(3.238.96.184) 您好!臺灣時間:2021/05/12 23:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝衣鵑
研究生(外文):I-Chuan Sheih
論文名稱:具生物活性之藻類胜肽的分離與鑑定及其生化特性研究
論文名稱(外文):Isolation, Identification and Biochemical Characterization of Bioactive Peptides from Algae Protein Waste
指導教授:方 繼
學位類別:博士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
畢業學年度:97
語文別:英文
論文頁數:118
中文關鍵詞:微球藻胜肽血管收縮轉換酵素抗氧化抗癌
外文關鍵詞:microalgaepeptideangiotensin I-converting enzymeantioxidativeanticancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:523
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微球藻為普遍可食用藻類,對人體並不具有任何不良的副作用。海藻精是利用水萃取微球藻所得之市售產品,而高分子量的海藻蛋白質則是伴隨海藻精生產製程中所產生的副產物。在臺灣每年有超過500噸的海藻精副產物因此而產生,此蛋白質大部分被重新乾燥製成低經濟價值的動物飼料販售及使用。因此海藻精副產物或許可藉由酵素水解而作為一個新的血管收縮轉換酵素抑制胜肽、抗氧化胜肽和抗癌胜肽的重要蛋白質來源。在本論文的研究中,我們利用商業化酵素水解海藻蛋白質並從中篩選具有生物活性的胜肽。結果顯示,可從海藻蛋白質之胃蛋白酶水解物中分離出一含有11個胺基酸的單一胜肽,此胜肽經Edman降解定序方法得知其胺基酸序列為Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Gln-Phe,其生理功能研究如下所示:
一、抑制血管收縮轉換酵素活性之研究
該胜肽於細胞體外試驗結果顯示其能有效抑制血管收縮轉換酵素之活性(IC50的抑制劑量為29.6 uM) ,此11胜肽相較於文獻中直接從海藻蛋白質水解物所分離出的胜肽 (IC50的抑制劑量範圍為11.4-315.3 uM) 是相當具有潛力的。在酵素抑制動力學的研究中,此胜肽對血管收縮轉換酵素抑制效果屬於非競爭型的抑制效應;除此之外,此11胜肽具有pH值穩定性 (pH 2—pH10)、熱穩定性 (40—100℃) 及腸胃酵素耐受性。因此由11胜肽的生化特性的結果顯示,低價值的海藻蛋白質可能是生產一個新的調節血壓的膳食補充品的選擇。

二、抗氧化活性之研究
從藻類蛋白質的胃蛋白酶水解物分離純化所得之Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Gln-Phe之胜肽,其細胞體外試驗結果顯示能夠有效的清除各種自由基,包括氫氧自由基、超氧自由基、過氧化自由基、DPPH自由基以及ABTS自由基;並且其清除自由基的效果較人工合成之抗氧化劑BHT、維生素E、維生素C和其它從海洋蛋白質來源所分離的胜肽為佳。此胜肽對氫氧自由基造成細胞及DNA的氧化傷害亦具有明顯的保護效果,並且對人類肺纖維細胞株 (WI-38細胞) 不具有細胞毐性等特性。本研究結果顯示,吾人可利用低價海藻蛋白質生產抗氧化胜肽。

三、抑制胃癌細胞活性之研究
藻類蛋白質的胃蛋白酶水解物經初歩的樹脂純化所得之胜肽區分物,在細胞體外試驗結果顯示此胜肽區分物可抑制胃腺癌細胞株 (AGS)的細胞週期及誘導其進行細胞自然凋亡作用,但對人類肺纖維細胞株 (WI-38細胞)不具有細胞毐性。在其它生化特性之研究方面,本研究所得之胜肽區分物大部分由小於3 kDa的小分子胜肽所組成且其清除peroxyl自由基及抑制低密度脂蛋白的氧化的效果較天然的抗氧化劑維生素E為佳。我們亦從此胜肽混合物中分離出Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Gln-Phe的單一胜肽,此胜肽於體外抑制AGS細胞效果之IC50劑量為256.4 uM﹔並且其特別的胺基酸組成和結構對抗癌效應是重要的。由以上之結果顯示,低價值的海藻蛋白質可作為新的生產抗癌胜肽的蛋白質之可能來源。
Chlorella vulgaris has been the most popular edible microalgae without side effects. Algae essence is an industrial product derived from water extracts of microalgae, and high molecular weight algae protein is a by-product of algae essence production. More than 500 tons of algae essence byproduct produced in Taiwan every year, and re-processed into low economical-value animal feed. However, this algae essence byproduct might become an important protein source for the selection of novel ACE inhibitory peptides, antioxidative peptides and anticancer peptides by enzymatic hydrolysis. In this study, we screened bioactive peptides from algae protein digested with commercial enzymes. A bioactive hendeca-peptide was isolated from the pepsin hydrolysate of algae protein, and Edman degradation revealed its amino acid sequence to be Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Gln-Phe, the biofuctions were researched as below:
