(18.232.50.137) 您好!臺灣時間:2021/05/06 16:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:范慧屏
研究生(外文):Hui-Ping Fan
論文名稱:以物理氣相沉積法通入空氣作為反應性氣體製備氮化鋁鈦薄膜
論文名稱(外文):Preparation of TiAlN films by physical vapor deposition using air as a reactive gas
指導教授:呂福興
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:99
中文關鍵詞:物理氣相沉積法氮化鋁鈦
外文關鍵詞:PVDTiAlN
相關次數:
  • 被引用被引用:3
  • 點閱點閱:677
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氮化鋁鈦薄膜其具有高硬度、抗磨耗性、低熱傳導特性等特性,在過去文獻中以物理氣相沉積法(PVD)製備氮化鋁鈦薄膜,都會在低背景壓力下( 10-4 Pa),通入N2作為反應性氣體製備氮化鋁鈦薄膜。然而此製程方法在抽真空的過程所需要耗費較長的時間,因此本研究主要是探討在較高背景壓力下(1.33×10-2 Pa),以空氣取代氮氣作為反應性氣體以製備出氮化鋁鈦薄膜,期待達到節省能源與環保、降低製程成本的目的。
本研究主要是以PVD鍍著氮化鋁鈦薄膜,本研究背景壓力在1.33×10-2 Pa與1.33×10-4 Pa、控制air/Ar流量比值(16~35)/100,工作壓力0.23-0.24 Pa,固定鍍著功率300 W、偏壓50 V,所鍍著的薄膜,分別利用X光繞射儀(XRD)進行結晶相分析。場發射掃描式電子顯微鏡(FE-SEM)觀察薄膜微結構。利用電子微探儀(EPMA)以及X光光電子能譜儀(XPS)進行薄膜成分分析。奈米壓痕儀進行硬度分析。四點探針進行電阻率分析。結果顯示TiAlN薄膜為岩鹽型結晶結構。橫截面形貌為柱狀晶。Al/(Al+Ti)範圍為0.58~0.63,氧含量為10.5~18.5 at.%。硬度為28.5~40.4 GPa,電阻率7.4×102~4.5×104 µΩ-cm。和文獻的氮化鋁鈦薄膜特徵相比對後,證實本研究能成功利用空氣製備氮化鋁鈦薄膜。在高背景壓力下(1.33×10-2 Pa)所製備出的氮化鋁鈦薄膜其性質與低背景壓力下(1.33×10-4 Pa)相似,而製程所需的時間只需要低背景壓力十分之一以下的時間,因此本研究製程方法能夠大大節省製程所需時間,達到環保節省製程成本的目的。
本研究以反應性氣體氮氣作為對照組製備TiAlN薄膜,探討是否會影響TiAlN性質。製程參數為固定在氮分壓(0.9~4.9)×10-2 Pa下、鍍著功率300 W、偏壓50 V。結果顯示通入氮氣在氮分壓為(2.8~3.1×10-2 Pa)能製備出TiAlN薄膜,薄膜具有最大硬度值為38.4 GPa,電阻率範圍為(6.77×102~1.6×103) µΩ-cm。通入反應性氣體空氣製備TiAlN薄膜,其氮分壓範圍為(2.8~3.8×10-2 Pa),硬度最大值為39.1 GPa,電阻率範圍為(1.1×103~4.5×104) µΩ-cm。由以上結果可知,利用空氣製備出TiAlN薄膜其優點為具有較大範圍參數區間,機械性質方面有較高硬度值,電性方面能控制較大範圍的電阻率。推測原因為通入空氣製備薄膜時,薄膜中有較高含量的氧原子,對硬度而言會產生固溶強化,因此有較高硬度值。電性方面,氧原子增加會使薄膜電阻率上升,故能控制較大範圍的電阻率。
TiAlN films exhibit high mechanical hardness and wear resistance, as well as low thermal conductivity. In the literatures, preparation of TiAlN thin films by physical vapor deposition (PVD) is usually executed under low base pressures ( 10-4 Pa), and nitrogen is employed as the reaction gas to prepare TiAlN thin films. The processing time usually is long. Thus the main purpose of this study is to replace nitrogen with air as the reaction gas in preparing of titanium aluminum nitride films under higher base pressure (1.33 × 10-2 Pa), which has advantages of green process and manufacturing cost.
