(3.92.96.236) 您好!臺灣時間:2021/05/07 16:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王啟光
研究生(外文):Chi-Guang Wang
論文名稱:新型奈米碳管紅外光感測元件製備
論文名稱(外文):Development of a novel single-walled carbon nanotube infrared sensor
指導教授:王國禎
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:61
中文關鍵詞:紅外線感測器陽極氧化鋁膜版類金氧場效電晶體
外文關鍵詞:IR sensorAAOMOSFET
相關次數:
  • 被引用被引用:2
  • 點閱點閱:109
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出以陽極氧化鋁膜(Anodic Alumina Oxide, AAO)為基材,在陽極氧化鋁膜板背面以微影蝕刻製作寬為500m、長度1.2 cm之微流道,再於微流道中沉積單壁奈米碳管(SWNTs),接著於基板上相對於微流道之另一面濺鍍一層金薄膜為閘極,然後在奈米碳管上澆注一層高分子聚二甲基矽氧烷(PDMS)當作保護層,隔絕SWNT與外界環境之接觸,接著在PDMS上濺鍍一層氧化銦錫(ITO)薄膜做為閘極之對電極,產生類金氧場效電晶體(MOSFET)效應,開發新型紅外線感測器,而感測元件之電阻可藉由微流道之尺寸以及奈米碳管之沈積量精確控制。光電流量測結果驗證本研究所提之紅外線感測器確實可有效在常溫常壓、低光源強度(17 W/cm2)以及低外加電壓(VDS = 0.01V) 下感測紅外光,在-0.2V閘極偏壓下感測元件之開關紅外線電導變化為2.11 %,其光反應時間可達0.5sec。
In this research, a metal oxide semiconductor field effect transistor (MOSFET) like infrared (IR) sensing method is presented. The orderly uneven barrier-layer surface of an anodic aluminum oxide (AAO) membrane was used as a substrate. The thickness of the barrier-layer was reduced by phosphoric acid etching. Following, a microchannel was transferred to the barrier-layer by photolithographic process. Single wall carbon nanotubes (SWNTs) were deposited into the microchannel as sensing element. A gold thin film that served as the gate electrode was sputtered on the opposite side of the barrier-layer of the AAO substrate. A thin layer of polydimethylsiloxane (PDMS) was then casted on the SWNTs to insulate the SWNTs from the surrounding ambiance. A thin film of indium tin oxide (ITO) was sputtered on the PDMS layer as the counter electrode of the gate electrode. The conductance of the sensing element could be precisely controlled by the width of the microchannel and the amount of the deposited SWNTs. Experiments demonstrated that the proposed MOSFET like IR sensor could effectively sense IR signal in the air at room temperature under a very weak power intensity (17 W/cm2) of IR illumination and an 0.01 V applied drain-source voltage. A 0.5 sec photocurrent response and a 2.11 % of conductivity increasing of the sensing element were measured, respectively.
目錄
致謝 III
中文摘要 IV
ABSTRACT V
圖目錄 VIII
第一章 緒論 1
1.1研究背景與動機 1
1.2論文大綱 4
第二章 紅外線感測器 5
2.1 光感測器簡介 5
第三章 陽極氧化鋁膜的製備 10
第四章 新型奈米碳管紅外光感測元件 25