1.Researches on angiotensin I-converting enzyme (ACE) inhibitory activity
The hendeca-peptide with IC50 value of 29.6 uM against ACE suggested a potent amount of ACE inhibitory activity compared with other peptides from the microalgae protein hydrolysates, which have a reported range between 11.4 and 315.3 uM. Inhibitory kinetics revealed a non-competitive binding mode. In addition, the hendeca-peptide completely retained its ACE inhibitory activity in a pH range of 2-10, temperatures of 20-100oC, as well as treated by a gastrointestinal enzyme in vitro, thus indicating its heat-, pH- and gastrointestinal enzyme stability. The combination of the biochemical properties of this isolated hendeca-peptide and a cheap algae protein resource make this process as an attractive alternative for producing high value product for blood pressure regulation as well as water and fluid balance.

2.Researches on antioxidative activity
Algae protein was hydrolyzed using pepsin, and a potent antioxidative peptide of Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Gln-Phe was separated and isolated. The peptide could efficiently quench a variety of free radicals, including hydroxyl radical, superoxide radical, peroxyl radical, DPPH radical and ABTS radicals, and performed more efficiently than that observed for BHT, Trolox and peptides from marine protein sources in most cases. The peptide also has significant protective effects on DNA and prevents cellular damage caused by hydroxyl radicals. These results suggest that inexpensive algae protein could be a new alternative to produce antioxidative peptides.

3. Researches on AGS inhibitory activity
The peptide fraction isolated from pepsin hydrolysate of algae protein was found to arrest the cell cycle and caused apoptosis in human gastric carcinoma cell lines (AGS); however no cytotoxicity was observed in human lung fibroblasts cell lines (WI-38) in vitro. The peptide fraction has a molecular weight of below 3 KD. The peptide fraction also revealed stronger antioxidative activity toward peroxyl radicals and LDL than natural antioxidant Trolox. A hendeca-peptide with an IC50 value against AGS cells of 256.4 uM was isolated from the peptide fraction and its amino acid sequence was Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Gln- Phe. The special amino acid sequence and structure of the peptide was important for anticancer effect compared to the synthetic peptide fragments. These results demonstrate that inexpensive algae protein could be a new alternative to produce anticancer peptides.
