(3.92.96.236) 您好!臺灣時間:2021/05/07 15:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭名廷
研究生(外文):Ming-Ting Cheng
論文名稱:探討氧化層對矽奈米線擴散機制之影響
論文名稱(外文):The discussion of oxide barrier for silicon nanowire diffusion
指導教授:歐陽浩
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:148
中文關鍵詞:矽化鎳奈米線分子動力學
外文關鍵詞:NiSinanowireMD
相關次數:
  • 被引用被引用:2
  • 點閱點閱:114
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是藉由在In-situ TEM中,在鎳與被氧化層包覆矽奈米線的點接觸式反應中,發現形成矽化鎳結構並非在鎳與矽所接觸的地方,而是在鎳與鎳之間開始形成相變化的現象感興趣,但在實驗上,我們無法精準的觀察氧化層對於鎳與矽奈米線之間究竟扮演什麼腳色;所以,我們利用建構於密度泛函理論的第一原理計算與分子動力學(Molecular dynamics, MD)的方式來探討氧化層對其擴散機制之影響。我們的研究發現,當有氧化層SiO2存在時,鎳在擴散進矽奈米線前會受到氧化層的影響,使鎳原子在氧化層中均勻的擴散開來;當兩個鎳粒子在氧化層中擴散的鎳原子與矽奈米線相碰觸時會在中間形成較高濃度的區域,所以會在鎳粒子中間先開始相變化。另外,在有氧化層與無氧化層的HRTEM中發現所生成的矽化鎳為不同相的結構,這是因為不同的擴散機制,經由不同的動力學路徑(kinetic path)而形成介穩定態的Ni2Si結構。
Using the In-situ transmission electron microscopy (TEM), multiple heterostructures of nickel siliside nanowire was found to be formed by the point-contact reaction. In the case with the existence of surface silicon oxide of silicon nanowire, we observed that phase transition formed between the nickel particle. We interested this phenomenon by adopting the first-principles molecular dynamics (MD) to understand the effect of oxide surface during the diffusion process of nickel particle. Furthermore, different kinetic paths can cause the formation of different phases.
摘要 I
總目錄 III
圖目錄 IV
表目錄 VIII
第一章 序論 1
一、 前言 1
二、 第一原理分析簡介 3
三、 分子動力學(MD)簡介 6
四、 模擬計算的優點與應用 7
五、 研究動機 7
六、 參考文獻 9

第二章 文獻回顧與理論基礎 11
一、 矽化物奈米線背景 11
(一)  奈米線的歷史 11
(二)  金屬矽化物奈米線 12
(三)  奈米線製程方法 18
(四)  奈米線的物理性質 25
二、 矽化鎳 28
(一)  矽化鎳的發展 28
(二)  矽化鎳的結構 28
三、 第一原理計算 30
(一)  第一原理計算簡介 30
(二)  平面波與虛位勢 31
(三)  Muffin-Tin、Linear Muffin-Tin Method 32
(四)  原子軌道方法-緊密束縛近似 32
(五)  第一原理計算應用 32
四、 密度泛函理論 36
(一)  Hartree近似 36
(二)  Hartree-Fock 37
(三)  密度泛函理論 38
五、 局部密度近似 41
六、 自洽方法 45
七、 廣義梯度近似 47
八、 分子動力學 49
(一) 勢能函數 50
(二) 運動方程式 54
(三) 初始條件 57
(四) 時間步階的選取 60
(五) 週期性邊界條件 61
(六) 截斷半徑與鄰近表列法 62
九、 VASP原理 66
十、 場發射穿透式電子顯微鏡原理 67
十一、multislice method 基本理論 69
十二、布朗運動 73
十三、自身交互運算函數(auto-correlation function, ACF) 74
十四、參考文獻 77

第三章 實驗方法 83
一、 multislice設定 83
二、 VASP軟體設定 85
三、 ACF操作設定 89

第四章 結果與討論 92
一、 Ni/SiO2/Si模擬系統 94
(一)  Ni/SiO2/Si系統建構 94
(二)  Ni/SiO2/Si相互作用力對溫度的影響 98
二、 分子動力學模擬 99
(一)  擴散係數 99
(二)  氧化層擴散機制之探討 101
(三)  ACF&RDF分析 108
三、 NiSi材料結構分析 110
四、 參考文獻 118

第五章 結論 119

附錄 121
附錄A vasp操作手冊 121
附錄B SiO2原子位置列表 128
附錄C 矽化鎳奈米線結構分析 138
附錄D 矽化鎳能量與能帶結構模擬 142
參考文獻 144
附錄E 能帶結構計算方式 145
參考文獻 148
第一章
1.S. Iijima, “Helical of Microtubules of Graphitic Carbon”, Nature, 354, 56, 1991
2.C. M. Lieber, “One dimensional nanostructures: chemistry, physics,and applications, solid state communications”, Solid State Comm., 107, 607, 1998
3.G. E. Moore, “Cramming More Components onto Integrated Circuits”, Electronics 38, 56, 1965.
