(3.235.139.152) 您好!臺灣時間:2021/05/11 12:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳宜欣
研究生(外文):Yi-Shin Chen
論文名稱:發芽之豆芽及芽漿與酸麵糰對提升GABA含量因素之探討
論文名稱(外文):The study of improving GABA content in soybean sprouts, sprouts milk and sour dough.
指導教授:傅以中
指導教授(外文):Yi-Chung Fu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:148
中文關鍵詞:大豆γ-胺基丁酸麩胺酸麩胺酸脫羧酶嘌呤酸麵糰
外文關鍵詞:soybeanGABA (γ-aminobutyric acid)L-glutamic acidglutamaic acid decarboxylasepurinesour dough
相關次數:
  • 被引用被引用:6
  • 點閱點閱:728
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
植物中所含的GABA含量極微少。但有文獻指出種子經過催芽處理可大幅提升GABA含量,因此本實驗選用蛋白質豐富、加工用途廣泛以及國人日常生活中最常食用的大豆,使其發芽後檢測不同環境和不同發芽程度對GABA含量的影響,期望找出最具GABA生產潛力之豆芽。一般在探討發芽大豆製作加工產品時,僅強調GABA含量的部份,卻未針對其負面物質-嘌呤的含量做討論,所以本實驗也同時檢測大豆於發芽過程中的嘌呤變化,希望能降低一般消費者對發芽大豆製品的隱憂。
欲了解大豆生長過程中的麩胺酸脫羧酶活性,應以西方墨漬法測定此酵素,但為了節省成本、時間,本實驗藉由測定GABA受質- L-glutamic acid的含量來得知麩胺酸脫羧酶的活性變化。之後再利用麩胺酸脫羧酶的最適環境與添加含有麩胺酸脫羧酶的物質,期望能將豆芽漿與酸麵糰中大量的L-glutamic acid轉換為GABA,做為發展高GABA含量產品的運作方式。
分析豆芽中GABA含量的結果,以黑暗環境培養至20 cm豆芽最具發展高GABA含量機能性食品的潛力。而考量生鮮豆芽外觀與培育時間方面,則選擇以12 cm左右的豆芽為佳,食用60 mg即可攝取18 mg GABA達到降血壓效果。嘌呤含量方面,大豆發芽9cm以內嘌呤總量皆會低於未發芽之大豆,至12 cm以上方會略高於原豆,所以發芽過程對豆芽的負面影響並不大。以暗發芽12-14 cm推算出的發芽豆漿以市售新鮮屋480 mL容量含有48 mg的GABA,每天飲用0.4瓶即可達到18 mg的GABA含量;發芽豆粉即溶飲品每包30 g中只需加入5 g (僅佔16.7%)的18 cm豆芽乾粉亦可達此劑量。而此兩種加工產品皆屬低嘌呤食品。
GABA含量於最適環境或添加含有麩胺酸脫羧酶物質的豆芽漿中,皆有小幅度地提升。但L-glutamic acid於轉換過程消耗量皆不明顯,GABA提升效果未能達至理想目標,實際上為受限芽漿中麩胺酸脫羧酶多寡的影響。而酸麵糰則需加入多量的麥胚芽與豆芽漿,並搭配適當的發酵時間(<18 hr),才會有顯著的GABA提升效果。
The GABA content in plant is minute, but some studies have pointed out that the vernalization of seeds is able to greatly increase GABA content. Therefore, for this experiment we chose to use soybean that is rich in protein, widely used in processing, and consumed daily by many people. The soybeans were germinated and then inspected to observe its effects upon GABA content under different environments and different germination conditions, in hope to find out the most productive potential of GABA in bean sprouts. In general, while exploring the processing of germinated bean sprouts and its resulting products, people tend to only emphasize GABA content, but ignore its possible negative substance-the purine content. Hence, this experiment also inspected the changes in purine during the germination process of soybeans, in hopes to lower the worries of general consumers towards germinated soybean products.
In order to understand the glutamaic acid decarboxylase activities during the growing process of soybeans, we should use the Western blotting method to determine this enzyme. However, as a means to save cost and time, this experiment was carried out using the determination of GABA substrate- L-glutamic acid content to discover the activities changes in glutamaic acid decarboxylase, and later on, to utilize an optimal environment of glutamaic acid decarboxylase and the adding of a substance containing glutamaic acid decarboxylase in hopes to convert the L-glutamic acid into GABA from bean sprouts milk and sour dough. This is taken as an operation method to develop products with high GABA content.
The results of analyzing GABA content in bean sprouts indicate that cultivating bean sprouts of up to 20cm high in the dark has shown the greatest potential in developing functional foods with high GABA content. However, considering the appearance and cultivating time of fresh bean sprouts, it is best to choose bean sprouts of a height around 12cm. An intake of 60g of bean sprouts is capable of resulting in the consumption of 18mg of GABA and the lowering of blood pressure. In regard to purine content, the total amount of purine contained in germinated soybean sprouts with a height less than 9cm is lower than non-germinated soybeans; and slightly higher than original beans when they have grown to a height exceeding 12cm. Therefore, the negative effect during germination on bean sprouts is non-significant. If we calculate germinated bean milk of dark-germinated sprouts with a height of 12-14cm to that of 480mL market-sold fresh soybean milk containing 48mg GABA, we can see that it is possible to take in 18mg of GABA content by merely drinking 0.4 bottles if it every day. Meanwhile, for 30g instant germinated bean powder drink, we only need to add 5g (only accounting for 16.7%) of bean sprout powder from sprout with a height of 18cm to achieve this dosage. These two processed foods are come with low purine content.