Figure list of this dissertation…………………...….…….vi
Table list of this dissertation……………………………...xi
List of Abbreviation and Full name…………………………xiii
Abstract (in Chinese)……………………………………………I
Abstract (in English)…………………………………...……...IV
1. Introduction………………………………………….………….1
2. Literature Review
2.1. Peptides with angiotensin I-converting enzyme (ACE) inhibitive activity………………………………….……………..8
2.2. Peptides with antioxidative activity………………....11
2.3. Peptides with anticancer activity………………………14
3. Materials and Methods
3.1. Materials…………………………………………….…..……34
3.2. Preparation of enzymatic hydrolysate………………….35
3.3. Purification of bioactivity peptides from algae protein
3.3.1. Ammonium sulfate fractionation…………….………….36
3.3.2. Gel filtration chromatography………………….…….36
3.3.3. Ion exchange chromatography…………….…………….37
3.3.4. Reverse-phase high-performance chromatography
(RP-HPLC)…………..…………...…………...…………37
3.4. Measurement of ACE inhibitory activity…...………..38
3.5. Determination of the inhibition pattern on ACE ……38
3.6. Trolox equivalent antioxidant capacity (TEAC) assay-39
3.7. 1. 1-diphenyl-2-picrylhydrazyl (DPPH) radicals scavenging activity assay………………………………………..39
3.8. Hydroxyl radicals scavenging ability assa…………….40
3.9. Superoxide radicals scavenging ability assay………..41
3.10. Oxygen radical absorbance capacity (ORAC) assay……….....42
3.11. Antioxidative activity toward copper-mediated oxidation of human low-density lipoprotein (LDL)…………...…………...42
3.12. Protection effect on oxidation-induced DNA damage………...43
3.13. Protection effect on oxidation-induced cell damage……..……43
3.14. Cytotoxicity of human gastric carcinoma AGS cell…………..44
3.15. Cell cycle kinetics analysis ……………………….…………..44
3.16. Molecular weight distribution analysis…………….……...…..45
3.17. Cytotoxicity of human normal lung WI-38 cells ………...…...45
3.18. Determination of amino acid sequence…………...…………...46
3.19. Stability of temperature and gastrointestinal enzyme ………...46
3.20. Statistical analysis ……………………………………...…......47
4. Results and discussion
4.1. ACE inhibitory activity of the peptides
4.1.1. Preparation of ACE inhibitory peptides …………….......48
4.1.2. Purification of ACE inhibitory peptides …………….......48
4.1.3. Determination of amino acid sequence ………….….......50
4.1.4. Structure-activity correlation studies …………................51
4.1.5. Stability of the hendeca-peptide…………........................52
4.1.6. Determination of the inhibition pattern on ACE………...54
4.1.7. Conclusion of the ACE inhibitory peptides.......................55
4.2. Antioxidant properties of the peptides
4.2.1. Preparation of antioxidant peptides………………….......64
4.2.2. Purification of antioxidative peptide ………………........65
4.2.3. Antioxidative characterization
4.2.3.1. ABTS radicals scavenging activity…………......67
4.2.3.2. DPPH radicals scavenging activity………..........67
4.2.3.3. Hydroxyl radicals scavenging activity……….....68
4.2.3.4. Superoxide radicals scavenging activity………..69
4.2.3.5. Peroxyl radicals scavenging activity………........71
4.2.3.6. Protection effect on oxidation-induced DNA
damage……….....................................................73
4.2.3.7.Protection effect on oxidation-induced cell damage………………………………………….74
4.2.4. Conclusion of antioxidative peptide..................................75
4.3. AGS inhibitory activity of the peptides
4.3.1. Preparation and purification of AGS inhibitory peptides
………………………………………………...……..…84
4.3.2. Cytotoxicity activity against AGS cells ……………...…85
4.3.3. Effect on AGS cell cycle……………………………...…86
4.3.4. Antioxidant characterization
4.3.4.1. ABTS radicals scavenging activity…………..…88
4.3.4.2. Peroxy radicals scavenging activity……..……...88
4.3.4.3. Protection against LDL oxidation…..………......89
4.3.5. Molecular weight distribution………...............................90
4.3.6. Cytotoxicity activity of the hendeca-peptide against AGS
Cells.…….........................................................................91
4.3.7. Conclusion of the anticancer peptide.............93
V. Future prospects .............................................................................101
VI. References.......................................................................................102
VII. Appendix
7.1. I. Chuan Sheih, Tony J. Fang, Tung-Kung Wu, 2009. Isolation and characterisation of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the algae protein waste. Food Chemistry 115:279-284.
7.2. I-Chuan Sheih, Tung-Kung Wu, Tony J. Fang, 2009. Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresource Technology 100: 3419-3425.
