跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 20:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宛螢
研究生(外文):Wan-Ying Lin
論文名稱:油菜植株於淹水逆境下生長及生理反應
論文名稱(外文):Physiological Responses of Rapes (Brassica rapa L.) to Waterlogging Stress
指導教授:宋妤
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:74
中文關鍵詞:油菜淹水脯胺酸抗氧化發酵作用
外文關鍵詞:rapewaterloggingprolineantioxidasefermentation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:369
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
七個油菜品種種植於田間及網室進行淹水試驗,‘夏霸王’和‘夏樂天’於淹水後葉片之垂葉率、黃化率低且無死亡率,鮮乾重減少16.4 -19.6 %,於排水六天後植株生長復原佳,為耐淹水品種;‘福祿甜’和 ‘さおり’生長明顯受淹水影響,鮮乾重顯著減少26.5-42 %,且死亡率高,於排水六天後未恢復生長情況,故為不耐淹水品種。
‘夏霸王’和‘夏樂天’於淹水下植株之光合作用皆顯著高於‘福祿甜’和‘さおり’,前者減少10-16.7 %,後者減少達94 %。不耐淹水品種之光合作用、蒸散作用及氣孔導度顯著受到抑制。‘夏霸王’於淹水後,其乙烯及呼吸率顯著增加達最高,高於對照組的25倍。‘さおり’則於淹水後乙烯顯著增加,‘福祿甜’和‘夏樂天’則是呼吸率顯著增加,此三品種於排水後之乙烯及呼吸率皆無顯著差異。‘夏霸王’和‘さおり’於淹水後細胞間乙烯濃度增加,但於排水後會減少;‘夏樂天’則是淹水後與對照組無顯著差異,於排水六天後顯著增加;‘福祿甜’於淹水及排水後均顯著增加,並高於對照組。
所有品種於淹水後葉片中全可溶性糖、總游離氨基酸、脯胺酸含量皆增加,耐淹水品種於排水二天後其含量均顯著高於不耐淹水品種,以脯胺酸含量差異最為顯著,所有品種澱粉含量於排水六天後有增加現象。耐淹品種之可溶性蛋白質於淹水後無顯著變化,‘福祿甜’則是顯著減少且排水四天後恢復。不耐淹水品種於淹水後葉片中總過氧化物及MDA含量皆增加4倍,顯著高於耐淹水品種,電解質滲漏率增加2.5倍。‘夏霸王’於淹水後CAT、APX活性和抗壞血酸含量皆增加,不耐淹水品種則APX和POD活性增加。
水耕油菜於低氧下,不耐淹水品種較耐淹水品種地上部和地下部鮮乾重顯著減少,四品種根部全可溶性糖皆增加,耐淹水者量顯著高於不耐淹水者,澱粉含量於耐淹水品種顯著減少,不耐淹水品種則與對照組無顯著差異。在根之發酵作用酵素方面,LDH和ADH活性均被提高,以‘さおり’之ADH活性顯著增加最多,‘夏樂天’則是二酵素活性同時被誘導提高,‘夏霸王’和‘福祿甜’LDH活性先增加,下降後,ADH活性增加;‘さおり’則是ADH活性先被提高,LDH活性於其後被提高。
油菜植株在淹水逆境下,光合作用仍持續進行,體內含有較多的可溶性滲透物質調節,包括可溶性糖、游離氨基酸及脯胺酸,表現出較高之淹水逆境適應力;不耐淹品種於淹水後植體內總過氧化物、MDA含量增加,電解質滲漏率亦提高,生長代謝發生減退之現象。
Seven rape cultivars were planted at open filed and net house to conduct waterlogging study. Results showed that rape cv. ‘His-ba-wang’ and ‘His-le-tian’ had low wilting and yellow leaf as well as no dead plant. Plant fresh weight was reduced 16.4-19.6 % by waterlogging and all plants recovered after 6 days of drainage, then they were classified as waterlogging tolerant cultivar. The fresh weight of rape cv. ‘Fu-lu-tian’ and ‘Sa-ou-li’ were significantly reduced 26.5-42 % by waterlogging and also with high fatal rate. Their plants were not recovered after 6 days of drainage and then classified as waterlogging intolerant cultivars.