The GABA content is slightly higher when the germinated bean milk is at an optimal environment or when it a substance containing glutamaic acid decarboxylase is added. However, the unapparent consumption of L-glutamic acid during the conversion process, and its incapability to upgrade GABA content to a desirable level are actually affected by the amount of glutamaic acid decarboxylase contained in germinated bean milk. While sour dough has to be added with large quantities of wheat germs and germinated bean milk, and coordinated with an appropriate fermentation time (<18 hr) will then be able to increase GABA content significantly.
目 錄
中文摘要............................................................................. 1
英文摘要………………………………………………………... 3
第一章 前言………………………………………………........ 5
第二章 文獻整理…………………………………………....... 7
一、大豆…………………………………………………........ 7
(一) 介紹………………………………………………….. 7
(二) 結構與組成分………………………………………. 8
(三) 重要成分與機能性……………………………........ 8
(四) 應用性………………………………………………. 15
二、種子發芽……………………………………………........ 15
(一) 定義………………………………………………….. 15
(二) 條件………………………………………………….. 15
(三) 生理變化……………………………………………. 17
(四) 益處………………………………………………….. 17
三、GABA……………………………………………………. 20
(一) 特性………………………………………………….. 20
(二) 作用機制……………………………………………. 21
(三) 代謝途徑……………………………………………. 23
(四) 生理功能與機能性…………………………………. 25
(五) 合成與製備…………………………………………. 28
(六) 富化………………………………………………….. 30
(七) 安全性………………………………………………. 36
(八) 富含GABA的食品…………………………………. 36
(九) 麩胺酸脫羧酶活性之最適條件…………………… 37
四、嘌呤………………………………………………………. 38
(一) 代謝途徑……………………………………………. 38
(二) 高尿酸血症與痛風…………………………………. 41
(三) 各食品中的嘌呤含量……………………………… 41
五、酸麵糰……………………………………………………. 41
(一) 特性………………………………………………….. 41
(二) 製備………………………………………………….. 43
(三) 微生物組成與效用…………………………………. 43
(四) 種類………………………………………………….. 43
六、HPLC應用於胺基酸(amino acid)分析………………. 43
(一) 衍生技術……………………………………………. 43
(二) GABA的測定……………………………………….. 45
七、參考文獻………………………………………………… 48
第三章 材料與方法…………………………………………… 61
一、材料………………………………………………………. 61
二、儀器與設備……………………………………………… 61
三、標準品…………………………………………………… 61
四、化學藥劑………………………………………………… 63
五、實驗步驟………………………………………………… 64
(一) 標準品製備…………………………………………. 64
(二) 樣品製備……………………………………………. 65
(三) 樣品測定……………………………………………. 71
1. GABA含量測定…………………………………….. 71
2. 嘌呤含量測定………………………………………. 75
3. L-glutamic acid含量測定………………………….. 75
六、計分析…………………………………….…………… 79
七、參考文獻………………………………………………… 80
第四章 以OPA衍生法檢測黃豆發芽種子中GABA含量與L-glutamic acid含量變化………………………….. 81
一、目的………………………………………………………. 81
二、前言………………………………………………………. 81
三、結果與討論……………………………………………… 82
(一) 大豆發芽種子中GABA含量變化………………… 82
(二) 以HPLC建立檢測L-glutamic acid之最適條件… 89
(三) 大豆發芽種子中L-glutamic acid含量變化……… 92
四、結論……………………………………………………… 96
五、參考文獻………………………………………………… 97
第五章 檢測大豆發芽種子中嘌呤含量變化……………….. 98
一、目的……………………………………………………… 98
二、前言……………………………………………………… 98
三、結果與討論……………………………………………… 99
(一) 以HPLC建立檢測嘌呤之最適條件……………… 99
(二) 大豆發芽種子中嘌呤含量變化…………………… 99
(三) 大豆芽於加工製品上之應用……………………… 107
四、結論……………………………………………………… 111
五、參考文獻………………………………………………… 112
第六章 芽漿與生合成方式於最適環境下對提升GABA含量成效探討…………………………………………… 113
一、目的………………………………………………………. 113
二、前言………………………………………………………. 113
三、實驗流程………………………………………………… 114
四、結果與討論……………………………………………… 114
(一) 大豆芽漿於pH=5磷酸緩衝液,38 ℃環境下反應……………………………………………………. 114
(二) 大豆芽漿添加麥胚芽或麥麩於pH=5磷酸緩衝液,38 ℃環境下之生合成反應…………………… 123
五、結論……………………………………………………… 131
六、參考文獻………………………………………………… 133
第七章 天然酵母酸麵糰對GABA含量的影響……………. 135
一、目的……………………………………………………… 135
二、前言……………………………………………………… 135
三、實驗流程………………………………………………… 135
四、結果與討論……………………………………………… 136
(一) 以HPLC建立檢測嘌呤之最適條件……………… 136
(二) 天然酵母酸麵糰對GABA含量的影響…………... 136
(三) 含GABA之天然酵母酸麵糰於加工上的應用….. 142
五、結論………………………………………………………. 145
六、參考文獻………………………………….……………... 147
第八章 總結………………………………………………….… 148
第二章
三枝貴代、岡田忠司、村井弘道、森隆、堀野俊郎、大森正司、伊藤昌博、小野田明彥:コメ胚芽中の4-アミノ酪酸(GABA)蓄積に及ぼす有機溶媒脫脂の影響。日本食品科學工學會誌。48:196-201 (2001)。
大森正司、矢野とし子、岡本順子、津志田藤二郎、村井敏信、熥口滿:嫌气處理綠茶 (ギせバロこ茶) にょら高血壓自然發症うツトの的血壓上升抑制作用。農化。61:1449-1451 (1987)。
大森正司: 佳葉龍茶健康法-高血壓與二日醉預防特效(日文)。健友館(1992)
王志杰: 紅麴菌二級代謝產物之生產與應用研究。微生物與生化學研究所生物工業組博士論文(2003)。
王雪芬: GABA 之生理功效。興大農業,49 : 19-23(2004)。
王意雯: 由水果中培養天然微生物應用於天然酵母麵包製程之研究(I):袋裝冷藏法。中興大學食品暨應用生物科技學系碩士論文(2007)。
王燕、王賢勇: γ-氨基丁酸的生物學功能研究及其應用前景。新進展。44-46 (2008)。
白木與志也:マイクロ波を照射しGABA 含量を高めた茶のかぃはっ 。茶葉研究報告(增刊)。87: 126-127 (1998).
