(18.206.238.77) 您好!臺灣時間:2021/05/12 01:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王森樺
研究生(外文):Sen-Hua Wang
論文名稱:高低速二段式冷卻水塔與變頻式冷卻水塔運轉成本之分析比較-以12吋半導體廠為例
論文名稱(外文):Operating Cost Comparison of High/Low Two-Speed Cooling Tower and Variable-Frequency Drives Cooling Tower-In a 12-inch Semiconductor Factory
指導教授:沈君洋
指導教授(外文):Jung-Yang San
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:89
中文關鍵詞:高低速二段式冷卻水塔變頻式冷卻水塔運轉成本節能
外文關鍵詞:high/low two-speed cooling towerVFD cooling toweroperating costsenergy saving
相關次數:
  • 被引用被引用:4
  • 點閱點閱:520
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
半導體產業為相當耗能之產業,加強節約能源的工作,即可降低
產品的生產成本,如此在同業的競爭中才能有更高獲利的空間。
在半導體產業之廠務系統中,變頻器為廣泛使用之節能器具,本研究記錄12吋半導體廠冰水系統中使用高低速二段式冷卻水塔及變頻式冷卻水塔等兩種不同控制運轉模式下之各項運轉成本,此運轉成本包括冷卻水塔風扇馬逹運轉電費、冷卻水塔補水費用、冷卻水塔排放廢水處理費用、水質處理加藥費用等四項。
分時量測記錄之期間為一年,記錄2008年1月至12月中冷卻水塔每月之月平均一冷凍噸所需之運轉成本。其結果為變頻式冷卻水塔節能效益在夏季時較低,但在秋冬季節時效益較高,與高低速二段式冷卻水塔比較,年平均每月節能效益為13.5%。此研究建議將高低速二段式改裝為變頻式,其改裝費用之運轉回收年限,經計算為5.5年。
Semiconductor is a highly energy-consuming industry. In order to reduce production cost, energy saving issues should be highly addressed. In semiconductor facilities, VFD (Variable-Frequency Drives) is widely used as a technique for energy-saving. In this work, detailed operating -cost items for two sets of cooling towers with two different control modes in the cooling system of a 12-inch semiconductor factory were analyzed. One of the two control modes is high/low two-speed, the other is VFD. The operating costs include power of fan motor, make-up water in cooling towers, processing fees for waste water drainage disposal and water treatment dosing. Time period for the measurement is one year. The average operating costs per RT (ton of refrigeration) per month were recorded from January 2008 to December 2008. The result shows that, in terms of energy saving, the VFD cooling tower is more effective in winter than in summer. Comparing the cooling towers operating at the VFD mode with those operating at the high/low two-speed mode, the average saving of the operating cost for the former is about 13.5% per month. This analysis recommends to substitute the high/low two-speed controller with the VFD controller. The payback time for this substitution is 5.5 years.
誌謝 ............................................. i
中文摘要 ............................................. ii
英文摘要 ............................................. iii
目錄 ............................................. iv
表目錄 ............................................. vii
圖目錄 ............................................. viii
符號說明 ............................................. x

第一章 緒論......................................... 1
1.1 研究動機與目的............................... 1
1.2 研究架構與步驟............................... 3
1.3 內容大綱..................................... 5

第二章 冷卻水塔概論................................. 7
2.1 冷卻水塔原理................................. 7
2.2 冷卻水塔種類................................. 8
2.2.1 通風方式分類................................. 8
2.2.2 水和空氣的接觸方式分類....................... 11
2.2.3 水和空氣的流向方式分類....................... 13
2.3 冷卻水塔水損................................. 15
2.3.1 蒸發損失..................................... 15
2.3.2 飛散損失..................................... 15
2.3.3 濺灑損失..................................... 16
2.3.4 排放損失..................................... 16
2.4 冷卻水塔水處理加藥系統....................... 17
2.4.1 結垢形成原因與影響........................... 18
2.4.2 腐蝕形成原因與影響........................... 18
2.4.3 微生物形成原因與影響......................... 19
2.4.4 外來物質形成原因與影響....................... 21
2.4.5 泡沫物質形成原因與影響....................... 21
2.4.6 冷卻水系統處理藥量計算....................... 22
2.4.7 冷卻水塔水處理加藥控制設備及控制模式......... 22

第三章 變頻器原理及型式............................. 24
3.1 變頻器之原理................................. 24
3.2 變頻器的型式................................. 25
3.3 變頻器規格與交流電動機的匹配選擇............. 26
3.4 變頻器安裝與配線............................. 29
3.5 變頻器參數設定............................... 33
3.6 變頻器於空調系統上之應用..................... 36