4.1 元件設計 25
4.2元件製作 26
4.3 光電流量測 37
4.3.1實驗架構 37
4.3.2 量測實驗 38
第五章 結論與未來展望 54
5.1 結論 54
5.2 未來展望 55
參考文獻 58

圖目錄

圖3. 1 陽極氧化鋁膜製作流程 11
圖3. 2 陽極氧化鋁膜試片 11
圖3. 3鋁片於鐵氟龍夾具內之示意圖 12
圖3. 4電解拋光實驗裝置圖 13
圖3. 5拋光反應示意圖 14
圖3. 6純鋁試片表面拋光前之AFM圖 14
圖3. 7純鋁試片表面拋光後之AFM圖 15
圖3. 8陽極處理實驗圖 16
圖3. 9陽極處理反應示意圖 16
圖3. 10經草酸陽極處理後的鋁試片表面 17
圖3. 11移除鋁基材示意圖 18
圖3. 12鋁基材移除前後之陽極氧化鋁膜 19
圖3. 13阻障層生成示意圖 20
圖3. 14未去除阻障層的氧化鋁膜側面 21
圖3. 15未去除阻障層的陽極氧化鋁膜背面SEM圖 21
圖3. 16去除阻障層反應示意圖 22
圖3. 17以30wt%之磷酸去阻障層之SEM圖 23
圖3. 18以30wt%之磷酸去阻障層85分鐘後之氧化鋁背面SEM圖 23
圖3. 19擴孔反應示意圖 24
圖3. 20經擴孔處理後之陽化鋁膜表面 24
圖4. 1新型奈米碳管紅外光感測元件示意圖 25
圖4. 2新型奈米碳管紅外光感測元件之製作流程 27
圖4. 3陽極氧化鋁膜SEM圖 28
圖4. 4背阻障浸泡磷酸40分鐘之SEM圖 29
圖4. 5塗布光阻後之基板示意圖 30
圖4. 6顯影後的基板示意圖 31
圖4. 7蝕刻後的陽極氧化鋁膜;(a)示意圖(b)SEM上視圖(c)(d)側視圖 32
圖4. 8 20μm × 30μm 之奈米孔洞溝槽SEM圖 33
圖4. 9奈米碳管溶液滴定於AAO奈米孔洞溝槽中 34
圖4. 10濺鍍上金薄膜後之紅外線感測器 35
圖4. 11澆注PDMS的紅外光感測器 35
圖4. 12濺鍍ITO的感測器示意圖 36
圖4. 13實驗裝置示意圖 37
圖4. 14光源通過濾光片後之功率與距離關係圖 38
圖4. 15不同試片之I-V曲線 39
圖4. 16金屬與奈米碳管能帶結構圖 40
圖4. 17光電流發生機制 40
圖4. 18光源亮暗示意圖 41
圖4. 19未覆蓋PDMS絕緣層與ITO電極之光電流量測結果 42
圖4. 20覆蓋PDMS後之光電流量測結果 43
圖4. 21未加電壓之I-T曲線 44
圖4. 22施加0.01V之I-T圖 44
圖4. 23施加電壓0.02V之I-T圖 45
圖4. 24施加電壓0.03V之I-T圖 45
圖4. 25覆蓋PDMS後之平均電流I-V曲線 46
圖4. 26光照在感測器負極的I-T圖 47
圖4. 27類金氧場效電晶體之電路示意圖 48
圖4. 28 VDS = 0.01V,VGS =0.1V,光照於汲極之光電流量測結果 49
圖4. 29 VDS = 0.01V,VGS =0.2V,光照於汲極之光電流量測結果 49
圖4. 30 VDS = 0.01V,VGS =0.3V,光照於汲極之光電流量測結果 50
圖4. 31 VDS = 0.01V,VGS =0.4V,光照於汲極之光電流量測結果 50
圖4. 32 VDS = 0.01V,VGS =-0.1V,光照於汲極之光電流量測結果 51
圖4. 33 VDS = 0.01V,VGS =-0.2V,光照於汲極之光電流量測結果 51
圖4. 34 VDS = 0.01V,施加不同VGS之光電流量測結果 52
圖4. 35 VDS = 0.01V,施加不同VGS之光電流量測結果 53
圖5. 1藥物釋放裝置製程 57
參考文獻
[1]S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354 (1991).
[2]H. W. Kroto, J. R. Heath, S. C. O`Brien, R. F. Curl, R. E. Smalley, “C60: Buckminsterfullerene,” Nature 318, 162 (1985).
[3]W. I. Park, G. C. Yi, M. Kim, and S. J. Pennycook, “Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures,” Adv. Mater. 15 (6), 526-529 (2003).
[4]Y. T. Pang, G. W. Meng, L. D. Zhang, W. J. Shan, C. Zhang, X. Y. Gao, A. W. Zhao, and Y. Q. Mao, “Electrochemical synthesis of ordered alumina nanowire arrays,” J Solid State Electrochem 7, 344-347 (2003).
[5]G. B. Ji, W. Chen, S. L. Tang, B. X. Gu, Z. Li, and Y. W. Du, “Fabrication and magnetic properties of ordered 20 nm Co–Pb nanowire arrays,” Solid State Communications 130, 541-545 (2004).