The photosynthetic rate of rape cv. ‘His-ba-wang’ and ‘His-le-tian’ were significant higher than rape cv. ‘Fu-lu-tian’ and ‘Sa-ou-li’. The former cultivars decreased 10-16.7 % which was significant lower than 94 % of the later cultivars. The waterlogging tolerant cultivars could recover to normal growth after 6 days of drainage and showed no significant difference compared to control plants. However, the photosynthetic rate, transpiration and stomatal conductance of waterlogging intolerant cultivars were significantly inhibited under waterlogging. Regarding to ethylene and respiration rate, the rape cv. ‘His-ba-wang’ significantly increased after waterlogging and reached 25 times higher than control plants, then gradually decreased at 6 days after drainage. The ethylene rate of rape cv. ‘Sa-ou-li’ was significantly increased after waterlogging, rape cv. ‘Fu-lu-tian’ and ‘His-le-tian’ were significantly increased in respiration rate. Excecpt rape cv. ‘His-ba-wang’, these three cultivars showed no significant difference in ethylene and respiration rate after drainage. The intercellular ethylene concentration of rape cv. ‘His-ba-wang’ and ‘Sa-ou-li’ could increase during waterlogging, but decreased after drainage. Cultivar ‘His-le-tian’ showed no significant difference compared to control plants after waterlogging, but it was significantly increased after 6 days of drainage. Cultivars ‘Fu-lu-tian’ showed significantly increased and higher than that of control plants in waterlogging and after drainage.
The content of carbon and nitrogen compound, the total soluble sugar, total free amino acid and proline were increased in leaf after waterlogging. Their content in waterlogging tolerant cultivars was significantly higher than those of waterlogging intolerant cultivars after two days of drainage, especially in proline. The starch content of all cultivars were increased after six days of drainage. Soluble protein in waterlogging tolerant cultivars had no significantly change under waterlogging. However, it was significantly decreased in rape cv. ‘Fu-lu-tian’ after waterlogging, but could be recovered at four days after drainage. The total peroxide compound and MDA in leaf of waterlogging intolerant cultivars were increased four fold as well as 2.5 times higher in leakage of EC after waterlogging and significantly higher than waterlogging tolerant cultivars. The CAT, APX activity and ascorbate content were increased in rape cv. ‘His-ba-wang’ after waterlogging, as well as APX and POD activity were increased in waterlogging intolerant cultivars.
The hydroponic rape under low oxygen condition showed that the fresh and dry weight in leaf and root of waterlogging intolerant cultivars were significantly lower than waterlogging tolerant cultivars. The total soluble sugar were increased in root of all cultivars after waterlogging. The waterlogging tolerant cultivars were significantly higher than waterlogging intolerant cultivars. The starch content in waterlogging tolerant cultivars was significantly reduced, but it had no difference among the cultivars of intolerant and control plants. The anaerobic fermentation enzymes in root showed LDH and ADH activity were increased, especially the ADH activity in rape cv. ‘Sa-ou-li’. Both enzymes activity were induced simultaneously in rape cv. ‘His-le-tian’ under oxygen lacking condition. The LDH activity of ‘His-ba-wang’ and ‘Fu-lu-tian’ was increased firstly and then the ADH activity was increased after LDH activity decreased. The ADH activity was increased earlier and LDH activity followed in rape cv. ‘Sa-ou-li’.
The photosynthesis was progressed in plants under waterlogging. Plants with higher soluble sugar, free amino acid and proline content were more adaptive under waterlogging stress. The total peroxide compound and MDA were increased as well as the EC leakage in waterlogging intolerant cultivars after waterlogging which causing retarded growth of plants.