白松、林向陽、阮榕生、鄭丹丹、劉玉環、何承雲: γ-胺基丁酸的分布與製備。現代食品科技。21 : 202-205 (2005)。
朱礸英:富含γ-胺基丁酸發芽糙米之研製。國立嘉義大學食品科學研究所碩士論文(2002)。
江波: GABA(γ-氨基丁酸) —一種新型的功能食品因子。中國食品學報。8(2): 1- 4 (2008)。
行政院農業委員會國際種子檢查規則。台灣省政府農林廳(1987)。
何熙璞、張敏、李俊芳、王邕:γ-氨基丁酸的生理學功能及研究現狀。廣西大學學報(自然科學版)。32: 464-466 (2007)。
吳奕頡: 富含γ—胺基丁酸乳酸發酵糙米奶之研製。國立嘉義大學食品科學系碩士論文(2003a)。 
吳建三: 高效液相層析儀-實務篇。建宏層析企業股份有限公司(2003b)。
吳飛健、吳政星、陳其才:GABA:一種重要的中樞抑制性神經遞質。高等函授學報 (自然科學版)。1:4-8 (1997)。
呂鋒洲: 發酵大豆抗癌新希望。元氣摘出版社(2002)。
李俊霖:提高紅麴中monacolin K、GABA與降低citrinin生成量之研究。國立台灣大學農業化學研究所碩士論文(2003)。
汪呈因: 稻作學與米。徐氏基金會出版(1983)。
肖爽: 小卒功高黃豆芽。營養飲食。12: 32 (2008)。
岡田忠司:GABA富化ユメ胚芽の生理機能。食品と開發。36:7-9 (2001)。
松本恭郎、大野一仁、别所康守、平岡芳信: γ-アミノ酪酸(ギャバ)を多く含む野菜等食品素材の製造。愛緩工技研究報告(日)。36:73-77 (1998)。
林姿岑:紅麴菌二級代謝物之發酵生產研究-γ-胺基丁酸及monacolin K。國立台灣大學農業化學研究所碩士論文 (2000)。
林智、大森正司:γ- 氨基丁酸茶(Gabaron Tea)降血压機理的研究。茶葉科學。21(2) : 153- 156 (2001).
林親錄、王婧、陳海軍: γ-氨基丁酸的研究進展。現代食品科技。24(5): 496-500 (2008).
侯建志: 富含γ-胺基丁酸之發芽大豆用于製作豆漿可行性之研究。屏東科技大學生物機電工程系碩士論文(2006)。
施坤河: 天然酵母麵包製作-老麵於麵包上的應講習會報導。烘培工業。112: 52-57 (2003)。
柯勇: 植物生理學。藝軒圖書出版社(2002)。
津志田藤二郎、村井敏信、大森正司、岡本順子:γ-アノ酪酸を蓄積させた茶の製造とその特徵。 Nippon Nogeikagaku Kaishi。61:817-822 (1987)。
洪秀真:利用luminol-horseradish peroxidase化學冷光系統對尿酸的流動注入分析。國立中山大學化學系碩士論文(2001)。
洪敏元: 當代生理學。華杏出版有限公司(2004)。
韋習會、漆興桂、夏東: 日糧添加γ-氨基丁酸對育肥猪生長和飼料利用的影響。家畜生態。25(2) 10-12 (2004)。
孫百申:紅麴黴發酵及某些生理活性物質的研究。浙江工業大學碩士學位論文(2004)。
高美丁、陳德均:高血壓、高脂血症及心臟疾病之營養照顧。高美丁:膳食療養學。華格納企業有限公司(2003)。
高景輝、湯文通:種子的生理。科學農業。25(5/6):165-169 (1977)。
區少梅:吃GABA降血壓。元氣摘出版社(2002)。
堀江健二、東口伸二、橫越英彥: 「含GABA之麩胺酸發酵物」的免疫效果及對心理健康的影響。食品原配料。215: 64-67 (2006)。
張月眉、施瑋築、陳桐榮:利用兩株不同乳酸菌混菌發酵花生乳生産 γ-胺基丁酸最適條件之探討。台灣食品科技學會第卅六屆年會壁報論文。B-51(2006)。
張華、王靜、王晴、向文勝: 南瓜中γ-氨基丁酸及18種胺基酸的測定。食品研究與開發。24(3): 108-110 (2003a)。
張輝、米蕤、姚惠源:大米胚芽中γ-氨基丁酸的富集。食品工業科技。11:42-44 (2003b)。
張輝、姚惠源、徐永:米胚芽酶法製備γ-氨基丁酸的研究。食品科技。8:82-84 (2004)。
張輝、姚惠源、薑元榮:富含γ-氨基丁酸保健食品的研究與開發。食品與發酵工業。28 (9):69-72 (2002)。
章思規: 精緻有機化學品技術手册。科學出版社(1992)。
許建军、江波、許時嬰:Lactococcus lactis谷氨酸脱羧酶的分離纯化及部分酶學性質。無錫輕工大學學報。5: 79-84 (2004)。
陳希賢、李東、呂建新、方芳: 高效液相色譜法測定人腦脊液中γ-氨基丁酸和谷氨酸。色譜。15(3): 237-238(1997)。
陳明造:黃豆纖維在食品工業上之應用。Available from: http://www.miobuffer.com.tw/fnm/199804/04.htm Accessed 19 May 2009.