4.科技產業資訊室:晶片的奈米技術導入進程– Intel 之奈米版圖
5.L.J. Chen , JOM, 57, 24, 2007
6.Z. Tang , N. A. Kotov, and M. Giersig, “Spontaneous Organization of single CdTe Nanoparticles into Luminescent Nanowires”, Science Vol. 297, 237, 2002
7.T. T. Albrecht, J. Schotter, G. A. Kastle, N.Emley,”Ultrahigh – Density Nanowire Arrays Grown in self-Assembled Diblock Copolymer Templates”,Science Vol.290, 2126, 2000
8.A. Sugawara, T. Coyle, G..G.. Hembree, and M.R.Scheinfein,”Self-organized Fe nanowire arrays prepared by shadow deposition on NaCl(110) templates”,Appl. Phys. Lett. 70, 1043-1045(2001).
9.R. S. Wagner and W. C. Ellis et al. Applied Physics Letter 4 (1964) 5
10.Timothy J. Trentler, Kathleen M. Hickman, Subhash C. Goel, Ann M. Viano, Patrick C. Gibbons, William E. Buhro, Science, 270, 1791, 1995
11.D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yang, J. Xu, Z. H. Xi, and S. Q. Feng ,Physica E 9, 305 (2001).
12.Y. Xia, and P. Yang, And. Mater. 15, 353, 2003
13.S. T. Lee, N Wang, Y F Zhang et al. MRS Bull. 24, 36, 1999
14.M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Reviews of Modern Physics, Vol. 64, No. 4, 1045 (1992)
15.P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)
16.M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Reviews of Modern Physics, Vol. 64, No. 4, 1045 (1992)
17.Irving, J. H. and Kirkwood, J. G. , Journal of chemical Physics, Vol.18, pp.817-829(1950)
18.Alder, B. J. and Wainwright, T. E. , Journal of chemical Physics, Vol.27, p.1208-1209(1957)
19.Metropolis, N. and Ulam, S., J. Amer. Stat. Assoc. 44, 335-341 , 1949
20.Haile, J. M., Molecular dynamics simulation: elementrary methods (A Wiley-interscience publication), John Wiley & Sons, Inc. the United States of American (1992).
21.Plimpton, S. , Journal of Computational Physics, Vol. 117, p.1-19(1995)
22.R. Car and M. Parrinello, Phys. Rev. Lett 55 (1985) 2471
23.M.P. Teter, M.C. Payne and D.C. Allan, Phys. Rev. B 40, 12255 (1989)
24.T. Tortilla, T. Fulmshir, T. SLlzLlki, Mater. Tran. 37, 1298 (l996)
25.Y. Shao, P. C. Clapp, J. A. Rifkin, Metal. Tran. 1477 (1996)
26.R. W. Smith, G. S. Was, Phys. Rev. 40, 10322 (1989)
27.Yi Cui, Qingqiao Wei, Hongkun Park, and Charles M. Lieber , Science Vol. 293, pp. 1289-1292, 2001.