Aikens, J., Dix, T. A., 1991. Perhydroxyl radical (HOO.) initiated lipid peroxidation. The role of fatty acid hydroperoxides. J. Biol. Chem. 266, 15091-15098.
Alberto, D., Carmen, G. C., Begona, B., 2004. Extending applicability of the oxygen radical absorbance capacity (ORAC-Fluorescein) assay. J. Agric Food Chem. 52, 48-54.
Alberto, D., Carmen, G. C., Begona, B., 2004. Extending applicability of the oxygen radical absorbance capacity (ORAC-Fluorescein) assay. J. Agric. Food Chem. 52, 48-54.
Antonios, T. F., MacGregor, G. A., 1995. Angiotensin converting enzyme inhibitors in hypertension: potential problems. J. Hypertens. Suppl. 13, S11-S16.
Apt, K. E., Behrens, P. W., 1999. Commercial developments in microalgal biotechnology. J. Phycol. 35, 215–226.
Arts, M. J. T. J., Dallinga, J. S., Voss, H.P., Haenen, G. R. M. M., Bast, A., 2004. A new approach to assess the total antioxidant capacity using the TEAC assay. Food Chem. 88, 567-570.
Becker, W., 2004. Microalgae in human and animal nutrition, p. 312–351. In Richmond, A. (ed.), Handbook of microalgal culture. Blackwell, Oxford .
Belarbi, E. H., Molina, E., Chisti, Y., 2000. A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Process Biochem. 35, 951–969.
Benvenuti, S., Pellati, F., Melegari, M., Bertelli, D., 2004. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. J. Food Sci. 69, 164–169.
Butterfield, D. A., Castenga, A., Pocernich, C. B., Drake, J., Scapagnini, G., Calabrese, V., 2002. Nutritional approaches to combat oxidative stress in Alzheimer’s disease. J. Nutr. Biochem. 13, 444-461.
Byun, H. G., Kim S. K., 2002. Structure and activity of angiotensin I converting enzyme inhibitory from Alaskan Pollack skin. J. Biochem. Mol. Biol. 35, 239-243.
Cacciuttolo, M. A., Trinh, L., Lumpkin, J. A., Rao, G., 1993. Hyperoxia induces DNA damage in mammalian cells. Free Radic. Biol. Med. 14, 267-276.
Camp, E. R., Li, J., Minnich, D. J., Brank, A., Moldawer, L. L., MacKay, S. L. D., Hochwald, S. N., 2004. Inducible nuclear factor-κB activation contributes to chemotherapy resistance in gastric cancer. J. Am. Coll. Surg. 199, 249-258.
Cheung, H. S., Wang, F. L., Miguel, A. O., Emily, F. S., David, W. C., 1980. Binding of peptide substrates and inhibitors of angiotensin-I-converting enzyme. J. Biol. Chem. 255, 401-407.
Chevillard, C., Brown, N. L., Mathieu, M., Laliberte, F., Worcel, M., 1988. Differential effects of oral trondolapril and enalapril on rat tissue angiotensin-converting enzyme. Euro. J. Pharm. 147, 23-28.
Chiang, W. D., Tsou, M. J., Tsai, Z. Y., Tsai, T. C., 2006. Angiotensin I-converting enzyme inhibitor derived from soy protein hydrolysate and produced by using membrane reactor. Food Chem. 98, 725-732.
Chinery, R., Brockman, J. A., Peeler, M. O., Shyr, Y., Beauchamp, R. D., Coffey, R. J., 1997. Antioxidants enhance the cytotoxicity of chemotherapeutic agents in colorectal cancer-a p53-independent induction of p21 (WAF1/CIP1) via c/ebp-beta. Nat. Med. 3, 1233–1241.
Colic, M., Pavelic, K., 2000. Molecular mechanisms of anticancer activity of natural dietetic products. J. Mol. Med. 78, 333–336.
Cushman, D. W., Cheung, H. S., 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharma. 26, 1637-1638.
de Lumen, B. O., 2005. Lunasin, a cancer-preventive soy peptide. Nutr. Rev. 63, 16-21.
