(3.236.231.61) 您好!臺灣時間:2021/05/11 22:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:馬莎妮
研究生(外文):Sanikan Markmay
論文名稱:飼糧添加有機及無機鋅對白肉雞和產蛋雞生產性能、鋅的蓄積和排泄之影響
論文名稱(外文):Effects of dietary organic and inorganic zinc supplementation on performance, zinc retention and excretion in broilers and laying hens
指導教授:許振忠許振忠引用關係
指導教授(外文):Jenn-Chung Hsu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:81
中文關鍵詞:白肉雞產蛋雞性能無機鋅有機鋅鋅的蓄積鋅的排泄
外文關鍵詞:BroilersLaying hensPerformanceZinc OrganicZinc InorganicZinc ExcretionZinc Retention
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為探討比較添加有機與無機來源的鋅對白肉雞及產蛋母雞之性能表現、鋅蓄積及排出的影響。試驗一使用90隻一日齡雛雞,隨機分配到五個飼糧處理組,每組三重複,每重複6隻,分別飼與添加0、20與60 mg/kg的氧化鋅或蛋白質鋅的玉米-大豆基礎飼糧至5週齡。飼糧與去離子水採任飼。結果顯示,白肉雞飼與無機鋅之採食量顯著(P < 0.001)較有機鋅者為高。在體增重、飼料轉換率、腎臟、心臟、肝臟與脾臟鋅濃度、脛骨強度、脛骨灰份、器官重量及鹼性磷酸酶(ALP)活性方面,沒有發現顯著差異(P > 0.05)。飼與蛋白質鋅較飼與氧化鋅的雞隻有顯著(P < 0.001)較高的血漿鋅濃度。隨著飼糧鋅含量提高則會顯著(P < 0.01)增加脛骨中鋅的濃度。雞隻飼與60 mg/kg濃度的氧化鋅時,在鋅的採食量、鋅的排泄及超氧歧化酶方面,明顯的高於蛋白鋅;在鋅的蓄積方面,明顯的低於蛋白鋅。試驗二,使用36隻強迫換羽的30週齡白色來航產蛋雞分配到三個飼糧處理組,每組三重複,每重複4隻雞,分別飼予添加0與200 mg/kg的氧化鋅或蛋白質鋅持續5週。飼料與去離子水採任飼。試驗結果顯示,在採食量、隻日產蛋、隻日蛋重、飼料轉換率、蛋重、蛋黃重、蛋黃百分比、蛋白重量、蛋殼強度、蛋殼厚度、蛋殼重、蛋殼百分比與蛋黃、蛋白、及血漿鋅濃度方面,均無顯著差異(P > 0.05)。然而,餵飼氧化鋅的雞隻較餵飼蛋白鋅組有顯著較高的採食量及豪氏單位。此外,當飼糧鋅含量增加時,發現豪氏單位會顯著(P < 0.001)的降低。在所有的試驗中發現,鋅的排出比率並未顯著的(P > 0.05)受到飼糧鋅來源的影響,但飼糧添加蛋白鋅組與添加氧化鋅組比較,有較高的鋅蓄積。隨著飼糧鋅含量提高則會顯著(P < 0.001)增加排泄物中鋅的濃度,並增加鋅的蓄積量。此外,飼糧添加200 mg/kg蛋白質鋅相較於氧化鋅,顯著(P < 0.001)提高排泄物中的鋅濃度及鋅的蓄積。根據這些資料建議,在白肉雞與蛋雞飼糧添加蛋白質鋅可以改善鋅的排泄與蓄積。
The purpose of this study was conducted to compare the effects of dietary organic and inorganic zinc supplementation on performance, zinc retention and excretion in broilers and laying hens. Experiment I, Ninety one-day-old broilers were randomly assigned to five dietary treatments with three replications of six birds each and fed on corn-soybean diets supplemented with 0, 20 or 60 mg/kg of Zn oxide (ZnO) or Zn proteinate (ZnPro) respectively, until 5 weeks. Feed and water were supplied ad libitum. The results indicated that feed consumption was significantly (P < 0.001) higher in birds fed diet supplemented with inorganic Zn than those fed with diet supplemented with organic Zn. No significant differences were discovered on body weight gain, feed conversion, Zn contents in kidney, heart, liver, spleen, breast muscle, leg muscle, tibia strength, tibia ash, weights of organs and alkaline phosphatase (ALP) activity (P > 0.05). Compared with the birds fed on ZnPro had significantly (P < 0.001) higher content of Zn in plasma than those fed on ZnO. However, the content of Zn in tibia was increased, with increasing the dietary Zn level (P < 0.01). and chicks fed the supplemented ZnO at level of 60 mg/kg diet was significantly higher in the superoxide dismutase (SOD) activity, Zn intake and Zn excretion, lower in Zn retention rate than the ZnPro fed group. Experiment II, thirty-six force molted White Leghorn layers, 30-wk-old, were assigned to three dietary treatments with three replicates of four birds each and fed diets supplemented with 0 or 200 mg/kg of ZnO or ZnPro respectively. Feed and water were supplied ad libitum. The results indicated that there were not significant differences between Zn sources and Zn levels on feed intake, hen-day egg production, hen-day egg mass, feed conversion ratio, egg weight, yolk weight, percentage of yolk, albumin weight, eggshell strength, eggshell thickness, eggshell weight and percentage of eggshell, egg yolk, egg white, and Zn content in plasma. However, compared with the birds fed on ZnO has significantly higher feed intake and haugh unit than those fed on ZnPro. Moreover, when dietary Zn level was increase, a decrease (P < 0.001) in the haugh unit was observed. Zn excretion was not significantly (P > 0.05) affected by dietary Zn sources in the all experiment but the highest Zn retention rate was assigned to birds given diets supplemented with ZnPro than those given diets supplemented with ZnO. And Zn excretion was increased and Zn retention rate was decreased, with increasing the dietary Zn level (P < 0.001). Moreover, Zn supplementation at 200 mg/kg levels of ZnPro showed a significantly greater the Zn retention rate than ZnO (P < 0.001). The data suggest that the dietary supplementation of ZnPro can improve Zn retention and excretion in broilers and laying hens.