28.Duan X, Huang Y, Cui Y, Wang J, Lieber CM., Nature 409, pp.66 – 69, 2001.
29.M. H. Huang , Samuel Mao,2 Henning Feick,3 Haoquan Yan, Yiying Wu,1 Hannes Kind,1 Eicke Weber,3 Richard Russo, Peidong Yang , Science 292, pp.1897, 2001.


第二章
1.S. M. Prokes and K. L. Wang, Mater. Res. Sci. Bull. 24, 13 (1999).
2.J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res. 32, 435 (1999).
3.G. E. Moore, “Cramming More Components onto Integrated Circuits”, Electronics 38 (1965) 56-59.
4.S. Wolf, “Silicon Processing for the VLSI Era: The Submicron MOSFET” , vol. 3, Sunset, CA: Lattice, (1995).
5.科技產業資訊室:晶片的奈米技術導入進程– Intel 之奈米版圖
6.U. Falke, et al., Phys. Stat. Sol. (a) 162, p. 615, 1997.
7.B.A. Julies, et al., Thin Solid Films, 347, p. 201, 1999.
8.L.J. Chen , JOM, Vol.57, No.9, p24-31,2005
9.J. Kedzierski, et al., IEDM Tech. Dig., p. 315, 2003.
10.J.P. Lu, et al., Proc. ECS, 1, p. 159, 2004.
11.H. Iwai, et al., Microelectronic Engineering 60, p. 157, 2002.
12.VLSI製造技術, 莊達人編著,高立圖書出版 1994
13.T. Ohguro et al., IEEE Tran. Electron Devices, ED-41, p.2305 (1994)
14.K. Goto, et. al., Japan Society of Applied Physics, 54th Fall Meeting, Abstract, 1993, P.711
15.K. Goto et. al., IEDM, p. 449, 1995.
16.E. G. Colgan et. al., Mater. Sci. Eng., R16, p. 43, 1996.
17.I. J. van Gurp and C. Langereis, J. Appl. Phys. 46 (1975) 4301-4307.
18.K. Goto, A. Fushida, J. Watanabe, T. Sukegawa, K. Kawamura, T. Yamazaki, and T. Sugii, IEDM Tech. Dig. (1995) 449-452.
19.R. T. Tung, and F. Schrey, Appl. Phys. Lett. 67 (1995) 2164-2166.
20.F. d''Heurle, S. Petersson, L. Stolt, and B. Strizker, J. Appl. Phys. 53 (1982) 5678-568.
21.K. Maex, Material Science and Engineering, R11, (1993)
22.R. T. P. Lee, D. Z. Chi, M. Y. Lai, N. L. Yakovlev, and S. J. Chua, J. Electrochem. Soc. 151 (2004) G642-G647.
23.R.N. Wang, and J. Y. Feng, J. Phys. Condens. Matter 15 (2003) 1935-1942.
24.W. L. Tan, K. L. Pey, S. Y. M. Chooi, J. H. Ye, and T. Osipowicz, J. Appl. Phys. 91 (2002) 2901-2909.
25.P. Yang, Y. Wu, and R. Fan, Int. J. Nanoscience, 1, 1, 2002
26.L.J. Chen, Journal Of Materials Chemistry, 2007, 17, 4639-4643
27.R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 1964, 4, 89
28.A. M. Morales and C. M. Lieber, Science, 1998, 279, 208
29.R. S. Wagner and W. C. Ellis et al. Applied Physics Letter 4 (1964) 5
30.J. B. Hannon, S. Kodambaka, F. M. Ross and R. M. Tromp, Nature, 2006, 440, 69.
31.E. I. Givargizov ,Journal of Crystal Growth, Volume 31 20 1975
32.Timothy J. Trentler, Kathleen M. Hickman, Subhash C. Goel, Ann M. Viano, Patrick C. Gibbons, William E. Buhro, Science, 270, 1791, 1995
33.D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yang, J. Xu, Z. H. Xi, and S. Q. Feng ,Physica E 9, 305 (2001).