Debashis, D. D., Bhattacharjee, B. M., Banerjee, R. K., 1997. Hydroxyl radicals in the major causative factor in stress-induced gastric ulceration. Free Radic. Biol. Med. 23, 8-18.
Donkor, O. N., Henriksson, A., Singh, T. K. Vasiljevic, T., Shah, N. P., 2007. ACE-inhibitory activity of probiotic yoghurt. Intern. Dairy J. 17, 1321-1331.
Elias, R. J., Kellerby, S. S., Decker, E. A., 2008. Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutr. 48, 430-441.
Elias, R. J., Bridgewater, J. D., Vachet, R. W., Waraho, T., McClements, D. J., Decker, E. A., 2006. Antioxidant mechanisms of enzymatic hydrolysates of β-lactoglobulin in food lipid dispersions. J. Agric. Food Chem. 54, 9565–9572.
Elias, R. J., Kellerby, S. S., Decker, E. A., 2008. Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutri. 48, 430-441.
Fazlul, H. S., Li, Y., 2002. Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer metastasis Rev. 221, 265-280.
Fleischauer, A. T., Simonsen, N., Arab, L., 2003. Antioxidant supplements and risk of breast cancer recurrence and breast cancer -related mortality among postmenopausal women. Nutr. Canc. 46, 15-22.
Fujita, H., Yokoyama, K., Yoshikaw, M., 2000. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food protein. J. Food Sci. 65, 564-569.
Garnier, J., Gibrat, J. F., Robson, B., 1996. GOR method for predicting protein secondary structure from amino acid sequence. Meth. in Enzym. 266, 540-553.
Hartmann, R., Meisel, H., 2007. Food-derived peptides with biological activity from research to food applications. Curr. Opin. Biotechnol. 18, 163-169.
He, H. L., Chen, X. L., Wu, H., Sun, C. Y., Zhang, Y. Z., 2007. High throughput and rapid screening of marine protein hydrolysates enriched in peptides with angiotensin-I-converting enzyme inhibitory activity by capillary electrophoresis. Bioresour. Technol. 0, 1-7.
Hidalgo, M., Eckhardt, S. G., 2001. Development of matrix metalloproteinase inhibitors in cancer therapy. J. Natl. Cancer Inst. 93, 178-193.
Horiguchi, N., Horiguchi, H., Suzuki, Y., 2005. Effect of wheat gluten hydrolysate on the immune system in healthy human subjects. Biosci. Biotech. Biochem. 69, 2445-2449.
Huang, S. J., Mau, J. L., 2006. Antioxidant properties of methanolic extracts from Agaricus blazei with various doses of γ-irradiation. Food Sci. Technol. 39, 707-716.
Inoue M., Terada, T., Okuda, M., Inui, K. I., 2005. Regulation of human peptide transporter 1 (PEPT1) in gastric cancer cells by anticancer drugs. Cancer Lett. 230, 72-80.
Jang, A., Jo, C., Kang, K. S., Lee, M., 2008. Antimicrobial and human cancer cell cytotoxic effect of synthetic Angiotensin-converting enzyme (ACE) inhibitory peptides. Food Chem. 107, 327-336.
Je, J. Y., Park, J. Y., Jung, W. K., Park, P. J., Kim, S. K., 2005. Isolation of angiotensin I converting enzyme (ACE) inhibitor from fermented oyster sauce, Crassostrea gigas. Food Chem. 90, 809-814.
Je, J. Y., Park, P. J., Kim, S. K., 2005. Antioxidant activity of a peptide isolated from Alaska Pollack (Theragra chalcogramma) frame protein hydrolysate. Food Res. Int. 38, 45-50.
Jung, W. K., Mendis, E., Je, J. Y., Park, P. J., Son, B. W., Kim, H. C., Choi, Y. K., Kim, S. K., 2006. Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera ) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chem. 94, 26-32.