陳彥霖:紅麴與高血壓。科學與技術。32(12):54-59 (1999)。
陳海軍、林親錄、李麗輝: 食品原料中 GABA 的富集研究進展。現代食品科技。22(1): 196-198.
陳筱慧: 利用HPLC方法檢測發芽種子、發芽玄米、加碼茶、以及市售GABA膠囊中GABA含量。國立中興大學食品暨應用生物科技學系碩士論文(2006)。
郭曉娜、朱永義、朱科學:生物體內γ-氨基丁酸的研究。氨基酸和生物資源。25 (2):70-72 (2003)。
黃智銘: 幾丁聚醣吸附啤酒中嘌呤之研究。國立成功大學化學系碩士論文(2002)。
愛宕世高、户田登志也、奥平武则:乳酸菌•酵母发酵法によるス- パ- ギャバの开发。食品と开发。36(6): 12-14 (2001)。
楊海峰、葛竹興、鬱杰:γ-氨基丁酸的急性毒性和蓄積毒性的研究。安徽農業科学。36(13): 5464-5491 (2008)。
葉伶宜:紅麴菌之二次代謝產物及其分析方法簡介。食品工業。34 (11):11-20 (2002)。
趙健: 中國化學藥品大全。科學出版社(1992)。
趙艶、蔣予箭: 採摘後蘆筍中 γ-氨基丁酸生物合成影響因素的初步研究。食品研究與開發。28(9): 14-17 (2007)。
劉英德: 種子生理。五洲出版社(1988)。
冀林立、孟和畢力格: γ-氨基丁酸的生理功能和研究進展。農產品加工學刊。12: 11-14 (2007)。
澤井祐典、許斐健一、小高保喜:嫌氣-好氣交互處理による茶叶のγ- アミノ酪酸量の增加. Nippon Shokuhin Kagaku Kogaku Kaishi. 46 (7): 462-466 (1999).
穆小民、楊曉賀、吳顯榮、沈黎明: 林生山黧豆谷氨酸脫羧的性質及其比較研究。中國農業大學學報。4(3): 29-34(1999)。
蕭鳳岐: 積極開發GABA食品。中國釀造。12: 22-24 (2004)。
賴滋漢、柯文慶: 食品材料學-農產篇。富林出版社(1996)。
賴愛姬: 由已發芽與未發芽黃豆所調製之豆漿在主要成份上之變化。中華民國營養學會雜誌。1(1): 21-25 (1976)。
謝廣發、戴軍、趙光鰲、帥桂蘭、李莉: 黃酒中的γ-氨基丁酸及其功能。中國釀造。3:49-50 (2005)。
顧振新、蔣振輝:食品原料中γ-氨基丁酸(GABA)形成機理及富集技術。食品與發酵工業。28(10): 65-69 (2002)。
Anonymous. 痛風治療注意事項。Available from: http://www.kgh.com.tw/health/02-405.html Accessed 22 June 2009a.
Anonymous.美國黃豆出口協會。Available from: http://www.asaimtaiwan.org/index.php Accessed 1 May 2009b.
Arazi T., Baum G., SneddenW. A., Shelp B. J., Fromm H.. (1995) Molecular and biochemical analysis of calmodulin interactions with the calmodulin-binding domain of plant glutamate decarboxylase. Plant Physiology. 108: 551-561.
Award A.B., Fink C. S.. (2000) Phytosterols as anticancer dietary components: evidence and mechanism of action. Journal of Nutrition. 130: 2127–2130.
Balazs R., Machiyama Y., Hammond B. J., Julian T., Richter D.. (1970) The operation of the gamma-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro. Biochemistry Journal. 116: 445-461.
Bailey C. R., Arst H. N., Penfold H. A.. (1980) A third gene affecting GABA transaminase levels in Aspergillus nidulans. Genetical Research. 36: 167-180.
Bautista G. M., Lugay J. C., Cauz L. J., Juliano B. O.. (1964) Glutamic acid decarboxylase activity as a viability index of artificially dried and stored rice. Cereal Chemistry. 41: 188-191.
Bown A. W., Shelp B. J.. (1997) The metabolism and function of γ-aminobutyric acid. Plant Physiology. 155: 1-5.
Cavagnini F., Pinto M., Dubini A., Invitti C., Cappelletti G., Polli E. E.. (1982) Effects of gamma aminobutyric acid (GABA) and muscimol on endocrine pancreatic function in man. Metabolism. 31(1): 73-77.