TiAlN fims prepared by PVD at different base pressures were investigated. At base pressures of 1.33×10-2 Pa and 1.33×10-4 Pa, the air/Ar flow ratios were varied in the range of (16~35)/100, working pressure was 0.23-0.24 Pa, the sputtering power was kept at 300W, and the bias voltage was kept at 50 V. The prepared crystal structure of TiAlN films were analyzed by X-ray diffraction. The field emission scanning electron microscopy was used to inspect the microstructure of the films. The chemical composition of the films was determined by the field-emission electron probe microanalyzer and X-ray photoelectron spectroscopy. The hardness of TiAlN films was measured by using nanoindentation, and the electrical resistivity of TiAlN films were measured by using a four-point probe. The obtained TiAlN films were in rock-salt phase and in columnar structures. Furthermore, the Al/(Al+Ti) ratio was 0.58~0.63, the oxygen content was 10.5~18.5 at.%, the hardness was 28.5~40.4 GPa, and the electrical resistivity were 7.4×102~4.5×104 µΩ-cm. After comparing the results with characteristic of TiAlN films reported in the literature, we confirmed that titanium aluminum nitride films were successfully prepared by using air as the reaction gas in this work. The properties of the titanium aluminum nitride films prepared at the higher base pressure (1.33×10-2 Pa) are similar to the films prepared at lower base pressure (1.33×10-4 Pa), but the processing time can be reduced to one-tenth of that reguired for the conventional process. Therefore this method can greatly reduction of process time, achieve green process and manufacturing cost.
In this study, we also employed nitrogen as the reaction gas at low base pressures for comparision. Parameters are fixed at the partial pressure of nitrogen at (0.9 ~ 4.9) × 10-2 Pa, the sputtering power at 300W and the bias voltage at 50 V. The results showed that employing nitrogen at 2.8 ~ 3.1 × 10-2 Pa nitrogen partial pressure could be feasible to prepare TiAlN films. The maximum value of hardness of the film was 38.4 GPa, the resistivity range was 6.77×102 ~ 1.6×103 μΩ-cm. The results showed that employing the air at 2.8 ~ 3.8 × 10-2 Pa nitrogen partial pressure could be feasible to prepare TiAlN films. The maximum value of the hardness of the film was 39.1 GPa, and the resistivity range was 1.1×103 ~ 4.5×104 μΩ-cm. On the other side, We inferred that the reason was that films contained more oxygen atoms while employing air as the reaction gas, and, for hardness of the films, it brought the effect of solid solution strengthening, the films had higher value of hardness. Electrical properties, the oxygen atom will increase of thin film resistivity, it can control a wide range of resistivity.
目錄
致謝………………………………………………………………………………….Ⅰ
摘要…………………………………………………………………….…........…....Ⅱ
目錄……………………………………………………………….…………………Ⅴ
圖目錄……………………………………………………….………………………Ⅴ
表目錄……………………………………………………….………………………Ⅷ
第一章 緒論…...……...…………………………………………………...…...…1
1.1 研究背景…………………………………………………………..………..1
1.2 研究動機…………………………………………………………..……..…4
1.1 研究目的……………………………………………………………..…..…4
第二章 理論背景與文獻回顧………...……………………………………….…6
2.1 鍍著原理…………………………………………………………………...6
2.1.1 電漿的產生…………………………………………………………...6
2.1.2 反應濺鍍原理………………………………………………………...6
2.1.3 薄膜成長機制……………………………………………………….10
2.1.4 薄膜微觀結構………………………………………….....................11