TABLE OF CONTENTS
Page
CHINESE ABSTRACT ------------------------------------------------------------ i
ENGLISH ABSTRACT ------------------------------------------------------------ iii
TABLE OF CONTENTS ----------------------------------------------------------- A
LIST OF FIGURES ----------------------------------------------------------------- C
LIST OF TABLE -------------------------------------------------------------------- D
ABBREVIATIONS ----------------------------------------------------------------- F

INTRODUCTION ------------------------------------------------------------------- 1
LITERATURE REVIEW ----------------------------------------------------------- 3
Zn Discovery and History ------------------------------------------------------- 3
Zn Chemical Properties and Structure ----------------------------------------- 3
Zn Biological availability ------------------------------------------------------- 5
Feed Sources ---------------------------------------------------------------------- 6
Zn Homeostasis ------------------------------------------------------------------- 7
Zn Metabolism -------------------------------------------------------------------- 7
Absorption and Uptake ------------------------------------------------------ 7
Role of Intestinal Metallothionein in Zn Absorption -------------------- 9
Site (s) of Zn Absorption ---------------------------------------------------- 11
Storage ------------------------------------------------------------------------- 13
Excretion ---------------------------------------------------------------------- 15
Zn and Growth Performance ---------------------------------------------------- 15
Zn and Antioxidants -------------------------------------------------------------- 16
Zn and Environmental ----------------------------------------------------------- 17
Zn in Egg Production ------------------------------------------------------------ 18
Zn and Carbonic Anhydrase ---------------------------------------------------- 21
Zn Requirements ----------------------------------------------------------------- 22
Zn Deficiency --------------------------------------------------------------------- 22
Effect of Zn Excess --------------------------------------------------------------- 24

MATERIALS AND METHODS -------------------------------------------------- 26
Experiment I ---------------------------------------------------------------------- 26
Experiment II ---------------------------------------------------------------------
32

RESULTS AND DISCUSSION --------------------------------------------------- 38
Experiment I ---------------------------------------------------------------------- 38
Experiment II --------------------------------------------------------------------- 53

CONCLUSIONS -------------------------------------------------------------------- 64
REFERENCE ------------------------------------------------------------------------ 65





LIST OF FIGURES
Page
FIGURE 1. Molecular structure of organic trace minerals ------------------------ 5
FIGURE 2. Adaptive processes used to maintain Zn homeostasis --------------- 8
FIGURE 3. A model for Zn absorption ----------------------------------------------- 10
FIGURE 4. Egg structure --------------------------------------------------------------- 18
FIGURE 5. Egg formation tract ------------------------------------------------------- 20
FIGURE 6. Carbonic anhydrase and eggshell formation -------------------------- 21
FIGURE 7. Effect of Zn in maternal diet on resultant feather growth of the chick ------------------------------------------------------------------------- 23
FIGURE 8. HT-8116 tensile/compression strength ---------------------------------
30
FIGURE 9. Polarized Zeeman Atomic Absorption Spectrophotometer, Hitachi Z-2300 ----------------------------------------------------------------------- 31










LIST OF TABLE
Page
TABLE 1. Apparent absorption coefficients of Zn determined within seven gut segments of depleted pigs fed an isolated soya protein semipurlfied Zn depletion diet supplemented with 15 and 45 ppm Zn as ZnSO4 ------------------------------------------------------------------------------------------------- 14
TABLE 2. Toxic dietary concentrations of inorganic Zn elements and compounds for chicken ---------------------------------------------------- 25
TABLE 3. The compositions of the basal diets (Exp. I) ---------------------------- 27
TABLE 4. Zn contents of experimental diets (Exp. I) ---------------------- 28
TABLE 5. The compositions of basal diets (Exp. II) ------------------------------- 33
TABLE 6. Zn contents of experimental diets (Exp. II) --------------------- 34
TABLE 7. Effects of dietary organic and inorganic Zn supplementation on feed intake, body weight gain, and feed conversion ratio in broilers (Exp. I) ----------------------------------------------------------------------- 40
TABLE 8. Effects of dietary organic and inorganic Zn supplementation on relative weights of organs in broilers measured at 35 d of age (Exp. I) ------------------------------------------------------------------------------ 42
TABLE 9. Effects of dietary organic and inorganic Zn supplementation on plasma and organs Zn contents in broilers measured at 35 d of age (Exp. I) ------------------------------------------------------------------ 44
TABLE 10. Effect sof dietary organic and inorganic Zn supplementation on Zn excretion and Zn retention rate in broilers measured from 31 to 35 d of age (Exp. I) -------------------------------------------------------- 47
TABLE 11. Effects of dietary organic and inorganic Zn supplementation on tibia strength, tibia ash and tibia Zn in broilers measured at 35 d of age (Exp. I) ------------------------------------------------------------------ 49
TABLE 12. Effects of dietary organic and inorganic Zn supplementation on Zn content on serum ALP and SOD activity in broilers (Exp. I) ---- 52
TABLE 13. Effects of dietary organic and inorganic Zn supplementation on laying performance in laying hens (Exp. II) ---------------------------- 53
TABLE 14. Effects of dietary organic and inorganic Zn supplementation on yolk and albumin quality in laying hens (Exp. II) --------------------- 57
TABLE 15. Effects of dietary organic and inorganic Zn supplementation on egg yolk and egg white Zn contents in laying hens (mg/kg dry matter) (Exp. II) ------------------------------------------------------------ 60
TABLE 16. Effects of dietary organic and inorganic Zn supplementation on Zn excretion and retention rate in laying hens measured from 31 to 35 d of age (Exp. II) ------------------------------------------------------- 63
Adams, R. S. 1975. Variability in mineral and trace element content of dairy cattle feeds. J. Dairy Sci. 58(10): 1538-1548.