Challem J., Toews D.V., Knittel V.. The Soy Sensation. McGraw-Hill Education. (2003)。
Chen J. R., Chiou S. F., Suetsuna K., Yang H. Y., Yang S. C.. (2003) Lipid metabolism in hypercholesterolemic rats affected by feeding cholesterol-free diets containing different amounts of non-dialyzed soybean protein fraction. Nutrition. 19: 676 – 680.
Chen K. S.. (1992) Antihypertensive effect of GABA in rats.. The Chinese pharmaceutical journal. 44(6): 496-500.
Chen S. C. (1994) Soybeans and health. Journal of the Chinese Nutrition Society. 19(3): 335-345.
Cholewa E, Cholewinski A. J., Shelp B. J., Sendden W. A., Bown A. W.. (1997) Cold-shock-stimulated γ-aminobutyric acid synthesis is mediated by an increase Ca2+, not by an increase in cytosolic H+. Canadian Journal of Botany. 75: 375-382.
Collar C., Mascarós A. F., Prieto J. A., Benedito De Barber C.. (1991) Changes in free amino acids during fermentation of wheat doughs started with pure culture of Lactic acid Bacteria. Cereal chemistry. 68(1): 66-72.
Crawford L. A., Bown A. W., Breitkreuz K. E., Guinel F. C.. (1994) The synthesis of γ-aminobutyric acid in response to treatments reducing cytosolic pH. Plant Physiology. 104: 865-871.
Echo J. A. , Lamonte N. , Ackerman T. F.. (2002) Alterations in food intake elicited by GABA and opioid agonists and antagonists administered into the ventral tegmental area region of rats. Physiology & Behavior. 76 : 107-116.
Fan J., Li C., Zhu S. W., Chen B. J.. (1998) Purication and some properties of glutamate decarboxylase from wheat seedling. Chinese Journal of Biochemistry and Molecular Biology. 14(5): 641–644.
Foschino, R., Terraneo R., Mora, D., Galli, A.. (1999) Microbial characterization of sourdoughs for sweet baked products. Italian Journal of Food Science. 11: 19–28.
Handoyo T., Morita N.. (2006) Structural and Functional Properties of Fermented Soybean (Tempeh) by Using Rhizopus oligosporus. International Journal of Food Properties. 9: 347–355.
Hattori Toshimitsu, Tsusaki Shinji, Takagaki Kinya.. (2003) Food using γ-aminobutyric acid cruciferous plant. United States Patent. Patent No.: US 6,632,458 B1.
Huang J., Yang D., Gao S.,Wang T.. (2008) Effects of soy-lecithin on lipid metabolism and hepatic expression of lipogenic genes in broiler chickens. Livestock Science. 118: 53– 60
Huff M. W., Hamilton R. M. G., Caroll K. K.. (1977) Plasma cholesterol levels in rabbits fed low fat, cholesterol-free, semipurified diets. Effect of dietary proteins, protein hydrolysate and amino acid mixtures. Atherosclerosis. 28: 187-195.
Iimure T., Kihara M., Hirota N., Zhou T., Hayashi K., Ito K.. (2009) A method for production of gamma-amino butyric acid (GABA) using barley bran supplemented with glutamate. Food Research International. 42(3): 319-323.
Ikeda I., Sugano M.. (1983) Some aspects of mechanism of inhibition of cholesterol absorption by β-sitosterol. Biochimica et Biophysica Acta. 732: 651–658.
Inatomi K., Slaughter J. C.. (1975) Glutamate decarboxylase from barley embryos and roots-general properties and the occurrence of three enzymic forms. Biochemical Journal. 147: 479-484.
Jámbor A., Molnár-Perl I.. (2009) Amino acid analysis by high-performance liquid chromatography after derivatization with 9-uorenylmethyloxycarbonyl chloride literature overview and further study. Journal of Chromatography A. 1216(15): 3064-3077
Jannace P. W., Lerman R. H., Santos J. I., Vitale J. J.. (1992) Effects of oral soy phosphatidylcholine on phagocytosis, arachidonate concentrations, and killing by human ploymorphonuclear leukocytes. American Journal of Clinical Nutrition. 56: 599-603.
Jonaidi H., Babapour V., Denbowd M.. (2002) GABAergic control of food intake in the meat-type chickens. Physiology & Behavior. 76: 465-468.
Journal of Biochemistry and Molecular Biology. 14(5): 641–644.
Ken’ichi O., Keitaro S., Yuji Y., Takafumi K.. (2005) Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. Cereal Science Laboratory, National Food Research Institute, Kannondai, Tsukuba Science City,Ibaraki, Japan. Journal of Food Compostion and analysis. 18: 303-316.
Kinefuchi M., Sekiya M., Yamazaki A., Yamamoto K.. (1999) Accumulation of GABA in brown rice by high pressure treatment. I. Manufacture of processed brown rice enriched with GABA accumulation using high pressure treatment. Journal of the Japanese Society for Food Science & Technology. 46(5): 323-328.
Knight M.R., Campbell A.K., Smith S. M. Trewavas A. J.. (1991) Transgenic plant aequorin reports the effect of touch and cold-shock and elicitors on cytoplasmic calcium. Nature. 352: 524-526.
Komatsuzaki N., Shima J., Kawamoto S.. (2005) Production of γ-amionbutyric acid by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiology. 22: 497-504.
Komatsuzaki N., Tsukahara K., Toyoshima H., Suzuki T., Shimizu N., Kimura T..(2007) Effect of soaking and gaseous treatment on GABA content in germinated brown rice. Journal of Food Engineering. 78: 556–560.
