跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 21:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾秉國
研究生(外文):Ping-Kuo Tseng
論文名稱:利用摺疊型微流晶片提升蕪菁黃色嵌紋病毒(TYMV)於感測平面之接附密度與覆蓋均勻度
論文名稱(外文):Improving adhesion density and coverage uniformity of Turnip yellow mosaic virus (TYMV) on the sensor’s surface using folded microfluidic channels
指導教授:吳嘉哲
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:84
中文關鍵詞:摺疊型微流浸泡法MUANCD4TYMV
外文關鍵詞:T-shapedU-shapedW-shapedmicrofluidic channeldipping methodMUANCD4TYMV
相關次數:
  • 被引用被引用:2
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
傳統的微生物分子檢測中,其抗原與抗體的接附方法均採用浸泡法。由於布朗運動與擴散效應,微生物分子於接附時會有反應不均勻的現象,本研究利用摺疊型微流晶片來改善上述缺點。
首先藉由有限元素模擬軟體(COMSOL Multiphysics)分析所設計之微流道,並且計算每個區域之流速與流線。利用螢光粒子動態實驗來瞭解微小分子在微流場內移動的軌跡。接著利用傳統浸泡法和摺疊型微流道來接附MUA分子和NCD4螢光於感測晶片表面,並利用共軛焦螢光顯微鏡來量測接附效果。最後以NCD4螢光接附之結果為依據,實際接附TYMV病毒來量測接附效果。
由NCD4螢光接附實驗結果得知,以傳統浸泡法之實驗數據為基準,本論文所設計之摺疊型微流道,平均螢光強度之相對倍率最大為2.67倍;平均螢光覆蓋率之相對倍率最大為2.55倍;螢光覆蓋均勻度最大為80-90%。由TYMV病毒接附實驗結果得知,以傳統浸泡法之實驗數據為基準,本論文所設計之摺疊型微流道,平均螢光強度之相對倍率為3.59倍;平均螢光覆蓋率之相對倍率為19.13倍;螢光覆蓋均勻度為70-90%。相對於傳統浸泡法,摺疊型微流道可以大幅提升MUA、NCD4與TYMV病毒在感測表面的接附密度和覆蓋均勻度。
Recently, there has been an increasing interest to develop rapid, reliable and low-concentration detection methods of microorganisms involved in bioterrorism, food poisoning, and clinical problems. How to detect virus at concentration below the threshold will be challenging with respect to specificity, selectivity, and sensitivity. Among all parameters, sensitivity is probably the most critical consideration. If the sensitivity is not satisfied for real-time detection, researchers need to duplicate numerous numbers of viruses. However, it will substantially increase processing times and experimental hazard. To increase the sensitivity of virus sensors, this paper discusses how to improve adhesion density and coverage uniformity of linkers and virus on the sensor’s surface using T-shaped, U-shaped and W-shaped microfluidic channels. In the future, researcher could use emerging technology, such as PT-PCR, QCM, C-V and I-V measurements, etc, to detect viruses on sensor’s surface.
Usually microorganisms, molecules, or viruses in the fluidic environment are at very low Reynolds numbers because of tiny diameters. At very low Reynolds numbers, viscous forces of molecules and viruses will dominate. Those micro- or nanoparticles will stop moving immediately when flows cease and drag forces disappear, those phenomena were discovered by the fluorescent particle experiment. Of course, molecules and viruses are still subject to Brownian motion and move randomly. In order to increase the adhesion density of micro- and nanoparticles on sensor’s surface, designs of the flow movements in microfluidic channel is proposed.
Adhesion density of linker 11-mercaptoundecanoic acid (MUA) and Turnip yellow mosaic virus (TYMV) with specific quantum dots were measured by confocal microscope. Fluorescent intensity and coverage of quantum dots are used to identify the adhesion density quantitatively. Results show that TYMV and MUA layers disperse randomly by dipping method. Fluorescent intensity of quantum dots; i.e. relative to the amount of MUA and TYMV; were 2.67A.U. and 19.13A.U., respectively, in W-shaped microfluidic devices to contrast just 1.00A.U. and 1.00A.U., respectively, by dipping method. Coverage of MUA and TYMV were 80~90% and 70~90%, respectively, in W-shaped microfluidic channel to contrast just 20~50% and 0~10%, respectively, by dipping method.