Aggett, P. J. 1991. The assessment of zinc status: a personal view. Proceedings of the Nutrition Society 50: 9-17.
Ammerman, C. B. 1995. Methods for estimation of mineral bioavailability. pp. 83-94 in Bioavailability of Nutrients for Animals: Amino Acid, Minerals, and Vitamins.
Ammerman, C. B., D. H. Baker, A. J. Lewis. 1995. Bioavailability of Nutrients for Animals. Academic Press, New York. pp. 441.
Antonson, D. L., A. J. Barak, and J. A. Vanderhoof. 1979. Determination of the site of zinc absorption in rat small intestine. J. Nutr.109: 142-147.
Bedi, S. P. S., and J. K. Chesters. 1982. Assessment of the availability of dietary copper and zinc to sheep using radioisotopes. Nutr. Rep. Int. 25: 277-283.
Bellairs, R., M. Backhouse, and R. Evans. 1972. A correlated chemical and morphological study of egg yolk and its constituents. Micron. 3: 328-346.
Berg, L. R., and R. D. Martinson. 1972. Effect of diet composition on the toxicity of zinc for the chick. Poult. Sci. 51: 1690-1695.
Bertoni, G., M. J. Watson, G. P. Savage, and D. G. Armstrong. 1976. The movements of minerals in the digestive tract of dry and lactating Jersey cows. 2. Net movements of Cu, Fe, Mn and Zn. Zootecnica e Nutrizione Animale 2: 185-191.
Bettger, W. J., T. J. Fish, and B. L. O’Dell. 1978. Effects of copper and zinc status of rats on erythrocyte stability and superoxide dismutase activity. Proc. Soc. Exp. Biol. Med. 158: 279-282.
Blakeborough, P. and D. N. Salter. 1987. The intestinal transport of zinc studied using brush border membrane vesicles from the piglet. Br. J. Nutr. 57: 45-55.
Blamberg, D. L., U. B. Blackwood, W. C. Supplee, and C. F. Combs. 1960. Effect of Zn deficiency in hens on hatchability and embryonic development. Proc. Soc. Exp. Biol. Med. 104: 217-220.
Bowers, G. N., and R. B. McCommb. 1972. Measurement of alkaline phosphatase activity in human serum. Clin. Chem. 18: 1988-1995.
Bray, T. M., and W. J. Bettger. 1990. The physiological role of zinc as an antioxidant. Free Rad. Biol. Med. 8: 281-291.
Bremner, I. 1983. The roles of metallothionein in the metabolism of copper and zinc. Annual Report of Studies in Animal Nutrition and Allied Sciences, Rowett Research Institute 39: 13-28.
Bremner, I., and J. H. Beattie. 1990. Metallothionein and the trace minerals. Annu. Rev. Nutr. 10: 63-83.
Brian, H. 2003. Trace minerals for sows - A new approach. In pig International. Feb. Vol. 33: 7-10.
Bronner, F. 1987. Intestinal calcium absorption: mechanisms and applications. J. Nutr. 117: 1347-1352.
Cao, J., P. R. Henry, S. R. Davis, R. J. Cousins, R. D. Miles, R. C. Littell, and C. B. Ammerman. 2002. Relative bioavailability of organic zinc sources based on tissue zinc and metallothionein in chicks fed conventional dietary zinc concentrations. Animal feed science and technology. 101(4): 161-170.
Carrico, R. J., and H. F. Deutsch. 1969. Isolation of human hepatocuprein and cerebrocuprein: Their identity with erythrocuprein. J. Biol. Chem. 244: 6087-6093.
Cheng, T., and Y. Guo. 2004. Effects of salmonella typhymurium lipopolysaccharide challenge on the performance, immune responses and zinc metabolism of laying hens supplemented with two zinc sources. Anim. Sci. 17: 1717-1724.
Coic, Y., and M. Coppenet. 1989. Les oligo-elements en agriculture et e´le´vage, pp. 114 (Pairs, INRA editions).
Collins, N. E., and E. T. JR. Moran. 1999. Influence of supplemental manganese and zinc on live performance and carcass quality of broilers. J. Appl. Poult. Res. 8: 222-227.