Komatsuzaki N., Tsukahara K., Toyoshima H., Suzuki T., Shimizu N. , Kimura T.. (2007) Effect of soaking and gaseous treatment on GABA content in germinated brown rice. Journal of Food Engineering. 78(2): 556-560.
Konoshima T., Kokumai M., Kozuka M., Tokuda H., Nishino H., Iwashima A.. (1992) Anti-tumor-promoting activities of afromosin and soyasaponin I isolated from Wistaria brachybotrys. Journal of Natural Products. 55: 1776–1778.
Koratker R., Rao A.V.. (1997) Effect of soya bean saponins on azoxymethane-induced preneoplastic lesions in colon of mice. Nutrition and Cancer. 27: 206–209.
Laurence I., Weller D.. (1983) Lecithin-the inside story of a health food staple. Health Foods Retailing. May
Leelahagul P., Tanphaichitr V.. (1989) Nutition complementation with vegetable protein. American Soybean Associatin Technical Bulletin. Vol. HN8
Matsumoto T., Yamaura I., Funatsu M.. (1986) Purification and Properties of Glutamate Decarboxylase from Squash. Agricultural and Biological Chemistry. 50(6): 1413-1417.
Matsumoto T., Yamaura I., Funatsu M.. (1996) Improved purification and spectroscopic properties of squash glutamate decarboxylase. Bioscience, biotechnology, and biochemistry. 60(5): 889-890.
Matsuyama A., Yoshimura K., Shimizu C., Murano Y., Takeuchi H., Ishimoto M.. (2009) Characterization of glutamate decarboxylase mediating γ-amino butyric acid increase in the early germination stage of soybean (Glycine max [L.] Merr). Journal of Bioscience and Bioengineering. 107(5): 538-543.
Mayer R. R., Cherry J. H., Rhodes D.. (1990) Effects of heat shock on amino acid metabolism of cowpea cells. Plant Physiology. 94: 796-810.
McCann S. M., Vijayan E.. (1984) Gamma aminobutyric acid(GABA), a modulator pituitary hormone secretion by hypothalamic and pituitary action. Psychoneuroendocrinology. 9(2): 97-106.
Mercer N. H., Caroll K. K., Giovannetti P. M., Steinke F. H., Wolfe B. M.. (1987) Effect on human plasma lipids of substituting soybean protein isolate for milk protein in diet. Nutrition Reports International. 35: 279-287.
Messina M. (2006) Overview of the Health Effects of Soyfoods. In: Soy applications in food, Mian N. Riaz, editor. Boca Raton: Chemical Rubber Company (CPC) Press: 23-38.
Mostafa M.M., Rahma E.H., Rady A.H.. (1987) Chemical and nutritional
changes in soybean during germination. Food Chemistry. 23(4):
257-275.
Naval M.V., G´omez-Serranillos M.P., Carretero M.E., De Arce C.. (2006) Value of high-performance liquid chromatographic analysis of amino acids in the determination of Panax ginseng radix extract effect in cultured neurons. Journal of Chromatography A. 1121: 242–24
Oh Suk-Heung, Choi Won-Gyu.. (2001) Changes in the levels of γ-aminobutyric acid and glutamate decarboxylase in developing soybean seedlings. Journal of plant research. 114: 309-313.
Ohminami H., Kimura Y., Okuda H., Arich S., Yoshikawa M., Kitagawa I.. (1984) Effects of soyasaponins on liver injury induced by highly peroxidized fat in rats. Planta Medica. 46: 440–441.
Pakpeankitvatana R., Samasut R., Tanphaichitr V.. (1989) The effect of soybean oil intake on lipid status in healthy man. American Soybean Associatin Technical Bulletin. Vol. HN8
Panagiotou G., Villas-Bôas S. G., Christakopoulos P., Nielsen J.. (2005) Intracellular metabolite profiling of Fusarium oxysporum converting glucose to ethanol. Journal of Biotechnology. 115 : 425-434.
Passariello N., Giugliano D., Torella R., Sgambato S., Coppola L., Frascolla N.. (1982) A possible role of gamma-aminobutyric acid in the control of the endocrine pancreas. Journal of Clinical Endocrinology & Metabolism. 54(6): 1145-1149.
Rao A. V., Sung M. K.. (1995) Saponins as anticarcinogens, Journal of Nutrition. 125: 717–724.
Reggiani R., Aurisano N., Mattana M., Bertani A.. (1993) ABA induces 4-aminobutyrate accumulation in wheat seedlings. Phytochemistry. 34(3): 605-609.
Rozan Pascale, Kuo Yu-Haey, Lambein Fernand. (2001) Amino acids in seeds and seedlings of the genus Lens. Phytochemistry 58: 281-289.
Saikusa T., Horino T., Mori Y.. (1994) Accumulation of γ-aminobutyric acid (GABA) in the rice germ during water soaking. Bioscience biotechnology and biochemistry. 58(12): 2291-2292.
Sasagawa A., Naiki Y., Nagashima S., Yamakura M., Yamazaki A., Yamada A.. (2006) Process for producing brown rice with increased accumulation of GABA using high-pressure treatment and properties of GABA-increased brown rice. Journal of Applied Glycoscience. 53(1): 27-33.
Satyanarayan V., Nair P. M.. (1985) Purification and characterization of glutamate decarboxylase from Solanwn tuberosum. European Journal of Biochemistry. 150: 53-60.
Schousboe A., Hertz L., Svenneby G.. (1977) Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochemical Research. 2: 217–229.
Schousboe A., Waagepetersen H. S.. (2008) GABA Neurotransmission: An overview. In: Handbook of Neurochemistry and Molecular Neurobiology: Neurotransmitter Systems, Sylvester E. V., Lajtha A., editors. Berlin: Springer Verlag : 213-226.