致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 IIX
表目錄 XIVV
第一章 緒論 1
1.1 研究動機 1
1.2 研究目標 5
1.3 研究方法與流程 7
1.4 文獻回顧 8
1.5 論文架構 11
第二章 相關理論 12
2.1 流體力學(Hydrodynamics) 13
2.1.1 雷諾數(Reynolds number) 13
2.1.2 場力與摩擦阻力(Field force & Friction) 14
2.2 分子動力學(Molecular dynamics) 16
2.2.1 擴散現象(Diffusion) 16
2.2.2 聚集現象(Aggregation) 19
2.2.3 靜電作用(Electrostatic interaction) 20
2.2.4 凡德瓦爾力(Van der Waals force) 22
2.3 分子生物學(Molecular Biology) 24
2.3.1 水合作用(Hydration) 25
2.3.2 抗原-抗體反應(Antigen-Antibody interaction) 26
2.4 分析TYMV病毒於微流體之力學 26
第三章 微流道結構設計與製作 28
3.1 微流道流場模擬 29
3.1.1 COMSOL Multiphysics介紹 29
3.1.2 COMSOL Multiphysics模態分析流程 30
3.1.3 模型建構與結果 31
3.1.3.1 T型微流道 33
3.1.3.2 U型微流道 36
3.1.3.3 W型微流道 38
3.1.3.4 整合討論與實驗預測 41
3.2 微流道製程 42
3.3 微流道循環系統 45
3.4 表面形貌量測 46
3.5 螢光流線實驗 47
3.5.1 T型微流道 47
3.5.2 U型微流道 49
3.5.3 W型微流道 50
第四章 提昇檢體接附效率 51
4.1 MUA配體介紹 52
4.2 NCD4螢光檢體介紹與測試 53
4.2.1 NCD4螢光接附製程 55
4.2.2 NCD4螢光接附定量分析 56
4.2.2.1 傳統浸泡法 58
4.2.2.2 T型微流道 59
4.2.2.3 U型微流道 60
4.2.2.4 W型微流道 62
4.2.2.5 覆蓋均勻度與效率比較 65
4.3 TYMV病毒檢體介紹與測試 67
4.3.1 EDC/NHS配體介紹 69
4.3.2 TYMV病毒接附製程 70
4.3.3 TYMV病毒接附之定量分析 72
4.3.3.1 傳統浸泡法 73
4.3.3.2 W型微流道 74
4.3.3.3 覆蓋均勻度與效率比較 76
第五章 結論與未來展望 78
5.1 結論 78
5.2 未來展望 80
參考文獻 81
1. J.T. Staley, R.P. Gunsalus, S. Lory and J.J. Perry, “Microbial Life,” Sinauer Associates, 2007.
2. M. Varshneya, Y. Li, “Interdigitated Array Microelectrodes Based Impedance Biosensors for Detection of Bacterial Cells,” Biosensors and Bioelectronics, v24, pp.2951–2960, 2009.
3. 侯孟助,「新型病毒感測器之可行性分析」,碩士論文,國立中興大學機械工程研究所,2008。
4. Y. Lee, G. Lim, W. Moon, “A Self-excited Microcantilever Biosensor Actuated by PZT using the Mass Micro Balancing Technique,” Sensors and Actuators A, v130, p105-110, 2006.
5. A.D. Stroock, K.W. Stephan, A. Ajdari, I. Mezic,H.A. Stone and G.M. Whitesides, “Chaotic Mixer for Microchannels,” Science, pp.647-651, 2002.