34.Y. Xia, and P. Yang, And. Mater. 15, 353, 2003
35.M. J. Zheng, L D Zhang, G H Li et al. Appl Phys Lett., , 79: 839. 2001
36.S. T. Lee, N Wang, Y F Zhang et al. MRS Bull. 1999: 36~42.
37.N. Wang, Y H Tang, Y F Zhang et al. Phys. Rev B., 1998, 58: R16024~16026
38.Yuan Yao , Fanghua Li , Shuit-Tong Lee, Chemical Physics Letter, 406, 381, 2005
39.R. Q. Zhang , Y. Lifshitz and S. T.Lee , Adv. Mater. , 15, 635,2003
40.楊裕雄、蕭程允, 奈米線場效電晶體生物感測器之應用 2007
41.D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, S. T. Lee, SCIENCE, 299, 1874,2003
42.Jia-An Yan, Li Yang, and M. Y. Chou, Phys. Rev. B 76, 115319 (2007)
43.D. Li Y. Wu, P. Kim, L. Shi, P. Yang and A. Majumdar, Appl. Phys. Lett., 2003, 83, 2934
44.I. Ponomareva, D. Srivastava and M. Menon, Nano Lett., 2007, 7, 1155.
45.R. R. HE AND P. D. YANG Nat. Nanotechnol., 2006, 1, 53
46.H. W. Wu, C. J. Tsai, and L. J. Chen , APPLIED PHYSICS LETTERS 90, 043121 ,2007
47.K.N. Tu , G.. Ottavian. ,JAP, 54, 758 (1983)
48.K. Toman, Acta Crystallogr. 5, 329, (1952).
49.N. Kawasaki, et al., Ultramicroscopy 108, 399,(2007)
50.K. Toman , Acta Cryst. (1951). 4, 462
51.P. Villars, L.D. Calvert, Pearson’s Handbook of Crystallographic Park, Data for Intermetalic Phases, American Society of Metals, Metals 1985.
52.P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)
53.W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)
54.John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
55.The Art of Molecular Dynamics Simulation, D. C. Rapaport
56.Xinyuan Zhao, Davide Ceresoli, and David Vanderbilt, Physical Review B 71, 085107 (2005)
57.D. R. Hamann, M. Schluter, and C. Chiang Phy. Rev. Lett. 43, 1494 (1979)
58.M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Reviews of Modern Physics, Vol. 64, No. 4, 1045 (1992)
59.F. S. Ham and B. Segall, Phys. Rev. 124, 1786 (1961)
60.M. Methfessel, and M. Van Schilfgaarde, Phys. Rev. B, 48, 4937 (1993)
61.G. A. Sai-Halasz, L. Esaki, and W. A. Harrison, Phys. Rev. B 18, 2812 (1978)
62.Charles Kittel, Introduction to Solid State Physics, John Wiley and Sons
63.Xinyuan Zhao, Davide Ceresoli, and David Vanderbilt, Physical Review B 71, 085107 (2005)
64.The guide of VASP, can be retrieved from:http://cms.mpi.univie.ac.at/VASP/ , written by Georg Kresse and Jurgen Furthmuller
65.ASHCROFT/MERMIN, Solid state physics
66.P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)
67.S.H. Vosko, J.P.Perdew, and A. H. MacDonald, Phys. Rev. Lett. 35, 1725 (1975).
68.江進福, 物理雙月刊, 廿三卷五期, P549-553
69.W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)
70.D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. Vol45, 566 (1980)
71.A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).
72.Giovanni Onida, Lucia Reining, and Angel Rubio, Review of Modern Physics, vol. 74, 601 (2002
73.Vladimir I. Anisimov, Jan Zaanen, and Ole K. Andersen, Phys. Rev. B 44, 943 - 954 (1991)
74.M.P. Teter, M.C. Payne and D.C. Allan, Phys. Rev. B 40, 12255 (1989)
75.D.M. Bylander, L. Kleinman and S. Lee, Phys Rev. B 42, 1394 (1990)
76.B. Liu, in Report on Workshop "Numerical Algorithms in Chemistry: Algebraic Methods" edited by C. Moler and I. Shavitt (Lawrence Berkley Lab. Univ. of California, 1978), p.49
77.S. Blugel, PhD Thesis, RWTH Aachen (1988).