Shelp B. J., Bown A. W., Mclean M.D. (1999) Metabolism and functions of gamma-amino butyric acid. Trends in Plant Science. 4(11): 446-452.
Snedden W. A., Arazi T., Fromm H., Shelp B. J.. (1995) Calcium/Calmodulin Activation of Soybean Glutamate Decarboxylase. Plant Physiology. 108(2): 543–549.
Sugano M., Goto S., Yamada Y., Yoshida K., Hashimoto Y., Matsuo T., Kimoto T.. (1990) Cholesterol-lowering activity of various undigested fractions of soybean protein in rats. Journal of Nutrition.120: 977–985.
Sung M. K., Kendall C. W. C., Rao A.V.. (1995) Effect of soybean saponins on morphology of colon carcinoma cells in culture. Food and Chemical Toxicology. 33: 357–366.
Takahadhi H.. (1958) On the site of action of γ-aminobutyric acid on blood pressure and heart rate of anestheized cats. Japanese Journal of Physiology. 8:378-380.
Tsai J. S., Lin Y. S., Pan B. S., Chen T. J.. (2006) Antihypertensive peptides and g-aminobutyric acid from prozyme 6 facilitated lactic acid bacteria fermentation of soymilk. Process Biochemistry. 41: 1282–1288.
Ueno H.. (2000) Enzymatic and structural aspects on glutamate decarboxylase. Journal of molecular catalysis. B, Enzymatic . 10 : 67-79.
Ueno Y., Hayakawa K., Takahashi S., Oda K.. (1997) Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Bioscience, Biotechnology, and Biochemistry. 61(7): 1168-1171.
Vidal-Valverde C., Frías J., Sierra I., Inmaculada B., Fernand L., Kuo Y.H.. (2002) New functional legume foods by germination: effect on the nutritive value of beans, lentils, and peas. European Food Research and Technology. 215: 472-477.
Vidal-Valverde, C., Frías, J., Estrella, I., Gorospe, M. J., Ruiz, R., Bacon, J.. (1994) Effect of processing on some antinutritional factors in lentils. Journal of Agriculture and Food Chemistry. 42: 2291-2295.
Villaluenga M. C., Kuo Y. H., Lambein F., Frías J., Valverde V. C.. (2006) Kinetics of free protein amino acids, free non-protein amino acids and trigonelline in soybean(Glycine max L.) and lupin (Lupinus angustifolius L.) sprouts. European Food Research and Technology. 224: 177–186.
Wolfe B. M., Giovannetti P. M., Cheng D. C. H., Roberts D. C. K., Caroll K. K.. (1981) Hypolipidemic effect of substituting protein isolate for all meat and dairy protein in the diets of hypercholesterolemic men. Nutrition Reports International. 24: 1187-1198
Yokoyama Sadaji, Hiramatsu Jun-Ichi., Hayakawa Kiyoshi.. (2002) Production of γ-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO 12005. Journal of bioscience and bioengineering. 93(1): 95-97.
Yoshiki Y., Kinumi M., Kahara T., Okubo K.. (1996) Chemiluminescence of soybean saponins in the presence of active oxygen species. Plant Science. 116: 125–129.
Yoshiki Y., Kudou S., Okubo K.. (1998) Relationship between chemical structures and biological activities of triterpenoid saponins from soybean. Bioscience, Biotechnology, and Biochemistry. 62: 2291–2299.
Zhang H., Yao H. Y., Chen F.,Wang X..(2007) Purication and characterization of glutamate decarboxylase from rice germ. Food Chemistry 101: 1670–1677
第四章
大森正司、矢野とし子、岡本順子、津志田藤二郎、村井敏信、熥口滿:嫌气處理綠茶 (ギせバロこ茶) にょら高血壓自然發症うツトの的血壓上升抑制作用。農化。61:1449-1451 (1987)。
侯建志: 富含γ-胺基丁酸之發芽大豆用於製作豆漿可行性之研究。屏東科技大學生物機電工程系碩士論文(2006)。
馬莉鋒、周立平、孫伯申、陳旭峰: HPLC-ELSD法定量分析紅麴黴發酵樣品中的γ-胺基丁酸。釀酒科技。6: 88-89 (2004)。
陳筱慧: 利用HPLC方法檢測發芽種子、發芽玄米、加碼茶、以及市售GABA膠囊中GABA含量。國立中興大學食品暨應用生物科技學系碩士論文(2006)。
鄢丹、韓玉梅、董小萍:反相高效液相色譜-蒸發光散射檢測法同時測定阿膠珠的17種未衍生胺基酸。色譜。24(4): 359-362 (2006)。
El-Idrissi A., L''Amoreaux W. J.. (2008) Selective resistance of taurine-fed mice to isoniazide-potentiated seizures: in vivo functional test for the activity of glutamic acid decarboxylase. Neuroscience. 156(3): 1-7.
Komatsuzaki N., Tsukahara K., Toyoshima H., Suzuki T., Shimizu N., Kimura T..(2007) Effect of soaking and gaseous treatment on GABA content in germinated brown rice. Journal of Food Engineering. 78: 556–560.
Kuo Y. H., Rozan P., Lambein F., Frias J, Vidal-Valverde C.. (2003) Effects of different germination conditions on the contents of free protein and non-protein amino acids of commercial legumes. Food Chemistry.86: 537-545.