Coppen, D. E., and N. T. Davies. 1987. Studies on the effects of dietary zinc dose on “Zn absorption in vivo and on the effects of Zn status on 6sZn absorption and body loss in young rats. Br. J. Nutr. 57: 354.
Cousins, R. J. 1985. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to matallothionein and ceruloplasmin. Phys. Rev. 65: 238-309.
Cousins, R. J. 1989. Theoretical and practical aspects of zinc uptake and absorption. In Mineral Absorption in the Monogastric GI Tract, pp. 3-12 [Dintzis, F. R., and J. A. Laszlo, editors]. New York, NY: Plenum Press.
Cousins, R. J., and L. M. Lee-Ambrose. 1992. Nuclear zinc uptake and interactions and metallothionein gene expression are influenced by dietary zinc in rats. J. Nutr. 122: 56-64.
Davies, N. T. 1980. Studies on the absorption of zinc by rat intestine. Br. J. Nutr. 43: 189-203.
Decuypere, E., J. Helsen, S. Van Gorp, and G. Verheyen. 1988. The use of high zinc diets as forced molting: effect on Zn uptake and egg Zn content. Arch. Geflugelk. 52: 245-251.
Dozier, W. A., A. J. Davis, M. E. Freeman, and T. L. Ward. 2003. Early growth and environmental implications of dietary zinc and copper concentrations and sources of broiler chicks, Br. Poult. Sci. 44(5): 726-731.
Edwards, H. M., and M. B. Gillis. 1959. A chromic oxide balance method for determining phosphorus availability. Poult. Sci. 38: 569-574.
Egan, C. B., F. G. Smith, R. S. Houk, and R. E. Serfass. 1991. Zinc abosorption in women: comparison of intrinsic and extrinsic stable-isotope labels. Am. J. Clin. Nutr. 53: 547-553.
EI-Husseiny, O. M., M. O. Abd-Elsamee, I. I. Omara, and A. M. Fouad. 2008. Effect of Dietary Zinc and Niacin on Laying Hens Performance and Egg Quality. Int. J. Poult. Sci. 7(8): 757-764.
Englert, S. I., T. K. Jeffers, M. L. Sunde, and W. H. McGibbon. 1966. Differences among inbreds with respect to dietary zinc. Poult. Sci. 45: 1082-1083.
Essatara, M. B., J. E. Morley, A. S. Levine, M. K. Elson, R. B. Shafer, and C. J. McClain. 1984. The role of the endogenous opiates in zinc deficiency anorexia. Physiol. Behav. 32: 475-478.
Fairchild, B. D., and V. L. Christensen. 2000. Photostimulation of turkey eggs accelerates hatching times without affecting hatchability, liver or heart growth, or glycogen content. Poult. Sci. 79: 1627-1631.
Fairweather-Tait, S. J., T. E. Fox, S. G. Wharf, J. Eagles, H. M. Crews, and R. Massey. 1991. Apparent zinc absorption by rats from foods labeled intrinsically and extrinsically with 65Zn. Br. J. Nutr. 66: 65-71.
Flanagan, P. R., J. Haist, and L. S. Valberg. 1983. Zinc absorption, intraluminal zinc and intestinal matallothionein levels in zinc-deficient and zinc-repleted rodents. J. Nutr. 113: 962-972.
Fridovich, I. 1975. Superoxide dismutase. Annu. Rev. Biochem. 44: 147-159.
Giordano, P. M., J. J. Mortvedt, and D. A. Mays. 1975. Effect of municipal wastes on crop yields and uptake of heavy metals. Journal of Environmental Quality, 4(3): 394-399.
Grace, N. D. 1975. Studies on the flow of zinc, cobalt, copper and manganese along the digestive tract of sheep given fresh perennial ryegrass, or white or red clover. Br. J. Nutr. 34: 73-82.
Guo, Y. M., R. Yang, J. Yuan, T. L. Ward, and T. M. Fakler. 2002: Effect of Availa Zn and ZnSO4 on laying hen performance and egg quality. Poult. Sci. 81 (Suppl.), 40.
Hahn, J. D., and D. H. Baker. 1993. Growth and plasma zinc responses of young pigs fed pharmacologic levels of zinc. J. Anim. Sci. 71: 3020-3024.
Hallmans, G., U. Nilsson, R. Sjostrom, L. Wetter, and K. Wing. 1987. The importance of the body’s need for zinc in determining Zn availability in food: a principle demonstrated in the rat. Br. J. Nutr. 58: 59-64.
Hambidge, K. M., C. E. Casey, and N. F. Krebs. 1986. Zinc. In: Trace Elements in Human and Animal Nutrition, 5th ed., Vol. 2, (Mertz, W., ed.), pp. 1-137, Academic Press, Orlando, FL.
Haugh, R. R. 1937. The Haugh unit for measuring egg quality; US Egg and poultry magazine. 43: 552-555.
Hempe, J. M., and R. J. Cousins. 1989. Effect of EDTA and zinc-methionine complex on zinc absorption by rat intestine. J. Nutr. 119: 1179-1187.
Hempe, J. M., and R. J. Cousins. 1992. Cysteine-rich intestinal protein and intestinal metallothionein: an inverse relationship as a conceptual model for zinc absorption in rats. J. Nutr. 122: 89-95.