第四章 量測建物選取分析............................. 37
4.1 量測建物背景................................. 37
4.2 量測建物冰水系統架構差異分析................. 38
4.3 高低速二段式與變頻式冷卻水塔差異比較......... 42
4.4 A廠高低速二段式風扇冷卻水塔控制模式.......... 43
4.5 B廠變頻式風扇冷卻水塔控制模式................ 46
4.6 設備規格介紹................................. 49
4.6.1 冰水主機..................................... 49
4.6.2 冷卻水塔..................................... 51

第五章 測量結果分析................................. 53
5.1 測量及資料記錄方法........................... 53
5.1.1 冷卻水塔風扇馬逹之運轉電費................... 53
5.1.2 冷卻水塔之補水費用........................... 53
5.1.3 冷卻水塔排放廢水之處理費用................... 54
5.1.4 水處理之加藥費用............................. 55
5.2 測量儀器之介紹............................... 56
5.3 資料收集方式................................. 58
5.4 冷卻水塔耗電統計分析......................... 63
5.4.1 A廠冷卻水塔耗電統計.......................... 63
5.4.2 B廠冷卻水塔耗電統計.......................... 67
5.5 冷卻水塔補水量統計分析....................... 71
5.5.1 A廠冷卻水塔補水量統計........................ 71
5.5.2 B廠冷卻水塔補水量統計........................ 72
5.6 冷卻水塔排放水量統計分析..................... 74
5.6.1 A廠冷卻水塔排放水量統計...................... 74
5.6.2 B廠冷卻水塔排放水量統計...................... 75
5.7 冷卻水塔水質處理加藥系統費用分析............. 76
5.7.1 A廠冷卻水塔水質處理加藥系統費用分析.......... 76
5.7.2 B廠冷卻水塔水質處理加藥系統費用分析.......... 78
5.8 A、B廠冷卻水塔運轉費用總計................... 80
5.8.1 A廠冷卻水塔運轉費用總計...................... 80
5.8.2 B廠冷卻水塔運轉費用總計...................... 81
5.8.3 A、B廠冷卻水塔運轉費用差異比較............... 81
5.9 高低速二段式改裝為變頻式之成本回收計算....... 84
第六章 結論與建議................................... 86
6.1 結論......................................... 86
6.2 建議......................................... 87

參考文獻 ............................................ 88
[1] Operating Manual, “Adjustable Frequency AC Drive User Manual”, Allen-Bradley Co., Ltd., 2005.
[2] Operating Manual, “Operating Instructions User Documentation- SIEMENS MICROMASTER 440”, SIEMENS Co., Ltd., 2003.10.
[3] Doug Smith, “Variable Frequency Drives & Cooling Towers”, http://www.joliettech.com/variable-frequency-drives_and_cooling-towers.htm.
[4] Timothy Keister, “Cooling Water Management Basic Principles and Technology”, 2005.
[5] Chi-Yi Wang, “Cooling tower for automatically adjusting flow rates of cooling water and cooling air with variations of a load”, United States Patent, 2002.09.
[6] 林助訓,“變壓變頻電源饋入感應馬達之冷凍空調系統最佳節能控制”,修平學報,第十一期,2005年9月。
[7] 財團法人台灣綠色生產力基金會,“變頻器應用Q&A節能技術手冊”。
[8] 林建儒,“變頻器教育訓練手冊”,2006年1月。
[9] 謝博丞,“冷卻水塔之節水策略”,碩士論文,成功大學,2004年5月。

[10] 陳清良,“半導體廠冰水主機與冷卻水塔最佳化運轉”,碩士論文,台北科技大學,2004年。
[11] 吳志榮,“冷凍空調冷卻水路系統的熱性能分析”,碩士論文,中山大學,2006年6月。
[12] 姚庭光,“冷卻水塔教育訓練手冊”,2008年4月。
[13] 許家榮,“降載下冷卻水塔之節水分析”,碩士論文,成功大學,2008年7月。
[14] 黃錦文,“冷卻水塔槪說與如何節能”,能源資訊網,節能專家園地。
[15] 林進煌,“變頻冷卻水塔之節能研究”,碩士論文,台北科技大學,2006年。
[16] 陳國珍,“冷卻塔撰鑑”,良機國際集團,2003年3月。
[17] 張懿中,“化學水質處理系統介紹”,2008年5月。
[18] 游博文,“大型海洋生物博物館儲冷式空調系統能源效益改善分析”,碩士論文,中山大學,2005年6月。
[19] 王文博,“冷凍工程,下冊”,大中華圖書公司,1972年。
[20] 羅金枝,“冷卻水塔熱性能之數據計算分析與實驗驗證”,碩士論文,中原大學,2006年1月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