Kandaswami, C., Lee, L. T., Lee, P. P., Hwang, J. J., Ke, F. C., Huang, Y. T., Lee, M. T., 2005. The antitumor activities of flavonoids. 19, 895-909.
Kang, M. H., Katsuzaki, H., Osawa, T., 1998. Inhibition of 2.2’-azobis (2,4-dimethylvaleronitrile)-induced lipid peroxidation by sesaminols. Lipids. 33, 1031-1036.
Katayama, S., Mine, Y., 2007. Antioxidative activity of amino acids on tissue oxidative stress in human intestinal epithelial cell model. J. Agric. Food Chem. 55, 8458-8464.
Kaufman, S. H., Earnshaw, W. C., 2000. Induction of apoptosis by cancer chemotherapy. Exp. Cell Res. 256, 42-49.
Kim, S. E., Kim, H. H., Kim, J. Y., Kang, Y. I., Wooa, H. J., Lee, H. J. 2000. Anticancer activity of hydrophobic peptides from soy proteins. Biofactor. 21, 63-67.
Kong, B., Xiong, X. L., 2006. Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action. J. Agric. Food Chem. 54, 6059–6068.
Kuba, M., Tanaka, K., Tawata, S., Takeda, Y., Yasuda, M., 2003. Angiotensin I-converting enzyme inhibitory peptides isolated from fermented soybean food. Biosci. Biotech. Biochem. 67, 1278-1283.
Leanderson, P., Faresjo, A. O., Tagesson, C., 1997. Green tea polyphenols inhibits oxidant-induced DNA strand breakage in cultured lung cells. Free Radic. Biol. Med. 23, 235-242.
Leary D., Vierro, M., Hamonb, G., Arico, S., Monagle, C., 2009. Marine genetic resources: A review of scientific and commercial interest. Marine Policy. 33, 183– 194.
Lee, F. D., 1993. Importance of apoptosis in the histopathology of drug related lesions in the large intestine. J. Clin. Pathol. 46, 118–122.
Lee, Y. G., Lee, K. W., Kim, J. Y., Kim, K. H., Lee, H. J., 2004. Induction of apoptosis in a human lymphoma cell line by hydrophobic peptide fraction separated from anchovy sauce. Biofactor. 21, 63-67.
Leng, B., Liu, X. D., Chen, Q. X., 2005. Inhibitory effects of anticancer peptide from Mercenaria on the BGC-823 cells and several enzymes. FEBS. 579, 1187-1190.
Levine, R. L., Mosoni, L., Berlett, B. S., and Stadtman, E. R., 1996. Methionine residues as endogenous antioxidants in proteins. Proc. Natl. Acad. Sci. USA 93, 15036–15040.
Li, G. H., Le, G. W., Shi, Y. H., Shrestha, S., 2004. Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutrition Research, 24, 469-486.
Manson, M. M., Gescher, A., Hudson, E. A., Plummer, S. M., Squires, M. S., Prigent, S. A., 2000. Blocking and suppressing mechanisms of chemoprevention by dietary constituents. Toxicol. Lett. 112-113, 499-505.
Mertens-Talcott, S. U., Lee, J. H., Percival, S. S., Talcott, S. T., 2006. Induction of cell death in caco-2 human colon carcinoma cells by ellagic acid rich fractions from Muscadine grapes (Vitis rotundifolia). J. Agic. Food Chem, 54, 5336-5343.
Mendis, E., Rajapakse, N., Byun, H. G., Kim, S. K., 2005. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci. 77, 2166-2178.
Moss, S. F., Attia, L., Scholes, J. V., Walters, J. R. F., Holt, P. R., 1996. Increased small intestinal apoptosis in coeliac disease. Gut. 39, 811–817.
Moosavi, M. A., Yazdanparast, R., Sanati, M. H., Nejad, A. S. 2005. 3-Hydrogenkwadaphnin targets inosine 5’-monophosphate dehydrogenase and triggers post-G1 arrest apoptosis in human leukemin cell lines. Chemico-Biological Inter. 37, 2366-2379.