Heth, D. A., and W. G. Hoelstra. 1965. Zinc-65 absorption and turnover in rats. J. Nutr. 85: 367-374.
Hill, D. A., E. R. Peo, and A. J. Lewis. 1987. Effect of zinc source and picolinic acid on Zn uptake in an in vitro continuous-flow perfusion system for pig and poultry intestinal segments. J. Nutr. 117: 1704-l707.
Hoadley, J. E., A. S. Leinart, and R. J. Cousins. 1987. Kinetic analysis of zinc uptake and serosal transfer by vascularly perfused rat intestine. Am. J. Physiol. 256: G825-G831.
Hodgson, E. K., and I. Fridovich. 1975. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry. 14: 5294-5299.
Hong, S. J., H. S. Lim, and I. K. Paik. 2002. Effects of Cu and Zn-Methionine chelates supplementation on the performance of broiler chickens. J. Kor. Anim. Sci. Thchnol. 44(4): 399-406.
Hudson, B. P., B. D. Fairchild, J. L. Wilson, W. A. Dozier, and R. J. Buhr. 2004. Breeder Age and Zinc Source in Broiler Breeder Hen Diets on Progeny Characteristics at Hatching. J. Appl. Poult. Res. 13: 55-64.
Hudson, B. P., W. A. Dozier, J. L. Wilson, J. E. Sander, and T. L. Ward. 2003. Effect of dietary zinc source on reproductive performance and immune status of broiler breeder hens. Poult. Sci. 82 (Suppl.1): 104.
Hudson, B. P.,W. A. Dozier, J. L. Wilson, J. E. Sander, and T. L. Ward. 2004. Reproductive performance and immune status of caged broiler breeder hens provided diets supplemented with either inorganic or organic sources of zinc from hatching to 65 wk of age. J. Appl. Poult. Res. 13: 349-359.
Jackson, M. J., D. A. Jones, and R. H. T. Edwards. 1981. Zinc absorption in the rat. Br. J. Nutr. 46: 15-27.
Janghorbani, M., N. W. Istfan, J. O. Pagounes, F. H. Steinke, and V. R. Young. 1982. Absorption of dietary zinc in man: comparison of intrinsic and extrinsic labels using a triple stable isotope method. Am. J. Clin. Nutr. 36: 537-545.
Jensen, L. S. 1975b. Precipitation of selenium deficiency by high dietary levels of copper and zinc (in fowls), proc. Soc. Exp. Biol. ivied. 149: 113-116.
Johnson, R. R., O. G. Bentley, and T. V. Hershberger. 1962. The effectiveness of coated urea prills and copper treated urea prills as nitrogen sources for rumen microorganisms. Ohio Agr. Exp. Sta. Bull. 917: 3.
Kaya, S., T. Keçeci, and S.Haliloglu. 2001. Effects of zinc and Vitamin A supplements on plasma levels of thyroid hormones, cholesterol, glucose and egg yolk cholesterol of laying hens. Res. Vet. Sci. 71: 135-139.
Khajarern, J., C. Ratanasethakul, S. Kharajarern, T. L. Ward, T. M. Fakler, and A. B. Johnson. 2002. Effect of zinc and manganese amino acid complexes (AvailaZ/M) on broiler breeder production and immunity. Poult. Sci. 81(Suppl. 1): 40. (Abstr.)
Kidd, M. T., M. A. Qureshi, P. R. Ferket, and L. N. Thomas. 2000. Turkey hen zinc source affects progeny immunity and disease resistance. J. Appl. Poult. Res. 9: 414-423.
Kienholz, E. W., D. E. Turk, M. L. Sunde, and W. G. Hoekstra. 1961. Effects of zinc deficiency in the diets of hens. J. Nutr. 75: 211-221.
Kienholz, E. W., M. L. Sunde, and W. G. Hoekstra. 1964. Influences of dietary zinc, calcium and vitamin D for hens on zinc content of tissues and eggs and on bone composition. Poult. Sci. 43:667-675.
Kim, W. K., and P. H. Patterson. 2005. Effects of Dietary Zinc Supplementation on Hen Performance, Ammonia Volatilization and Nitrogen Retention in Manure. J. Environ. Sci. Health. 40: 675-686.
King, J. C. 2000. Determinants of maternal zinc status during pregnancy. Am. J. Clin. Nutr. 71: 1334S-43S.
Kirchgessner, M., H. P. Roth, A. Shnegg, R. J. Kellner, and E. Weigand. 1977. A comparative view on trace elements and growth. Nutr. Metab. 21: 119-143.
Lambson, R. 1970. An electron microscopic study of the entodermal cells of the yolk sac of the chick during incubation and after hatching. Am. J. Anat. 129: 1-20.
Legg, S. P., and L. Sears. 1960. Zinc sulphate treatment of parakeratosis in cattle. Nature. 186: 1061-1062.
Leung, F. Y. 1998. Trace elements that act as antioxidants in parenteral micronutrition. J. Nutr. Biochem. 9: 304-307.
Li, Z., and L. M. Shuman. 1997a. Mobility of Zn, Cd, and Pb in soils as affected by poultry litter extract. I. Leaching in soil columns. Environ. Pollution 95: 219-226.
Li, Z., and L. M. Shuman. 1997b. Mobility of Zn, Cd, and Pb in soils as affected by poultry litter extract. II. Redistribution among soil fractions. Environ. Pollut. 95: 227-234.
