedesa, J.A. Simo, and J.L. Morais, “Viscoelastic behaviour and failure of bovine cancellous bone under constant strain rate”, J. Biomech., 39 (2006) 49–60
[27] J. Yamashita, B.R. Furman, H.R. Rawls, X. Wang, and C.M. Agrawal, “The use of dynamic mechanical analysis to assess the viscoelastic properties of human cortical bone”, J. Biomed. Mater. Res. (Appl. Biomater.), 58 (2001), 47–53.
[28] J. Yamashita, X.O. Li, B.R. Furman, H.R. Rawls, X.D. Wang, and C.M. Agrawal, “Collagen and bone viscoelasticity: a dynamic mechanical analysis”, J. Biomed. Mater. Res., 63 (2002), 31–36.
[29] J.F. Mano, “Viscoelastic properties of bone: Mechanical spectroscopy studies on a chicken model”, Mat. Sci. Eng. C, 25 (2005) 145–152
[30] R. Schaller, S. Barrault, and Ph. Zysset, “Mechanical spectroscopy of bovine compact bone”, Mat. Sci. Eng., 370 (2004) 569–574
[36] T. Hoc, L. Henry, M. Verdier, D. Aubry, L. Sedel, and A. Meunier, “Effect of microstructure on the mechanical properties of Haversian cortical bone”, Bone 38 (2006) 466-474
[37] E. Donnelly, S.P. Baker, A.L. Boskey, M.C.H. van der Meulen, “Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation”, J. Biomed. Mater. Res. 77A (2006) 426-435
[38] J. Y. Rho, P. Zioupos, J. D. Currey, and G. M. Pharr, “Variations in the Individual Thick Lamellar Properties Within Osteons by Nanoindentation”, Bone, Vol. 25, No. 3 (1999)
[39] H.S. Gupta, U. Stachewicz, and W. Wagermaier, P. Roschger, H.D. Wagner, P. Fratzl, “Mechanical modulation at the lamellar level in osteonal bone”, J. Mater. Res., Vol. 21, No. 8, p. 1913-1921 (2006)
[40] L. Mulder, J.H. Koolstra, J.M.J. den Toonder, and T.M.G.J. van Eijden, “Intratrabecular distribution of tissue stiffness and mineralization in developing trabecular bone”, Bone, 41 (2007) 256–265
[41] H. Hertz, and J. Reine, “On the Contact of Rigid Elastic Solids and on Hardness”, Verh Ver Beforderung Gewerbe Fleisses, 61 (1881) 410
[42] I. N. Sneddon, “The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile”, Int. J. Eng. Sci., (1965) 47-56
[43] M.F. Doerner and W.D. Nix, “A method for interpreting the data from depth-sensing indentation instruments”, J. Matert. Res., 1 (1986) 601
[44] W.C. Oliver and G.M. Pharr, “On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation”, J. Mater. Res., 7 (1992) 613-61
[45] 陳家全、李家維、楊瑞森「生物電子顯微鏡書」,行政院國家科學委員會精密儀器發展中心編印,第 23-60 頁。
[46] Menu of Skyscan 1076 in vivo Micro CT.
[47] S.V. Dorozhkin, and M. Epple, “Biological and Medical Significance of Calcium Phosphates”, Angew. Chem. Int. Ed., 41 (2002) 3130 - 3146
[48] TriboScope User Manual, Hysitron Inc.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