Morimoto ,T., Nagatsu, A., Murakami, N., Sakakibara, J., Tokuda, H., Nishino, H., Iwashima, A., 1995. Anti-tumor-promoting glyceroglycolipids from the green alga, Chlorella vulgaris. Phytochem. 40, 1433-1437.
Nakagomi, K., Ebisu, H., Sadakane, Y., Fujii, N., Akizawa, T., Tanimura, T., 2000. Properties and human origin of two angiotensin I–converting enzyme inhibitory peptides isolated from a tryptic hydrolysate of human serum albumin. Biol. Pharm. Bull. 23, 879-883.
Nakagomi, K., Yamada, R., Ebisu, H., Sadkane, Y., Akizawa, T., Tanimura, T., 2000. Isolation of acein-2, a novel angiotensin I–converting enzyme inhibitory peptides derived from a tryptic hydrolysate of human plasma. FEBS Lett. 467, 235-238.
Ondetti, M. A., Cushman, D. W., 1982. Enzyme of the renin-angiotensin system and their inhibitors. Annu. Rev. Biochem. 51, 283-308.
Panzenbock, U., Stocker, R., 2005. Formation of methionine sulfoxide containing specific forms of oxidized high-density lipoproteins. Biochem. Biophys. Acta, 1730, 171-181.
Park, P. J., Jung, W. K., Nam, K. D., Shahidi, F., Kim, S. K., 2001. Purification and characterization of antioxidative peptides from protein hydrolysate of lecithin-free egg yolk. J. Am. Oil Chem. Soc. 78, 651-656.
Pihlanto, A., 2006. Review: Antioxidative peptides derived from milk proteins. Int. Dairy J. 16, 1306-1314.
Prior, R. L., Wu, X., Schaich, K., 2005. Standard methods for the determination of antioxidant capacity and phenolics in food and dietary supplements. J. Agric. Food Chem., 53, 4290-4302.
Puscas, I., Baican, M., Puscas, C., Domuta, G. 1999. Erythrocyte superoxide dismutase activity in patients with digest cancer: adjuvant diagnosis test. Cancer Lett. 143, 95-98.
Qian, Z. J., Jung, W. K., & Kim, S. K. (2008). Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. Bioresource Technology, 99, 1690-1698.
Qian, Z. J., Jung, W. K., Byun, H. G., Kim, S. K., 2008. Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage. Bioresour. Technol. 99, 3365–3371.
Qian, Z. J., Jung, W. K., Kim, S. K., 2008. Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. Bioresour. Technol. 99, 1690-1698.
Oshima, G., Nagasawa, K., 1979. Stereospecificity of peptidyl dipeptide hydrolase (angiotensin I–converting enzyme). J. Biochem. 86, 1719–24.
Rajapakse, N., Mendis, E., Byun, H. G., Kim, S. K., 2005. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J. Nutri. Biochem. 16, 562-569.
Rosenthal, J. (1993). Role of renal and extrarenal rennin-angiotensin system in the mechanism of arterial hypertension and its sequelae. Steroids 58, 566-572.
Sakanaka, S., Tachibana, Y., 2006. Active oxygen scavenging activity of egg-yolk protein hydrolysates and their effects on lipid oxidation in beef and tuna homogenates. Food Chem. 95, 243–249.
Saito, Y., Wanezaki, K., Kawato, A., Imayasu, S., 1994. Structure and activity of angiotensin I converting enzyme inhibitory peptides from sake and sake lees. Biosci. Biotech. Biochem. 58, 1767–1771.
Sato, M., Hoskawa, T., Yamaguchi, T., Nakano, T., Muramoto, K., Kahara, T., Funayama, K., Kobayashi, A., Nakano, T., 2002. Angiotensin I–converting enzyme inhibitory peptides derived from wakame (Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats. J. Agric. Food Chem. 50, 6245–6252.
Sheih, I. C., Fang, T. J., Wu, T. K., 2009a. Isolation and characterisation of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the algae protein waste. Food Chem. 115, 279-284.