Lim, H. S., and K. Paik. 2003. Effects of supplementary mineral methionine chelates (Zn, Cu, Mn) on the performance and eggshell quality of laying hens. Asian-Australas. J. Anim. Sci. 12: 1804-1808.
Marklund, S. L. 1984. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem. J. 22: 649-655.
Marklund, S. L. 1982. Human copper-containing superoxide dismutase of high molecular weight. Proc. Natl. Acad. Sci. USA 79: 7634-7638.
Martinez, C. E., and H. L. Motto. 2000. Solubility of lead, zinc, and copper added to mineral soils. Environ. Pollut. 107: 153-158.
McCord, J. M., and I. Fridovich. 1969. Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244: 6049-6055.
McCormick, C. C., and D. L. Cunningham. 1984. High dietary zinc and fasting as methods of forced resting: a performance comparison. Poult. Sci. 63:1201-1206.
Mcdowell, L. R. 1992. Minerals in animal and human nutrition. New York: Academic Press. pp. 265-239.
Menard, M. P., and R. J. Cousins. 1983. Zinc transport by brush border membrane vesicles from rat intestine. J. Nutr.113: 1434-1442.
Menard, M. P., C. C. McCormick, and R. J. Cousins. 1981. Regulation of intestinal metallothionein biosynthesis in rats by dietary zinc. J. Nutr. 111: 1353-1361.
Meyer, N. R., M. A. Stuart, and C. M. Weaver. 1983. Bioavailability of zinc from defatted soy flour, soy hulls and whole eggs as determined by intrinsic and extrinsic labeling techniques. J. Nutr. 133: 1255-1264.
Miller, E. R., H. D. Stowe, P. K. Ku, and G. M. Hill. 1979. Copper and zinc in swine nutrition. pp. 109 in National Feed Ingredients Association Literature Review on Copper and Zinc in Animal Nutrition. West Des Moines, Iowa: National Feed Ingredients Association.
Miller, E. C., U. Juhl, and J. A. Miller. 1966. Nucleic acid guanine: Reaction with the carcinogen n-acetoxy-2-acetylaminofluorene. Sci. 153: 1125-1127.
Miller, J. K., and R. G. Cragle. 1965. Gastrointestinal sites of absorption and endogenous secretion of zinc in dairy cattle. J. Dairy Sci. 48: 370-373.
Miller, J. K., and L. S. Jensen. 1966. Effect of dietary protein source on zinc absorption and excretion along the alimentary tracts of chicks. Poult. Sci. 45, 1051-1053.
Miller, W. J. 1969. Absorption, tissue distribution, endogenous excretion and homeostatic control of zinc in ruminants. Am. J. Clin. Nutr. 22: 1323-1331.
Miller, W. J. 1970. Zinc nutrition of cattle: a review. J. Dair. Sci. 53: 1123-1135.
Miller, W. J. 1973. Dynamics of absorption rates, endogenous excretion, tissue turnover and homeostatic control mechanisms of zinc, cadmium, manganese, and nickel in ruminants. J. Fed. Proc. 32(8): 1915-1920.
Miller, W. J., C. M. Clifton, P. R. Fowler, and H. F. Perkins. 1965. Influence of high levels of dietary zinc on zinc in milk, performance and biochemistry of lactating cows. J. Dairy Sci. 14: 450-453.
Mobbs, I., and D. McMillian. 1979. Structure of the endodermal epithelium of the chick yolk sac during early stages of development. Am. J. Anat. 155: 287-310.
Mohanna, C., and Y. Nys. 1997b. Excess zinc in manure of broiler chicks: decrease in zinc supplementation and use of phytase improve its retention in the carcasses. Proceedings of the 11th European Symposium on Poultry Nutrition, Faaborg, pp. 459-461.
Mohanna, C., and Y. Nys. 1999a. Effect of dietary zinc content and sources on the growth, body zinc deposition and retention, zinc excretion and immune response in chickens. Br. Poult. Sci. 40: 108-114.
Mohanna, C. and Y. NYS. 1999b. Effect of dietary zinc content and sources on the growth, body zinc deposition and retention, zinc excretion and immune response in chickens. Br. Poult. Sci. 40: 108-114.
National Research Council (NRC). 1979. Nutrient Requirements of Swine, 3rd Edition, National Academy of Science, Washington D.C.
NRC. 1980b. Mineral tolerances of domestic animals. National Academy of Sciences, Washington, DC.
NRC. 1994. Nutrient Requirements of Poultry, 9th Edition, National Academy of Science, Washington D.C.
Neathery, M. W., J. W. Lassiter, W. J. Miller, and R. P. Gentry. 1975. Absorption, excretion and tissue distribution of natural organic and inorganic 65Zn in the rat. Proc. Soc. Exp. Biol. Med. 149: 1-4.
North, M. O. 1984. Breeder Management. In Commercial Chicken Production Manual. The Avi. Publishing Company. Inc. Westport, Connecticut. 240-243, 298-321 pp.
O’Dell, B. L. and J. E. Savage. 1957. Symptoms of zinc deficiency in the chick. Fed. Proc. 16: 394.
O’Dell, B. L. 1979. Effect of soy protein on trace mineral bioavailability. In: H.L. Wilcke, D. T. Hopkins, D. H. Waggle, Soy protein and human nutrition (pp. 187). New York: Academic Press.