[6]M. Mikhaylova, M. Toprak, D. K. Kim, Y. Zhang, and M. Muhammed, “Nanowire formation by electrodeposition in modified nanoporous polycrystalline anodic alumina templates,” Mat. Res. Soc. Symp. Proc. 704, 6.34.1-6.34.6 (2002).
[7]Y. Fanga, D. Agrawala, G. Skandanb, and M. Jainb, “Fabrication of translucent MgO ceramics using nanopowders,” Materials Letters 58, 551– 554 (2004).
[8]X. Wang, G. R. Han, “Fabrication and characterization of anodic aluminum oxide template,” Microelectronic Engineering 66, 166–170 (2003).
[9]C. R. Martin “Nanomaterials: a membrane-based systhetic approach,” Science, 266, 1961-1966. (1994).
[10]H. Masuda and K. Fukuda, “Alumina nanoporous structures,” Science, 268, 1466-1468 (1995).
[11]P. Yang, Y. Wu, R. Fang, “Inorganic semiconductor nanowires,” Int. J. Nanosci, 1:1-39. (2002).
[12]P. I. Wang, Y. P. Zhao, G. C. Wang, T. M. Lu, “Novel growth mechanism of single crystalline Cu nanorods by electron beam irradiation,” Nanotechnology, 15, 218-222. (2004).
[13]I. Lisiecki, H. Sack-Kongehl, K. Weiss, J. Urban, M. P. Pileni, “Annealing process of anisotropic copper nanocrystals. 2. rods,” Langmuir, 16, 8807-8808. (2000).
[14]T. Gao, G.W. Meng, J. Zhang, Y. W. Wang, C. H. Liang, J. C. Fan, L. D. Zhang, “Template synthesis of single-crystal Cu nanowire arrays by electrodeposition,” Materials Science and Processing, 73, n 2, 251-254. (2001).
[15]M. P. Zach, K. H. Ng, R. M. Penner, “Molybdenum nanowires by electro deposition,” Science, 290, 2120-2123. (2000).
[16]H. W. Wang, C. F. Shieh, H. Y. Chen, W. C. Shiu, B. Russo, G. Cao, “Standing [111] gold nanotube to nanorod arrays via template growth,” Nanotechnology, 17, 2689-2694. (2006)
[17]M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, R. C. Haddon, ”Spectroscopic Study of the Fermi Level Electronic Structure of Single-Walled Carbon Nanotubes,” Nano Lett., 2, 155-159, (2002)
[18]M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and Ph. Avouris., ” Photoconductivity of Single Carbon Nanotubes, ” Nano Lett., 3, 1067-1071, (2003)
[19]I. A. Levitsky, and W. B. Euler, ”Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination, ” Appl. Phys. Lett., 83, 1857-1859, (2003)
[20]A. Fujiwara, Y. Matsuoka, Y. Matsuoka, H. Suematsu, N. Ogawa, K. Miyano, H. Kataura, Y. Maniwa, S. Suzuki Y. Achiba, ”Photoconductivity of single-wall carbon nanotube films, ” Carbon, 42, 919-922, (2004).
[21]M. E. Itkis, F. Borondics, A. Yu, R. C. Haddo, “Bolometric Infrared Photoresponse of Suspended Single-Walled Carbon Nanotube Films, ” Science, 312, 21, 413-416, (2006).
[22]S. Lu and B. Panchapakesan, “Photoconductivity in single wall carbon nanotube sheets, ” Nanotechnology, 17, 1843-1850, (2006).
[23]D. H. Lien, W. K. Hsu, H. W. Zan, N. H. Tai, C. H. Tsai, ” Photocurrent Amplification at Carbon Nanotube-Metal Contacts, ” Advanced Materials, 18, 98-103, (2006)
[24]B. Pradhan, K. Setyowati, H. Liu, D. H. Waldeck, and J. Chen, ”Carbon Nanotube-Polymer Nanocomposite Infrared Sensor, ” Nano Lett., 8, 4, 1142-1146, (2008).
[25]B. Sankapal, K. Setyowati, J. Chen, H. Liu, ” Electrical properties of air-stable, iodine-doped carbon-nanotube–polymercomposites, ” Appl. Phys. Lett., 91, 173103, (2007).
[26]M. Shimand, G. P. Siddons, ” Photoinduced conductivity changes in carbon nanotube transistors, ” Appl. Phys. Lett. 93, 3564, (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