跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 08:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林章清
研究生(外文):Chang-Ching Lin
論文名稱:常用鋁鎂矽/鋁鋅鎂銅合金熱鍛粗晶問題研究
論文名稱(外文):On the formation of coarse grains in Al-Mg-Si/Al-Zn-Mg-Cu alloys after hot forging
指導教授:汪俊延
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料工程學系所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:99
中文關鍵詞:熱鍛鋁合金粗晶
外文關鍵詞:hot-forgingaluminum-alloycoarse-grains
相關次數:
  • 被引用被引用:1
  • 點閱點閱:718
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在運輸工業上,因為追求“輕”的極致,不同材料的比強度(Specific Strength)常會被拿來討論,讓鋁合金的應用越來越受到重視。傳統零件成形,不外乎鑄造和鍛造兩大基本領域;由於鍛造強迫材料塑性變形,使材質緻密化、均質化,並獲得優良的抗疲勞性、韌性及耐衝擊性,所以為製程考慮的首選。不幸的,晶粒粗大問題一直困擾鍛造業,造成機械性質和表面處理的不穩定。國內鍛造業還處於試誤法的階段,國外已經有不同的思考模式,想解決此問題。本研究以控制原物料品質和製程中加熱參數的方式,來研究此問題。重心放在6061,6066,7050,三種比較常用的鍛造用鋁合金。先以成分比較/導電率量測/橫切面硬度/金相觀察的方式,來選擇鍛造胚料。接著改變製程參數(胚料溫度/胚料加熱時間/模具溫度/熱處理方法),來觀察機械性質/晶粒大小/導電率變化。本實驗發現,如果要追求較小的晶粒。同樣是鋁鎂矽合金,6061和6066的最佳鍛造溫度便有差異;6066的最佳鍛造條件比6061高約60℃,並不是業界所認為“鍛造預熱溫度越低,最終晶粒越小”。而鋁鋅鎂銅合金的7050,原物料的退火狀態,對最終的晶粒分佈,影響相當大,使用退火完整的材料,可以得到比較細而均勻的晶粒分布,並大幅提升強度,而仍然維持其韌性。在實務上,也可以藉由導電率量測,了解工件的析出狀況,搭配拉伸試驗所得的數據,進一步調整製程參數,得到最終所需的機械性質。
In order to seek for the top-class of “light”, lots of different materials’ “specific strength” is reviewed in the transport industry. So “Aluminum-alloy” applications are keeping growing up. Traditional forming-way are casting and forging. Due to that we can get more uniform structure and better fatigue strength and toughness via forging process, so it has been the first choice of the consideration. Unfortunately, “Coarse-Grains” issue keeps upset the forging industry, cause big problem on mechanical properties and surface-treatment .The forging industry still use “Try and Error” method on this issue, but people in other places have been having some different view points to try to overcome this problem.We try to control raw material quality and forging parameter to study this issue, will focus on 6061, 6066 and 7050. The three most popular forging aluminum alloys. First, we will try do some study about composition-comparison/electrical-conductivity/cross-section hardness/microstructure observation to select the suitable raw material rod.
Later, we will change the parameter (billet temperature/billet heating time/tooling temperature/heat-treatment) to see the change about mechanical properties/grain size/electrical conductivity. We found that if we wish to get smaller grain, even both 6061 and 6066 are Al-Mg-Si alloy, the best billet temperature are not the same.6066’s “best point” is 60℃ higher than 6061. It is not like what the proverb say “the lower billet temperature, the smaller grain”. For 7050, annealed status of raw material will be a very important factor for final grain distribution of final forging parts. If we use “good” annealed status raw material, can get smaller and more uniform grain, raise the mechanical properties, and still keep very good toughness. In practical application, we can know precipitation status of forging parts via electrical conductivity, with mechanical properties, via proper adjusting manufacturing parameter, got the proper mechanical properties we need.
誌謝詞-----------------------------------------------------i
中文摘要--------------------------------------------------ii英文摘要-------------------------------------------------iii
總目錄----------------------------------------------------iv
表目錄----------------------------------------------------vi
圖目錄--------------------------------------------------viii
第一章 前言................................................1

第二章 文獻回顧............................................2

2-1:再結晶和晶粒成長......................................2
2-2:6061特性..............................................3
2-3:6066特性..............................................4
2-4:7050特性..............................................4
2-5:鍛造工程..............................................5
2-5-1:鍛造機介紹........................................5
2-5-2:製程控制..........................................5
2-5-3:鍛造條件之選擇....................................6
2-5-3-1:6061的鍛造溫度範圍............................6
2-5-3-2:6066的鍛造溫度範圍............................7
2-5-3-3:7050的鍛造溫度範圍............................7
2-5-3-4:Zener-Hollomon Parameter......................7
2-5-3-5:熱傳遞........................................7
2-6:機械性質測試..........................................8
2-6-1:導電率............................................8
2-6-2:拉伸試驗..........................................9
2-6-3:Vickers硬度和Grossman法...........................9
2-6-3-1:Vickers硬度...................................9
2-6-3-2:Grossman 法...................................9
2-7:可能解決方案-----------------------------------------10