O’Dell, B. L. 1981. Roles for iron and copper in connective tissue biosynthesis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 294: 91-104.
O’Dell, B. L. 1984. Bioavailability of trace elements. Nutr. Rev. 42: 301-308.
Oestreicher, P., and R. J. Cousins. 1989. Zinc uptake by basolateral membrane vesicles from rat small intestine. J. Nutr.119: 639-646.
Ohki, K. 1984. Zinc nutrition related to critical deficiency and toxicity levels for sorghum. Agron. J. 76: 253-256.
Paik, H. Y., H. Joung, J. Y. Lee, K. L. Hong, J. C. King, and C. L. Keen. 1999. Serum extracellular superoxide dismutase activity as an indication of zinc status in humans. Biol. Trace Elem. Res. 69: 45-57.
Partridge, I. G. 1978. Studies on digestion and absorption in the intestines of growing pigs. 4. Effects of dietary cellulose and sodium levels on mineral absorption. Br. J. Nutr. 39: 539-545.
Pearson, T. W., T. J. Pryor, and A. M. Goldner. 1977. Calcium transport across avian uterus. III. Comparison of laying and nonlaying birds. Am. J. Physiol. 232: E437-E443.
Pimentel, J. L., M. E. Cook, and J. L. Greger. 1991. Bioavailability of zinc-methionine for chicks. Poult. Sci. 70: 1637-1639.
Richards, M. P. 1989. Recent developments in trace element metabolism and function: role of matallothionein in copper and zinc metabolism. J. Nutr. 119: 1062-1070.
Richards, M.P. 1997. Trace mineral metabolism in the avian embryo. Poult. Sci. 76: 152-164.
Richards, M. P., and R. J. Cousins. 1975. Mammalian zinc homeostasis: requirement for RNA and matallothionein synthesis. Biochem. Biophys. Res. Commun. 64: 1215-1223.
Richards, M. P., and R. J. Cousins. 1976. Zinc-binding protein: relationship to short term changes in zinc metabolism. Proc. Soc. Exp. Biol. Med. 153: 52-56.
Rincker, M. J., G. M. Hill, J. E. Link, A. M. Meyer, and J. E. Rowntree. 2005. Effects of dietary zinc and iron supplementation on mineral excretion, body composition, and mineral status of nursery pigs. J. Anim. Sci. 83: 2762-2774.
Riordan, J. F. 1976. Biochemistry of zinc. Med. Clin. North Am. 60(4): 661-674.
Roberson, R. H., and P. J. Schaible. 1960. The availability to the chick of zinc as the sulfate, oxide or carbonate. Poult. Sci. 39: 835-837.
Roberts, J. R. 2004. Factors affecting egg internal quality and eggshell quality in laying hens. J. Poult. Sci., 41: 161-177.
Robinso, D. S., and N. R. King. 1963. Carbonic anhydrase and formation of the hen''s eggshell. Nature. 199: 497-498.
Roughead, Z. K., and H. C. Lukaski. 2003. Inadequate Copper Intake Reduces Serum Insulin-Like Growth Factor-I and Bone Strength in Growing Rats Fed Graded Amounts of Copper and Zinc. J. Nutr. 133: 442-448.
Sandstrom, B., C. L. Keen, and B. Lonnerdal. 1983. An experimental model for studies of zinc availability from milk and infant formulas using extrinsic labeling. Am. J. Clin. Nutr. 38: 420-428.
Sadoval, M., P. R. Henry, R. C. Littell, R. D. Miles, G. D. Butcher, and C. B. Ammerman. 1999. Effect of dietary zinc source and method of oral administration on performance and tissue trace mineral concentration of broiler chicks. J. Anim. Sci. 77: 1788-1799.
Sahin, K., and O. Kucuk. 2003. Zinc supplementation alleviates heat stress in laying Japanese quail. J. Nutr. 133: 2808-2811.
SAS. 2007. “SAS/GRAPH user’s guide”. SAS Institute Inc., Cary, NC.
Savage, J. E. 1968. Trace minerals and avian reproduction. Fed. Proc. 27: 927-931.
Schuster, N. H., and M. Hindmarsh. 1980. Plasma alkaline phosphatase as a screening test for low zinc status in broiler hybrid chickens affected with clubbed down. Aust. Vet. J. 56: 499-501.
Seal, C. J., and J. C. Mathers. 1989. Intestinal zinc transfer by everted gut sacs from rats given diets containing different amounts and types of dietary fibre. Br. J. Nutr. 62: 151-163.
Searle, A. J., and R. L. Willson. 1980. Clutathione peroxide: effect of superoxide, hydroxyl and bromine free radicals on enzyme activity. Inr. J. Radiar. Biol. 37: 213-217.
Serfass, R. E., E. E. Ziegler, B. B. Edwards, and R. S. Houk. 1989. Instinsic and extrinsic stable isotopic zinc absorption by infants from formulas. J. Nutr. 119: 1661-1669.
Schroeder, H. A. 1971. Losses of vitamins and trace minerals resulting from processing and preservation of foods. Am. J. Clin. Nutr. 24: 562-573.
Scott, M. L., M. C. Nesheim, and R. J. Young. 1982. Nutrition of the chicken pp. 562. Ithaca, New York, M.L. SCOTT & Associates.
Shaheen, A. A., and A. A. AbdEl-Fattah. 1995. Effect of dietary zinc on lipid peroxidation, glutathione, protein thiols levels and superoxide dismutase activity in rat tissues. Int. J. Biocherm. Cell Biol. 27 (1): 89-95.