78.D. M. Wood and A. Zunger, J. Phys. A, 1343 (1985)
79.P. Pulay, Chem. Phys. Lett. 73, 393 (1980)
80.D. D. Johnson, Phys. Rev. B38, 12 087 (1988)
81.The guide of VASP, can be retrieved from:http://cms.mpi.univie.ac.at/VASP/ , written by Georg Kresse and Jurgen Furthmuller
82.John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
83.J. P. Perdew, in Electronic Structure of Solids ‘91, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991), p. 11
84.J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992); 48, 4978(E) (1993).
85.A. D. Becke, J. Chem. Phys. 96, 2155 (1992).
86.E. I. Proynov, E. Ruiz, A. Vela, and D. R. Salahub, Int. J. Quantum Chem. S29, 61 (1995)
87.B. Hammer, K. W. Jacobsen, and J. K. Norskov, Phys. Rev. Lett. 70, 3971 (1993); B. Hammer and M. Scheffler, Phys. Rev. Lett. 74, 3487 (1995).
88.D. R. Hamann, Phys. Rev. Lett. 76, 660 (1996); P. H. T. Philipsen, G. te Velde, and E. J. Baerends, Chem. Phys. Lett. 226, 583 (1994).
89.A. Zupan, J. P. Perdew, K. Burke, and M. Causa, Int. J. Quantum Chem. (to be published).
90.C. Filippi, D. J. Singh, and C. Umrigar, Phys. Rev. B 50, 14 947 (1994).
91.J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B (to appear).
92.M. Levy, Int. J. Quantum Chem. S23, 617 (1989).
93.C. J. Umrigar and X. Gonze, in High Performance Computing and its Application to the Physical Sciences, Proceedings of the Mardi Gras 1993 Conference, edited by D. A. Browne et al. (World Scientific, Singapore, 1993).
94.G. Ortiz, Phys. Rev. B 45, 11 328 (1992).
95.C. Bowen, G. Sugiyama, and B. J. Alder, Phys. Rev. B 50, 14 838 (1994); S. Moroni, D. M. Ceperley, and G. Senatore, Phys. Rev. Lett. 75, 689 (1995).
96.The Art of Molecular Dynamics Simulation, D. C. Rapaport, 2004
97.2008第一原理進階課程 MD simulation,張俊明教授
98.Michael P. Allen, John von Neumann Institute for Computing, NIC Series, Vol. 23, 1, 2004
99.Allen M. P.;. Tildesley, D. J Computer Simulation of Liquids; Oxford  Science︰ London, 1991
100.Leach “Molecular modelling: principles and applications” Prentice-Hall, 2001
101.Richard A. Lewis and Andrew R. Leach, Journal of Computer-Aided Molecular Design,8,467,1994
102.Irving, J. H. and Kirkwood, J. G. Journal of chemical Physics, Vol.18, pp.817-829(1950)
103.Alder, B. J. and Wainwright, T. E. , Journal of chemical Physics, Vol.27, 1208-1209(1957).
104.Metropolis. N., Rosenbluth., A. W., Rosenbluth, M. N., Teller, A. N.and Teller. E., Journal of chemical Physics, Vol.21, No.6, 1087-1092(1953).
105.Haile, J. M., Molecular dynamics simulation: elementrary methods (A Wiley-interscience publication), John Wiley & Sons, Inc. the United States of American (1992)
106.J. E. Lennard-Jones, Proc. Roy. Soc. London, 1924
107.L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals”, Phys. Rev., Vol. 114, No.3, pp. 687, 1959
108.R. A. Johnson, Phys. Rev. B, Vol. 37, pp. 3847-4339, 1987.