第三章 實驗方法...........................................21

3-1:實驗架構與流程.......................................21
3-2:實驗設備.............................................21
3-2-1:萬能試驗機.................,.....................21
3-2-2:導電率測試儀.....................................22
3-2-3:微小硬度機.......................................22
3-2-4:金相顯微鏡.......................................22

第四章 結果與討論-6061 部份...............................25

4-1:原物料選擇及評估方式.................................25
4-2:不同鍛造條件/相同熱處理條件時的機械強度、導電率、晶粒大小--------------------------------------------------------26

第五章 結果與討論-6066 部份...............................48

5-1:原物料選擇及評估方式.................................48
5-2:不同鍛造條件/熱處理條件時的機械強度、導電率、晶粒大小------------------------------------------------------------48

第六章 結果與討論-7050 部份...............................73

6-1:原物料選擇及評估方式.................................73
6-2:不同鍛造條件下/相同熱處理時的機械強度、導電率、晶粒大小--------------------------------------------------------73

第七章 總討論.............................................95

第八章 結論...............................................96

第九章 參考文獻...........................................97

表 目 錄
表2-1:6061/6066/7050化學成份規格.........................11
表2-2:導電率參考值.......................................12
表2-3:相關鋁合金的機械性質...............................13
表3-1:金相腐蝕液一覽表...................................23
表4-1:6061原物料成分值...................................28
表4-2:6061原物料Mg, Cr ,Zr總和比較.......................29
表4-3:6061原物料導電率測試結果...........................29
表4-4:6061試片製程條件...................................30
表4-5:6061熱處理條件.....................................31
表4-6:製程條件1測試結果..................................32
表4-7:製程條件2測試結果..................................33
表4-8:製程條件3測試結果..................................34
表4-9:製程條件4測試結果..................................35
表5-1:6066原物料成分值...................................50
表5-2:6066原物料Mg,Cr,Zr總和比較(wt.%)...................51
表5-3:6066-O材導電率測試結果.............................51
表5-4:6066試片製程條件...................................52
表5-5:6066熱處理條件.....................................53
表5-6:製程條件1測試結果..................................54
表5-7:製程條件2測試結果..................................55
表5-8:製程條件3測試結果..................................56
表5-9:製程條件4測試結果..................................57
表5-10:製程條件5測試結果.................................58
表5-11:製程條件6測試結果.................................59
表6-1:7050原物料成分值...................................76
表6-2:7050-O材導電率測試結果.............................77
表6-3:7050試片鍛造條件...................................78
表6-4:7050熱處理條件(T74)................................79
表6-5:鍛造條件1測試結果..................................80
表6-6:鍛造條件2測試結果..................................81
表6-7:鍛造條件3測試結果..................................82
表6-8:鍛造條件4測試結果..................................83