Shen, X., H. Steyrer, H. Retzek, E. Sanders, and W. Schneider. 1993. Chicken oocyte growth: receptor-mediated yolk deposition. Cell Tiss. Res. 272: 459-471.
Shippee, R. L., P. E. Stake, V. Koehn, J. L. Lambert, and R. W. Simons. 1979. High dietary zinc or magnesium as forced-resting agents for laying hens. Poult. Sci. 58: 949-954.
Spears, J. W. 1989. Zinc methionine for ruminants: relative bioavaiability of zinc in lambs and effects of growth and performance of growing heifers. J. Anim. Sci. 67: 835-843.
Stahl, J. L., M. E. Cook, and J. L. Greger. 1988. Zinc, iron and copper contents of eggs from hens fed varying levels of zinc. J. Food Comp. Anal. 1: 309-315.
Stahl, J. L., M. E. Cook, and M. L. Sunde. 1986. Zinc supplementation: Its effect on egg production, feed conversion, fertility and hatchability. Poult. Sci, 65: 2104-2109.
Starcher, B. C., C. H. Hill, and J. G. Madaras. 1980. Effect of zinc deficiency of bone collagenase and collagen turnover. J. Nutr. 110: 2095-2102.
Starcher, B. C., J. G. Glauber, and J. G. Madaras. 1980. Zinc absorption and its relationship to intestinal metallothionein. J. Nutr. 110: 1391-1397.
Steel, L., and R. J. Cousins. 1985. Kinetics of zinc absorption by luminally and vascularly perfused rat intestine. Am. J. Physiol. 248: G46-G53.
Swanson, C. A., and J. C. King. 1982. Zinc Utilization in Pregnant and Nonpregnant Women Fed Controlled Diets Providing the Zinc RDA. J. Nutr. 112: 667-707.
Swinkels, J. W. G. M., E. T. Kornegay, W. Zhou, M. D. Lindemann, K. E. Webb, and M. W. A. Verstegen. 1994b. In vivo assessment of rate and site of apparent zinc, copper and iron absorption as affected by Zn source using Zn depleted pigs. J.Anim. Sci. submitted.
Tabatabaie, M. M., H. Aliarabi, A. A. Saki, A. Ahmadi, and S. A. Hosseini Siyar. 2007. Effect of different sources and levels of zinc on egg quality and laying hen performance. Pakistan J. Biol. Sci. 10(19): 3476-3478.
Taylor, C. G., and T. M. Bray. 1991. Effect of hyperoxia on oxygen free radical defense enzymes in the lung of zinc-deficient rats. J. Nutr. 121: 460-466.
Tucker, H. F., and W. D. Salmon. 1955. Parakeratosis or zinc deficiency disease in the pig. Proc. Soc. Exp. Biol. Med. 88: 613.
Underwood, E. J. 1962. Zinc. In: Trace Elements in Human and Animal Nutrition, 2nd ed. E. J. Underwood, ed. Academic Press, New York. pp. 157-186.
Underwood, E. J. 1977. Trace Elements in Human and Animal Nutrition, 4th ed. London: Academic Press.
Van Campen, D. R., and E. A. Mitchell. 1965. Absorption of Cu64, Zn65, Mo99, and Fe59 from ligated segments of the rat gastrointestinal tract. J. Nutr. 86: 120-124.
Virden, W. S., J. B. Yeatman, S. J. Barber, C. D. Zumwalt, A. B. Ward, and M. T. Kidd. 2003. Hen mineral nutrition impacts progeny livability. J. Appl. Poult. Res., 12: 411-416.
Virden, W. S., T. L. Ward, R. F., Wideman, Jr., and M. T. Kidd. 2002. Cardio-pulmonary evaluations of cold-challenged chicks from parents fed supplemental zinc and manganese amino acid complexes. Poult. Sci. 81(Suppl. 1): 38. (Abstr.)
Watkins, K. L., and L. L. Southern. 1993. Effect of dietary sodium zeolite A on zinc utilization by chicks. Poult. Sci. 72: 296-305.
Wapnir, R. A., J. A, Garcia-Aranda, D. E. K. Mevorach, and F. Lifshitz. 1985. Differential absorption of zinc and low-molecular-weight ligands in the rat gut in protein-energy malnutrition. J. Nutr. 115: 900-908.
Wastney, M. E., and R. I. Henkin. 1989. Calculation of zinc absorption in humans using tracers by fecal monitoring and a compartmental approach. J. Nutr. 119: 1438-1443.
Wedekind, K. J., A. E. Hortin, and D. H. Baker. 1992. Methodology for assessing zinc bioavailability: efficacy estimates for zinc-methionine, zinc sulfate and zinc oxide. J. Anim. Sci. 70: 178-187.
Williams, C. H., D. J. David, and O. Iismma. 1962. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometer. J Agric. Sci. 59: 381-385.
Williams, S. M., R. D. Miles, M. D. Ouart, and D. R. Campbell. 1989. Shortterm high-level zinc feeding and tissue zinc concentration in mature laying hens. Poult. Sci. 68: 539-545.
Yi, Z., E. T. Kornegay, and D. M. Denbow. 1996. Supplemental microbial phytase improves zinc utilization in broilers. Poult. Sci. 7 5: 540-546.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