2.1.5 基板偏壓效應……………………………………………………….13
2.1.6 影響鍍層性質的因素……………………………………………….14
2.1.7 薄膜強化理論……………………………………………………….17
2.2 氮化鋁鈦薄膜晶體結構及其性質……………………………………….19
2.3 PVD鍍著氮化鋁鈦文獻回顧……………………………………………20
2.3.1 以PVD方法製備TiAlN文獻整理…………………………….…..20
2.3.2 以PVD方法製備TiAlNXOy文獻整理…………………………..…24
第三章 研究方法………………………...……………..…..…………….……..25
3.1. 實驗流程……………………………………………………...……...…….25
3.2. 實驗鍍膜設備以及TiAlN鍍著參數………………………………..…….26
3.3. 分析儀器及其原理….…………………………………….…..….…...….28
3.3.1 X光繞射儀………………………………………………....……...28
3.3.2 場發射電子顯微鏡……………………………...………..…….….28
3.3.3 電子微探儀…………………….……………………….………….28
3.3.4 X光光電譜儀…………………………….…………….………….30
3.3.5 奈米壓痕儀………………………………………….……….…....30
3.3.6 四點探針………….……………………………………...…...…...32
第四章 結果……………………………………………………………………..33
4.1 顏色及外觀分析………………………………………………………….33
4.2 結晶相分析……………………………………………………………….34
4.2.1 air/Ar流量比值對薄膜結晶相的影響………………………….…34
4.2.2 基板偏壓對薄膜結晶相的影響…………………………………...46
4.3 微結構分析…….…...………………………………….…….…..….……49
4.3.1 air/Ar流量比值對薄膜微結構的影響…………………………....49
4.3.2 基板偏壓對薄膜薄膜微結構的影響……………………………..54
4.4 成分分析…..…………………...………………………………………....56
4.4.1 air/Ar流量比值變化薄膜成分影響……………………….…..….56
4.4.2 基板偏壓變化對薄膜成分影響……………………………….….59
4.4.3 XPS縱深分析.................................................................................63
4.5 機械性質分析………………………………………………...………….66
4.5.1 air/Ar流量比值改變對薄膜機械性質變化………………….…....66
4.5.2 基板偏壓改變對薄膜硬度影響…………….…………………....71
4.6 電性分析…………………………………………………………………73
4.6.1 air/Ar流量比值改變對薄膜電性變化………………………...…73
4.6.2 基板偏壓變對薄膜電性影響…………………………………….75
第五章 討論………………………………………………………………….……76
5.1 空氣做為反應性氣體是否能製備三元氮化物TiAlN薄膜…..……......76
5.1.1 TiAlN特徵分析…………………………………………………..76
5.1.2 製備TiAlN參數區間…………………………………………….78
5.2 通入空氣與N2製備薄膜對其性質影響………………..……….……..79
5.2.1 結晶相分析…………………………………………………........78
5.2.2 FE-EPMA成分分析……………………………………..….…...81
5.2.3 機械性質與電性分析………………………………………........82
5.2.4 XPS縱深分析…………………………………………………....84
5.3 本研究製程之優點……….…………………...….…………………..…86
第六章 結論…………………………….………………………………………...92
参考文獻…………………………………………………………….……...………93
参考文獻
[1]S. PalDey, S. C. Deevi, “Single layer and multilayer wear resistant coatings of (Ti,Al)N a review,” Mater. Sci. Eng., A342 (2003)58.
[2]P. C. Jindal, A. T. Santhanam, U. Schleinkofer and A. F. Shuster, ”Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning,” Int. J. Refractory Metals Hard Mater., 17 (1999) 163.
[3]O. Knotek, W. D. Münz, and T. Leyendecker, “Industrial Deposition of Binary, Ternary Nitrides of Titanium, Zirconium, and Aluminum,” J. Vac. Sci. Technol., A5 (4) (1987) 2173.
[4]J. C. Schuster, J. Baure,”The ternary system titanium-aluminum-nitrogen,” J. Solid State Chem., 53 (1984) 260.
[5]U. Figueroa, O. Salas, ” Production of AlN films ion nitriding versus PVD coating,” Thin Solid Films, 469–470 (2004) 295.
[6] I. S. Materialov, N. Ukrainy, “Thermal conductivity and microwave dielectric properties of AlN-based ceramics containing conductive particles,” Sverkhtverdye Materialy, 3 (2004) 12
[7]P. Yang, S. Jian, S. Wud, Y. Lai, C. Wang, R. Chen, “Structural and mechanical characteristics of (103) AlN thin films prepared by radio frequency magnetron sputtering,” Appl. Surf. Sci., 255 (2009) 5984.
[8]V. H. Derflinger, A. Schutze, M. Ante, ”Mechanical and structural properties of various alloyed TiAlN-based hard coatings,” Surf. Coat. Technol., 200 (2006) 4693.
[9]S. D. Kim, “Characteristics of sputtered Ti1-xAlxN films for storage node electrodeBarriers,” J. Vac. Sci.Technol.B, 19 (2001) 2289.