圖 目 錄
圖2-1:發生加工硬化金屬實施退火時,機械性質和組織的變化...14
圖2-2:直接擠型法.........................................15
圖2-3:不同鋁合金的可鍛性(Forge-ability)..................16
圖2-4:不同鍛造條件的6061T6(a)Z值很高(b)Z值在中間(c)Z值很低時........................................................17
圖2-5:Z值和次晶粒產生率的關連............................18
圖2-6:Grossman圓棒法求硬化能的結果.......................19
圖2-7:(a)Al-Si合金之部分相圖(b)Al-Cu合金之部分相圖.......20
圖3-1:實驗流程圖.........................................24
圖4-1:6061-O材橫切面硬度比較.............................36
圖4-2:H廠素材橫切面金相..................................37
圖4-3:U廠素材橫切面金相..................................38
圖4-4:I廠素材橫切面金相..................................39
圖4-5:6061不同製程條件下的UTS比較........................40
圖4-6:6061不同製程條件下的Yield比較......................41
圖4-7:6061不同鍛造條件下的導電率比較.....................42
圖4-8:6061不同鍛造條件下的伸長率比較.....................43
圖4-9:6061鍛造條件1之橫切面金相(a)表面(b)心部............44
圖4-10:6061鍛造條件2之橫切面金相(a)表面(b)心部...........45
圖4-11:6061鍛造條件3之橫切面金相(a)表面(b)心部...........46
圖4-12:6061鍛造條件4之橫切面金相(a)表面(b)心部...........47
圖5-1:6066-O材橫切面硬度比較.............................60
圖5-2:H廠素材橫切面金相..................................61
圖5-3:C廠素材橫切面金相..................................62
圖5-4:6066不同製程條件下的UTS比較........................63
圖5-5:6066不同製程條件下的Yield比較......................64
圖5-6:6066不同鍛造條件下的導電率比較.....................65
圖5-7:6066不同鍛造條件下的伸長率比較.....................66
圖5-8:製程條件1之試片橫切面金相..........................67
圖5-9:製程條件2之試片橫切面金相..........................68
圖5-10:製程條件3之試片橫切面金相.........................69
圖5-11:製程條件4之試片橫切面金相.........................70
圖5-12:製程條件5之試片橫切面金相.........................71
圖5-13:製程條件6之試片橫切面金相.........................72
圖6-1:7050-O材橫切面硬度比較.............................84
圖6-2:N廠7050退火材金相..................................85
圖6-3:H廠7050退火材金相..................................86
圖6-4:7050不同鍛造條件下UTS比較..........................87
圖6-5:7050不同鍛造條件下Yield比較........................88
圖6-6:7050不同鍛造條件下導電率比較.......................89
圖6-7:7050不同鍛造條件下伸長率比較.......................90
圖6-8:7050鍛造條件1之橫切面金相..........................91
圖6-9:7050鍛造條件2之橫切面金相..........................92
圖6-10:7050鍛造條件3之橫切面金相.........................93
圖6-11:7050鍛造條件4之橫切面金相.........................94
[1]黃振賢、呂璞石,金屬材料,文京圖書有限公司,1986
[2]陳文照、曾春風、游信和譯,材料科學與工程導論,高立圖書有限公司(William D. Callister, JR. ”Materials Science And Engineering-An Introduction 6/E”, John Wiley, Inc. 中譯本),2006
[3]向四海、連鴻,“不同鋁合金系列之可鍛性研究”,中國機械工程學會第21屆全國學術研討會論文集,國立中山大學,高雄、台灣,2004/11
[4]N. Hosoda, M. Nakai, T. Eto, “The effect of
microstructure on mechanical properties of forged 6061 aluminum alloy”, Materials Forum, vol. 28, 2004, pp. 1382-1387
[5]Andreas Barth, Patrick Laevers, Arne Mulkers, “Hot and cold formed aluminum alloy”, United States Patent Application Publication, US2005/0095167A1, 2005
[6]Li Bairu, Sun Jianfeng, Chen Hongyu, ”Research on coarse-grained problem of 2618 aluminum alloy in isothermal forming production techniques”, Journals of Heilongjiang Institute of Science &Technology, vol.13, 2003, pp. 25-27
[7]W. H. Van Geertruyden, W. Z. Misidlek, P. T. Wang, “Surface grain structure development during indirect extrusion of 6xxx aluminum alloys”, Journal of Materials Science, vol.40, 2005, pp. 3861-3863
[8]J-A. Saeter, T. Iveland, O. Reoso, “High temperature strength of three 6060 extrusion alloys with different content of alloying elements”, Materials Forum, vol. 28, 2004, pp. 724-729
[9]“Aluminum Extrusion Technology”, ASM International , 2000
[10]QQ-A-200/8F, “Aluminum alloy 6061, bar, rod, shapes, tubes and wires, extrude”, 1983
[11]R. F. Muraca, J. S. Whittick, ”Materials data handbook-aluminum alloy 6061 (2nd Edition)”, Western Applied Research & Development, Inc., 1972
[12]QQ-A-200E/GEN, “Aluminum alloy, bar, rod, shapes, structural shapes, tube and wire, extrude: general specification for”, 1980