109.V. Rosato, M. Guillope, and B. Legrand, Philosophical Magazine A, Vol. 59, 321-336, 1989
110.Spohr, E. J. Mol. Liq. 1995, 64, 91
111.P. E. Blochl, Phy. Rev. B. 50, 17953, 1994
112.Nose, S. Journal of Chemical Physical 1984, 81, 511
113.Hoover, W. Physical Review A 1985, 31,1695
114.Leach, A. R. molecular Modeling: principle and applications; Longman, 1996.
115.L. Verlet., Phys. Rev., 159, 98, 1967
116.Quentrec, B. and Brot, C. Journal of Computational Physics, Vol.13
117.G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996)
118.D. Vanderbilt, Phys. Rev. B, 41, 7892 (1990)
119.C. G. Bmyden, Math. Comput 19 (155) 577
120.In general the Kohn-Sham energy functional for an ultrasoft (US) Vanderbilt pseudopotential (PP) can be written as [25-271]
121.林智仁,羅聖全,工業材料雜誌,201期,P.90-98,民92年9月
122.B. Fultz and J. M. Howe: “Transmission Electron Microscopy and Diffractometry of Materials”, Springer 2002
123.Earl J. Kirkland, Advanced computing in electron in electron microscopy (1998) , p133-138
124.JEMS software package that is developed by Pierre Stadelmann, http://cimesg1.epfl.ch/CIOL/ems.html
125.R. F. C. Farrow, R. F. Marks, D. Weller, G. R. Harp, T. A.Rabedeau, M. F. Toney, and S. S. P. Parkin, Mater. Sci. Eng. R. 11, 155 (1993).
126.Brown, Robert ,Phil. Mag. 4, 161-173, 1828.
127.A. Einstein, Ann. d. Phys., 17, 549 (1905)
128.Cukier, Robert I.; Kapral, Raymond; Lebenhaft, Julian R. J. Chem. Phys. 73, 5244 (1980)
129.Fan GY and Cowley J M. Ultramicroscopy. 17, 345, 1985
130.陳力俊 等著,材料電子顯微鏡學,國科會精儀中心
131.M. Levy, Int. J. Quantum Chem. S23, 617 (1989).
132.中興大學材料工程學系碩士論文,砷化鎵晶圓接合界面氧化層及其界面性質之第一原理計算,邱孝豪,民96。


第四章
1.R. Killas and R. Gronsky, Ultramicroscopy, 16, 193, 1985
2.R. J. Bell and P. Dean, Phil. Mag. , 25, 1381, 1972
3.K. C. Lu, W. W. Wu, H. W. Wu, C. M. Tanner, J. P. Chang, L. J. Chen, K. N. Tu, Nano Lett. 7, 2389, 2007.
4.SORAB K. GHANDHI, FRANK L. THIEL, PROCEEDINGS OF THE IEEE, 57, 1484, 1969
5.R. N. Ghoshtagore, JAP, 40, 4374, 1969
6.Han, Susan and Young, David John, Mat. Res. , 7, 11, 2004.
7.Yongchang Liu, Qingzhi Shi, Gencang Yang, Yaohe Zhou, Materials Letters , 58, 428, 2004.
8.MIZUNO MASATAKA, ITSUMI YOSHIO, OGURA TETSUZ, Journal of the Japan Copper and Brass Research Association, 38, 291, 1999
9.B. Fultz, PRB, 44, 9805, 19

附錄D
1.Jia-An Yan, Li Yang, and M. Y. Chou, PHYSICAL REVIEW B 76, 115319 2007
2.Paul W. Leu, Bin Shan, and Kyeongjae Cho, PHYSICAL REVIEW B 73, 195320 2006
3.Michael Rohlfing, Peter Kruger, and Johannes Pollmann , Phys. Rev. B, 48, 17791, 1993


附錄E
1.The theory of Brillouin zones and electronic states in crystals, H Jones, 1962.
2.J.R.Chelikowsky and M.L.Cohen, Phys.Rev. B, 10, 5095, 1974.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