[10]W. D. Münz, “Titanium Aluminum Nitride Films A New Alternative to TiN Coatings,” J. Vac. Sci. Technol., A4 (1986) 2717.
[11]M. Zhoua, Y. Makino, M. Nose, K. Nogi, “Phase transition and properties of Ti-Al-N thin prepared by r.f.-plasma assisted magnetron sputtering,” Thin Solid Films, 339 (1999) 203.
[12]S. Inamura. K. Nobugal, and F. Kanamaru, ”The Preparation of NaCl-Type Ti-Ai-N Solid Solution,” J. Solid State Chem., 68 (1987) 124.
[13]J. P. Bars, E. Etchessahar, J. Debuigne, “btude cin tique ffuin lleetem rphl oique dela nitruration dfj titane pralazote a hate tempti rture prorietes mecaniques et struction dessolution solides Ti azote,” J. Less Common Metals, 52 (1977) 51.
[14]J. C. Schuster, J. Baure,”The ternary system titanium-aluminum-nitrogen,” J. Solid State Chem., 53 (1984) 260.
[15]R. D. James, D. L. Paisley, K. A. Gruss, S. Parthasarthi, B. R. Tittmann, Y. Horie, R. F. Davis, ”High temperature wear resistance of (TiAl)N films synthesized by cathodic arc plasma deposition,” Mater. Res. Soc. Symp. Proc., 410 (1996) 377.
[16]T. Suzuki, D. Huang and Y. Ikuhara, “Microstructures and grain boundaries of (Ti,Al )N films” Surf. Coat. Technol., 107 (1998) 41.
[17]Y. Wang, “A study of PVD coatings and die materials for extended die-casting die life,” Surf. Coat. Technol., 94 (1997) 60.
[18]P. C. Jindal, A. T. Santhanam, U. Schleinkofer, A. F. Shuster, “Performance of PVD TiN, TiCN, and TiAlN coated cementedcarbide tools in turning,” Int. J. Refractory Metals Hard Mater., 17 (1999) 163.
[19]H. G. Prengel, A. T. Santhanam, R. M. Penich, P. C. Jindal, K. H. Wendt,” Advanced PVD-TiAlN coatings on carbide and cermet cutting tools,” Surf. Coat. Technol., 94-95 (1997) 597.
[20]E. Scha¨ffer, G. Kleer, “Mechanical behavior of Ti,Al N coatings exposed to elevatedtemperatures and an oxidative environment,” Surf. Coat. Technol., 133-134 (2000) 215.
[21]S. K. Wu, H. C. Lin, P. L. Liu, “An investigation of unbalanced-magnetron sputtered TiAlN films on SKH51 high-speed steel,” Surf. Coat. Technol., 124 (2000) 97.
[22]C. Scho¨njahn, M. Bamford, L. A. Donohue, D.B. Lewis, S.Forder, W. D. Munz,” The interface between TiAlN hard coatings and steel substratesgenerated by high energetic Cr+ bombardment,” Surf. Coat. Technol. 125 (2000) 66.
[23].W. D. Mu¨nz, D. B. Lewis, S. Creasey, T. Hurkmans, T. Trinh, W. V. Ijzendorn, ” Defects in TiN and TiAlN coatings grown by combinedcathodic arc/unbalanced magnetron technology,” Vacuum, 46 (1995) 323.
[24]I. J. Smith, D. Gillibrand, J. S. Brooks, W. D. Münz, S. Harvey and R. Goodwin, ”Dry cutting performance of HSS twist drills coated with improved TiAlNl,” Surf. Coat. Technol, 90 (1997) 164.
[25]B. Chapman, “Glow Discharge Processes: Sputtering and Plasma Etching,”John Wiley & Sons, Inc., New York, (1980) P49.
[26]M. Ohring, The Materials Science of Thin Films, Academic Press, New York,USA, (1992) P552.
[27]S. M. Rossnagel, Handbook of Plasma Processing Technology, Noyes Publications, Park Ridge, New Jersey, USA, (1989).
[28]莊達人 編著,“VLSI 製造技術,” 高立圖書有限公司, (1995) P 146-158.
[29]J. A. Thornton, “Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings,” J. Vac.Sci.Technol., 11 (1974) 666.
[30]H. T. G. Hentzell, C. R. Grovenor, and D. A. Smith, “Grain StructureVariation with Temperature for Evaporated Metal Films,” J. Vac. Sci. Technol. , A2 (1984) 218.