Sheih, I. C., Fang, T. J., Wu, T. K., 2009b. Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Biores. Technol. 100, 3419-3425.
Shimoji, Y., Tamura, Y., Nakamura, Y., Nanda, K., Nishidai, S., Nishikawa, Y., et al., 2002. Isolation and identification of DPPH radical scavenging compounds in kurosu (Japanese unpolished rice vinegar). J. Agric. Food Chem. 50, 6501–6503.
Shyu, Y. S., Hwang, L. S., 2002. Antioxidative activity of the crude extract of lignan glycosides from unroasted Burma black sesame meal. Food Res. Int. 35, 357-365.
Sies, H., 1991. Oxidative stress: from basic research to clinical application. 91, 31S-37S.
Spolaore, P., Claire, J.C., Elie, D., Arsene, I., 2006. Commercial application of microalgae. J. Biosci. Bioeng. 2, 87-96.
Suetsuna K., Chen J. R., 2001. Identification of antihypertensive peptides from peptic digest of two microalgae, Chlorella vulgaris and Spirulina platensis. Marine Biotechnol. 3, 305–309.
Suetsuna K, Nakano, T., 2000. Identification of an antihypertensive peptide from peptic digest of wakame. J. Nutr. Biochem. 11, 450-454.
Suetsuna, K., Ukeda, H., Ochi, H., 2000. Isolation and characterization of free radical scavenging activities peptides derived from casein. J. Nutri. Biochem. 11, 128-131.
Suja, K.P., Jayalekshmy, A., Arumughan, C., 2004. Free radical scavenging behavior of antioxidant compounds of sesame (Sesamum indicum L.) in DPPH system. J. Agric. Food Chem. 52, 912-915.
Tsai, C. H., Stern, A., Chiou, J. F., Chern, C. L., Liu, T. Z., 2001. Rapid and specific detection of hydroxyl radical using an ultraweak chemiluminescence analyzer and a low-level chemiluminescence emitter: Application to hydroxyl radical- scavenging ability of aqueous extracts of food constituents. J. Agric. Food Chem. 49, 2137-2141.
Tsai, C. H., Stern, A., Chiou, J. F., Chern, C. L., Liu, T. Z., 2003. Improved superoxide-generating system suitable for the assessment of the superoxide- scavenging ability of aqueous extracts of food constituents using ultraweak chemiluminescecne. J. Agric. Food Chem. 51, 58-62.
Tzianabos, A. O., 2000. Polysaccharide immunomodulators as therapeutic agents: Structural aspects and biologic function. Clin. Micro. Rev. 13, 523–533
Vajragupta, O., Boonchoong, P., Wongkrajang, Y., 2000. Comparative quantitative structure-activity study of radical scavengers. Bioorg. Med. Chem. 8, 2617-2628.
Wakabayashi, H., Yamauchi, K., Takase, M., 2006. Lactoferrin research, technology and applications. Int. Dairy J. 16, 1241-1251.
Wang X., Yuan, S., Wang, J., Lin, P., Liu, G., Lu, Y., Zhang, J., Wang, W., Wei, Y., 2006. Anticancer activity of litchi fruit pericarp extract against human breast cancer in vitro and in vivo. Toxi. Appl. Pharm. 215, 168-178.
Webb, K. E., 1986. Amino acid and peptide absorption from the gastrointestinal. Fed. Proc. 45, 2268-2271.
Webb, K.E., 1986. Amino acid and peptide absorption from the gastrointestinal. Fed. Proc. 45, 2268-2271.
Wenzel, U., Kuntz, S., Brendel, M. D., Daniel, H., 2000. Dietary flavone is a potent apoptosis inducer in human colon carcinoma. Cancer Res. 60, 3823-3831.
Wu, J., Ding, X., 2002. Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides. Food Res. Intern. 35, 367-375.
Yang, C. S., Landau, J. M., Huang, M. T., Newmark, H. L., 2001. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu. Rev. Nutr. 21, 381-406.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