6. M.R. King, “Cell-surface Adhesive Interactions in Microchannels and Microvessels,” Nanoscale and Microscale Thermophysical Engineering, v9, pp.255-264, 2005.
7. H. Wang, J.H. Kim, M. Zou, S. Tung, and J.W. Kim, “Adhesion Study of Escherichia coli Cells on Nano-/Microtextured Surfaces in a Microfluidic System,” IEEE Transactions on Nanotechnology, v7, pp.573-579, 2008.
8. I.N. Serdyuk, N.R. Zaccai and J. Zaccai, “Methodsin Molecular Biophysics: Structure, Dynamics, Function,” Cambridge University Press, New York, pp.247-516, 2005.
9. 高濂、孫靜、劉陽橋,「奈米粉體的分散及表面改性」,五南圖書出版股份有限公司,2005。
10. 游文淮,「以離散元素法模擬膠粒粒間作用與布朗運動之研究」,碩士論文,國立台灣大學土木工程學研究所,2003。
11. C.W. Hong, “From Long-range Interaction to Solid-body Contact Between Colloidal Surface During Forming,” Journal of the European Ceramic Society, v18, pp.2167-2169, 1998.
12. P. Cherukat, J.B. McLaughlina and D.S. Dandyb, “A Computational Study of the Inertial Lift on a Sphere in a Linear Shear Flow Field,” International Journal of Multiphase Flow, v25, pp.15-33, 1999.
13. J.P. Matas, J.F. Morris and E. Guazzelli, "Lateral Forces on a Sphere," Oil & Gas Science and Technology, v59, pp.59-70, 2004.
14. D. Leighton and A. Acrivos, “The Lift on a Small Sphere Touching a Plane in the Presence of a Simple Shear Flow,” Journal of Applied Mathematics and Physics, v36, 1985.
15. J. Kakkassery, “Organization and Electrochemical Reactivity at Molecular Interfaces,” 2004.
16. E.M. Purcell, “Life at Low Reynolds Number,” American Journal of Physics, v45, pp.3-11, 1977.
17. 林岳峰,「大氣電漿系統表面改質技術及其微流體生物晶片製程之應用」,碩士論文,國立中山大學機械與機電工程研究所,2005。
18. 陳宣克,「電子束微影製作三維非平面微結構及結構表面改質」,碩士論文,國立中央大學化學工程與材料工程研究所,2003。
19. 田育章,「固定生醫單體之生物活性與結構穩定性之探討」,博士論文,私立中原大學醫學工程研究所,2002。
20. N.S. DeSilva, “Interactions of Surfactant Protein D with Fatty Acids,” Cellular and Molecular Biology, v29, pp.757-770, 2003.
21. Z. Grabarek and J. Gergely, “Zero-length Crosslinking Procedure with the Use of Active Esters,” Analytical Biochemistry, v185, pp.131-135, 1990.
22. J.V. Staros, R.W. Wright and D.M. Swingle, “Enhancement by N-hydroxysulfosuccinimide of Water-soluble Carbodiimide- mediated Coupling Reactions,” Analytical Biochemistry, v156, pp.220-222, 1986.
23. M. Taniuchi, “Induction of Nerve Growth Factor Receptor in Schwann Cells After Axotomy,” Proceedings of the National Academy of Sciences, v83, 4094-4098, 1986.
24. T.W. Dreher, C.H. Tasi and J.S. Skuzeski, “Aminoacylation Identity Switch of Turnip Yellow Mosaic Virus RNA From Valine to Methionine Results in an Infectious Virus,” Proceedings of the National Academy of Sciences, pp.12212-12216, 1993.
25. K.L. Bransom, J.J. Weiland, C.H. Tasi and T.W. Dreher, “Coding Density of the Turnip Yellow Mosaic Virus Genome: Roles of the Overlapping Coat Protein and p206-readthrough coding regions,” Virology, v206, pp.403-412, 1995.
26. P. Tabeling, “Introduction to Microfluidics,” Oxford University Press, New York, pp.70-188, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top