[31].P. B. Barna, and M. Adamik, “ Fundamental Structure Forming Phenomena of Polycrystalline Films and the Structure Zone Models,” Thin Solid Films, 317 (1998) 27.
[32]D. M. Mattox, “Deposition Technologies for Films and Coatings,” Noyes Publications, Park Ridge, New Jersey, U.S.A., 1982.
[33]R. Messier, A. P. Giri, R. A. Roy, “ Revised Structure ZoneModel for Thin Films Physical Structure ,” Journal of Vacuum Science Technology, A2(2), (1987) 500.
[34]P. J. Burnett and D. S. Rickerby,” The mechanical properties of wear-resistant coatings: I: Modelling of hardness behaviour”, Thin Solid Films, 148 (1987) 41.
[35]R. D. Bland, G. J. Kominiak, and D. M. Mattox, “Effect of Ion Bombardmenton Thick Metal and Ceramic Deposits”, J. Vac. Sci.Technol., 11 (4) 671-674
[36](1974)..W. D. Callister, JR., Materials Science and Engineering, An Introduction, 5th ed., John Wiley & Sons, Inc., New York, (1999)
[37]O. Knotek, T. Leyendecker, “On the Structure of (Ti, Al)N PVD Coatings,” J.Solid State Chem., 70 (1987) 318.
[38]Y. Tanaka, T. M. Gur, M. Kelly, S. B. Hagatrom and T. Ikeda, “Structure and properties of (Ti1−xAlx)N films prepared by reactive sputtering,” Thin Solid Films, 228 (1993) 238.
[39]N. Yanase, K. Sano, K. Abe and T. Kaeakubo, “Epitaxial Growth of Ti1-xAlxN Buffer Layer for a Ferroelectric (Ba, Sr)TiO3 Capacitor on Si Substrate,” Jpn. J.Appl. Phys., 237 (1998) 151.
[40]W. Jeitschko, H. Nowotny and F. Benesovsky, ”Ti2AlN, eine Stickstoff haltige
H-Phase Ti2AlN, a Nitrogen-Containing H-Phase,” Monatsh.Chem., 94 (1963)198.
[41]B. Y. Shew, and J. L. Huang, and D. F. Lii, “Effects of R.F. Bias and Nitrogen Flow Rates on the Reactive Sputtering of TiAlN Films”, Thin Solid Films, 293 (1997) 212.
[42]M. W. Barsoum, L. Farber, I. Levin, A. T. Procopio, T. Raghy and A. Berner, J.Am. Ceram, 82 (1999) 2545.
[43]G. Hakansson and J. E. Sundgren, ”Microstrure and physical properties of polycrystalline metstable Ti0.5Al0.5N alloy grown by d.c. magnetron sputter deposition”, Thin Solid Films, 153 (1987) 55.
[44]B. Y. Shew, J. L.Huang, “The effects of nitrogen flow on reactively sputtered Ti-A1-N films,” Surf. Coat. Technol, 71 (1995) 33.
[45]J. Musil, H. Hruby, “Superhard nanocomposite Ti1-xAlxN films prepared by magnetron sputtering,” Thin Solid Films, 365 (2000) 104
[46]U. Wahlstr, L. Hultman and J. E. Sundgren, “Crystal growth and microstructure of polycrystalline Ti1-XAlxN alloyfilms deposited by ultra-high-vacuum dual-target magnetron sputter”, Thin Solid Films, 235 (1993) 62.
[47]P. W. Shum, Z. F. Zhou, K. Y. Li, Y. G. Shen, “XPS, AFM and nanoindentation studies of Ti1-xAlxN filmssynthesized by reactive unbalanced magnetron sputtering,” Mater. Sci. Eng. B, 100 (2003) 204.
[48]T. Zhou , P. Nie, K. C. Paul, “Influence of N2 partial pressure on mechanical properties of (Ti,Al)N films deposited by reactive magnetron sputtering,” Vacuum 83 (2009) 1057.
[49]K. Tonshoff, B. Karpuschewski, A. Mohlfel “Performance of oxygen-rich TiALON coatings in dry cutting applications,” Surf. Coat. Technol, 108–109 (1998) 535.