[13]Evren Tan, Bilgehan OGEL, ”Influence of heat treatment on the mechanical properties of AA6066 alloy”, Turkish J. Eng. Env. Sci. vol. 312, 2007, pp. 53-60
[14]Katia Regina Cardoso, Dilermando Nagle, Asuncion Garcia Escorial, Marccla Lieblich, “Effect Of mechanical alloying and Ti addition on solution and ageing treatment of an AA7050 aluminum alloy”, Material Research, vol.10, 2007, pp. 199-203
[15]劉胜胆,張新明,黃振寶,杜予晅,周卓平,“固溶處理對高純7055鋁合
金組織的影響”,材料熱處理學報,第27卷第3期,2006
[16]黃新昌、陳昌順、王進猷編著,“塑性加工學”,文京圖書有限公司, 1999
[17]V. M. Kevorkijan, ”Production technology and use of aluminum drop
forging components”, Material in Technologije, vol.35, 2001, pp. 191-194
[18]Y. H. Kim , T. K. Ryou, H. J. Choi, B. B. Hwang, “An analysis of the forging process for 6061 aluminum-alloy wheels“ , Journal of Materials Processing Technology I23, 2002, pp. 270-276
[19]Alexandre Polozine, Lirio Schaeffer, “Influence of the inaccuracy of thermal conductance coefficient on the weighted-mean temperature calculated for a forged blank”, Journals of Materials Processing Technology I95, 2008, pp.260-266
[20]MIL-STD-1537C, “Test method standard for electrical conductivity test for verification of heat treatment of aluminum alloys eddy current method ”, 2002
[21]MIL-H-6088F, ”Heat treatment of aluminum alloys”, 1981
[22]”Autosigma 3000-electrical conductivity meter”, GE Inspection Technologies, 2005
[23]ASTM B247M-90, “Standard specification for aluminum and aluminum-alloy die forgings, hand forgings, and rolled ring forgings(metric)”
[24]劉增豐、林樹均、葉均蔚、李勝隆,“材料工程實驗與原理”,先登出版社,1988
[25]Hui Lu , Puja B. Kadolkar, Teiichi Ando, Craig A. Blue, ”Control of grain size and age hardening in AA2618 forgings processed by rapid infrared radiant heating”, The Minerals, Metals & Materials Socieity, 2004
[26]Gowreesan Vamadevan, Frank Kraft, Puja Kadolkav, Howard Mayer, ”Application of rapid infrared heating for processing of aluminum forgings”, in proceeding of the 25th Forging Industry Technical Conference of the Forging Industry Association and the Forging Industry Educational and Research Foundation, 2004
[27]Robert Kervick, Craig A. Blue ,Puja B. Kadolkar, Teiichi Ando, Hui Lu, Kozo Nakazawa, Howard Mayer, George Mochnai, “Enhancement of Aluminum Alloy Forgings through Rapid Billet Heating”, U. S. Department of Energy, 2006
[28]E.D.Sweet, E. S. Charles, M. J. Couper, “The effect of Fe and Mn content on coarse formation during homogenisation of 6000 Series Alloys”, Materials Forum, vol. 28, 2004, pp. 1198-1202
[29]D. Dumont, A. Deschamps, Y. Brechet. “On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy”, Materials Science and Engineering A356, 2003, pp. 326-336
[30]速聯(SRAM)公司內部材料測試規範:「90-6100-014-XXX:HTT MATL SPEC」
[31]Yoshiya Inagaki, “A high strength aluminum alloy for automobile suspension forgings”, Kobelco Technology Review, no. 27, 2007, pp. 78
[32]吳正德, “6061合金的熱處理特性“, 鋁加工, no. 1, 總第160期, 2005, pp.38-46
[33]顏秀崗譯,材料科學與工程,全華科技圖書股份有限公司(L. H. Van Vlack. ”Elements of Materials Science and Engineering 5/E”, Addison-Wesley Publishing Company中譯本),1986
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 橫錯軋延製程對5052鋁-鎂合金顯微組織及機械性質影響之研究
2. 鎂合金廢料/不鏽鋼網耦片在不同濃度氯化鈉溶液中的產氫反應及伽凡尼腐蝕行為之研究
3. 二元類共晶鎂合金於不同溶液之產氫能力及機構研究
4. 個人高空安全防墜之鋁合金護具熱處理與機械性質研究
5. Mg-Cu合金在模擬尿液產氫之研究
6. 鋁-鎂/鋁-鎂-矽合金經橫錯軋延製程及熱處理後抗拉強度、顯微組織及織構的變化
7. 鎂合金廢料於含有氯化鈉之有機酸中無觸媒產氫之研究
8. 二氧化碳資源化再利用於鎂及鎂合金化成處理與表面改質以提升其抗蝕性與生物相容性之研究
9. Fe3+/HCO3-/CO32- 水溶液化成法於純鎂表面製備具軟磁性可導磁層之研究
10. 以熔融鹽電解法製備含鋰之輕金屬合金及應用:(1)以鎂-鋰-鋁-鋅合金作為鎂電池陽極材料之研究;(2)鋁鋰介金屬化合物用於合成鋰-鋁層狀雙氫氧化物之研究
11. 珠擊對7075-T651鋁合金應力腐蝕裂紋的影響
12. 退火溫度對Mg-9wt.%Li-3wt.%Al-1wt.%Zn合金軋延板材微觀組織與機械性質影響之研究
13. 快速凝固Mg-Al-Zn合金薄板於氯化鈉水溶液腐蝕性質及其綠色環保防蝕鍍層之研究
14. 鎂合金廢料再生為氫氣能源及其生命週期評估之研究
15. 重力鑄造AZ91D鎂合金無需SF6保護氣氛之新熱處理製程研究-成分均勻性,顯微組織對於拉伸強度與腐蝕性質之影響