Nagaoka H.. (2005) Treatment of germinated wheat to increase levels of GABA and IP6 catalyzed by endogenous enzymes. Biotechnology Progress. 21: 405-410.
第五章
周政輝、柯易昌:高嘌呤食物中嘌呤含量分析方法之探討。中華民國營養學會雜誌。24(4): 366-378 (1999)。
周政輝。黃豆發芽期間的芽與胚乳之嘌呤含量變化研究。嘉南藥理科技大學專題研究計畫成果報告(2007)。CNFS9503
區少梅:吃GABA降血壓。元氣摘出版社(2002)。
劉英德: 種子生理。五洲出版社(1988)。
賴愛姬: 由已發芽與未發芽黃豆所調製之豆漿在主要成份上之變化。中華民國營養學會雜誌。1(1): 21-25 (1976)。
駱錫能、陳翠瑤、陳輝煌:水產品嘌呤含量的分析。營養學會雜誌。21(4):433-444(1996)。
Vidal-Valverde C., Frías J., Sierra I., Inmaculada B., Fernand L., Kuo Y.H.. (2002) New functional legume foods by germination: effect on the nutritive value of beans, lentils, and peas. European Food Research and Technology. 215: 472-477.
第六章
吳奕頡: 富含γ—胺基丁酸乳酸發酵糙米奶之研製。國立嘉義大學食品科學系碩士論文(2003)。 
沈黎明、霍長河、穆小民、吳顯榮:測定林生山黧豆體內谷胺酸脫羧酶活性的薄膜層析螢光分析法。植物生理學通訊。32(2):135-137(1996)。
侯建志: 富含γ-胺基丁酸之發芽大豆用于製作豆漿可行性之研究。屏東科技大學生物機電工程系碩士論文(2006)。
范軍、李純、朱蘇文、程備久: 小麥谷氨酸脫羧酶的純化及部分性質研究。中國生物化學與分子生物學報。14(5): 641-644 (1998)。
穆小民、楊曉賀、吳顯榮、沈黎明: 林生山黧豆谷氨酸脫羧的性質及其比較研究。中國農業大學學報。4(3): 29-34(1999)。
Collar C., Mascarós A. F., Prieto J. A., Benedito De Barber C.. (1991) Changes in free amino acids during fermentation of wheat doughs started with pure culture of Lactic acid Bacteria. Cereal chemistry. 68(1): 66-72.
Johnson B. S., Singh N. K., Cherry J. H., Locy R. D..(1997) Purification and characterization of glutamate decarboxylase from cowpea. Phytochemistry. 46 (1): 39-44.
Matsumoto T., Yamaura I., Funatsu M.. (1986) Purification and Properties of Glutamate Decarboxylase from Squash. Agricultural and Biological Chemistry. 50(6): 1413-1417.
Matsumoto T., Yamaura I., Funatsu M.. (1996) Improved purification and spectroscopic properties of squash glutamate decarboxylase. Bioscience, biotechnology, and biochemistry. 60(5): 889-890.
Satyanarayan V., Nair P. M.. (1985) Purification and characterization of glutamate decarboxylase from Solanwn tuberosum. European Journal of Biochemistry. 150: 53-60.
Snedden W. A., Arazi T., Fromm H., Shelp B. J.. (1995) Calcium/Calmodulin activation of soybean glutamate decarboxylase. Plant Physiology. 108: 543-549.
Ueno H.. (2000) Enzymatic and structural aspects on glutamate decarboxylase. Journal of Molecular Catalysis B: Enzymatic. 10: 67–79.
Ueno Y., Hayakawa K., Takahashi S., Oda K.. (1997) Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Bioscience, Biotechnology, and Biochemistry. 61(7): 1168-1171.
Yokoyama Sadaji, Hiramatsu Jun-Ichi., Hayakawa Kiyoshi.. (2002) Production of γ-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO 12005. Journal of bioscience and bioengineering. 93(1): 95-97.
Zhang H., Yao H. Y., Chen F.,Wang X..(2007) Purication and characterization of glutamate decarboxylase from rice germ. Food Chemistry 101: 1670–1676.
第七章
王意雯: 由水果中培養天然微生物應用於天然酵母麵包製程之研究(I):袋裝冷藏法。中興大學食品暨應用生物科技學系碩士論文(2007)。
簡豪呈: 添加蔬果果渣對麵包烘焙影響之探討。中興大學食品暨應用生物科技學系碩士論文(2006)。
Collar C., Mascaros A. F., Prieto J. A.. Benedito de Barber C.. (1991) Changes in free amino acid during fermentation of wheat doughs started with pure culture of lactic acid bacteria. Cereal chemistry. 68: 66-72.
Huang J., Mei L. H., Wu H., Lin D. Q.. (2007) Biosynthesis of γ-aminobutyric acid (GABA) using immobilized whole cells of Lactobacillus brevis. World Journal Microbiol Biotechnol. 23: 865–871.
Komatsuzaki N., Shima J., Kawamoto S., Momose H., Kimura T.. (2005). Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiology 22: 497–504
Nomura M., Kimiko H., Someya Y., Furukawa S, Suzuki I..(1998) Production of γ-aminobutyric acid by cheese starters during cheese ripening. J Dairy Sci. 81: 1486–1491.
Rizzello C. G., Cassone A., Di Cagno R., Gobbetti M.. (2008) Synthesis of angiotensin I-converting enzyme (ACE)-inhibitory peptides and γ-aminobutyric acid(GABA) during sourdough fermentation by selected lactic acid bacteria. Journal of Agricultural and Food Chemistry. 56: 6936–6943.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