[50]F. Mei, Y. Dong, Y. Li, “Microstructure and mechanical properties of (Ti,Al)(O,N) films synthesized by reactive sputtering,” Materials Letters, 60 (2006) 375.
[51]J. Sjölén, L. Karlsson, S. Braun, R. Murdey, “Structure and mechanical properties of arc evaporated Ti–Al–O–N thin films,” Surf. Coat. Technol. 201 (2007) 6392.
[52]L. G. Gonza, N. F. Ramırez, P. J. GarcıaRamırez, J. M. Saldan and F. J. Espinoza,”Microstructural Analysis of TiAlxNyOz Coatings Fabricated by D.C Reactive Sputtering,” J. Mater. Eng. Perform , 18 (2009)104.
[53]H. C. Kim, T. L. Alford, ”Investigation on diffusion barrier properties of reactive sputter deposited TiAlXNyOz thin films for Cu metallization,” Thin Solid Films, 449 (2004) 6.
[54]H. J. Seifert, A. Kussmaul, F. Aldinge, “Phase equilibria and diffusion paths in the Ti–Al–O–N system,” J. Alloys Compd. , 317–318 (2001) 19.
[55]P. B. Mirkarimi, D. L. Medlin, K. F. Carty, D. C. Dibble, and W. M. Clift, “The Synthesis, Characterization, and Mechanical Properties of Thick, Ultrahard Cubic Boron Nitride Films Deposited by Ion-Assisted Sputtering,” J. Appl. Phys., 82 (1997) 1617.
[56] M. Göken and M. Kempf, “Microstructural Properties of Superalloys Investigated by Nanoindentations in an Atomic Force Microscope,” Acta Mater. , 47 (1999) 1043.
[57]W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation,” J. Mater. Res., Surf. Coat. Technol, 47(1992) 1564.
[58]T. F. Page and S. V. Hainsworth, “Using Nanoindentation Techniques for the Characterization of Coated Systems: A Critique,” Surf. Coat. Technol., 61 (1993) 201
[59]周劍雄,EPMA顯微分析技術,地質出版社, (1995)
[60]汪健民,材料分析,中國材料科學學會,1988年
[61]張哲源,表面金屬化碳纖維複合薄膜之研究,國立台北科技大學材料科學與工程研究所碩士論文,2007年
[62]C. J. Mogab and E.Lugujjo, “Backscattering Analysis of the Composition ofSilicon-Nitride Films Deposited by RF Reactive Sputtering,” J. Appl. Phys., 47 (1976) 1302
[63]T. Yotsuya, M. Yoshitake and T. Kodamat, “Low-Temperature Thermometer Using Sputtered ZrNx Thin Film,” Cryogenics, 37 (12) (1998) 817.
[64]陳耀明,TiN鍍膜微結構與性質研究,國立清華大學工程與系統科學研究所博士論文,2002
[65]J. Pelleg, L. Z. Zevin and S. Lungo, “Reactive-Sputter-Deposited TiN Films on Glass Substrates,” Thin Solid Films, 197 (1991) 117.
[66]S. K. Habib, A. Rizk, and I. A. Mousa, “Physical Parameters AffectingDeposition Rates of Binary Alloys in a Magnetron Sputtering System,” Vacuum, 49 (1998) 153.
[67]H. M. Benia, M. Guemmaz, G. Schmerber, A. Mosser and J. C. Parlebas, “Investigations on Non-Stoichiometric Zirconium Nitrides,” Appl. Surf.Sci., 200 (2002) 231.
[68]H. P. Klug, L. E. Alexander, X-ray Diffraction Procedures, Wiley, New York, (1974) P388.
[69]M. Ohring, The Materials Science of Thin Films, Academic Press, New York, 1992. P455-457
[70]M. K. Lee and H. S. Kang, “Characteristics of TiN Film Deposited on StelliteUsing Reactive Magnetron Sputter Ion Plating,” J. Mater. Res., 12 (1997) 2393.
[71]H. holleck, “Metastable coatings predicition of composition and structure,” Surface and Coatings Technology, 36 (1988) 151.
[72]Robert E. Reed-Hill and Reza Abbachaschian, “Physical Metallurgy Principles,” Thomoson Publishing, P9
[73]T. Gredic, M. Zlatanovic, “Plasma deposition of (Ti,Al)N coatings at various magnetron discharge power levels, ” Surf. Coat. Technol. 48 (1991) 25.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