壹、中文摘要……………………………………….…………………………….....i
貳、英文摘要……………………………………………………………………….ii
參、前言…………………………………………….……………………………….1
肆、前人研究
一、油菜之概述.................................…….…………..………….………….2
二、淹水逆境…...………………………….….....…………………….……..3
三、植物於淹水逆境下之生理反應……….……………….........................3
四、植物於淹水逆境下之發酵作用…............………………………..….....8
伍、材料與方法
一、油菜於田間淹水下植株生長之表現…………………………..…..…..11
二、盆栽油菜於網室淹水下植株生長情形及生理反應…………..……...12
三、水耕栽培下油菜於低氧狀態下之發酵作用情形……………….....…17
陸、結果
一、油菜於田間淹水下植株生長之表現………………………….……..…20
二、盆栽油菜於網室淹水下植株生長情形及生理反應……………..……20
三、水耕栽培下油菜於低氧狀態下之發酵作用情形…….………….……27
柒、討論
一、淹水對油菜植株生長之影響……………………………….……....….51
二、油菜於淹水下植株生理之反應
(一)淹水對植株光合作用、光合產物及呼吸作用之影響……….….52
(二)淹水對植株氮之化合物之影響………………………………….. 53
(三)淹水對植株乙烯生合成之影響…………………………….….… 55
(四)淹水對植株過氧化作用、細胞膜構造及抗氧化作用之影響…..55
三、水耕油菜於低氧下植株生理之反應
(一)低氧對植株生長和碳水化合物含量之影響………….………….57
(二)低氧對發酵作用之影響…………………………………………...58
捌、參考文獻 ……………………………………………………………………...60
96年農業統計年報。2007。行政院農業委員會。p. 222-224。
任雪萍、吳詩光、牛明功、周琳。1998。濕澇害對灌漿期冬小麥葉片脯氨酸含量的影響。周口師專學報15(5):72-74。 
吳昌祐、朱德民。2003。淹水逆境對甘藷植株生理反應之探討Ⅲ.供源葉片光合作用及光合作用產物代謝之變化。中華農藝13:39-58。
吳昌祐。1994。雜交高梁淹水逆境適應力之探討。國立中興大學農藝學研究所碩士論文。台中。
呂芝香。1992。NaCl對小麥苗葉片脯氨酸變化氧化酶活性和游離脯氨酸累積的影響。植物生理學報18(4):376-382。
李春香、李德全、王續。1999。不同抗旱性玉米、小麥根葉對水分脅迫的生理反應及滲透調節的研究。中國植物生理學會植物環境生理學術討論會彙編。p. 92。
佘建、馬友發。2003。日本小松菜“極樂天”的高產栽培技術。現代農業p. 14。
卓俊銘。2001。苦瓜嫁接絲瓜根砧耐淹水機制之研究。國立中興大學園藝學系研究所博士論文。台中。
官春云。1985。油菜品質改良和分析方法。湖南科技出版社。p. 72-86。湖南。
高景輝。1988。淹水與植物發育。科學農業叢書第13號。科學農學社編印。台北。
高景輝。1994。植物荷爾蒙生理。華香園出版社。台北。
張文東。1995。浸水下高梁和毛豆幼苗生長與乙烯之關係。國立中興大學農藝學系研究所碩士論文。台中。
張志因、黃鵬。1995。淹水逆境對小胡瓜及甘藍生長及產量之影響。蔬菜作物試驗研究彙報8:60-77。
陳駿季、陳宗禮、宋濟民。1992。淹水對大豆葉片光合代謝之影響。農林學報41:17-26。
曾憲文、肖吉中、江錫瑜。1984。貴州油菜栽培與育種。貴州人民出版社。p. 18-22。貴州。
楊純明、張芳銘、陳榮坤、李裕娟、沈百奎。2002。淹水對莧菜生長及植體水分含量之影響。中華農業氣象9:49-54。
趙福庚、何龍飛、羅慶雲。2004。植物逆境生理生態學。化學工業出版社及環境科學與工程出版中心。北京。
劉祖琪、張石城。1994。植物抗性生理學。中國農業出版社。北京。
蔡秀隆、朱德民、吳炳奇。1993。濕害對玉米生長和產量的影響(三)濕害對玉米植株供源與積儲的影響。中華農藝3:259-267。
蔡秀隆。1993。淹水對玉米生長與發育的影響。國立中興大學農藝學系研究所博士論文。台中。
鄭美淑。1987。人工浸水對玉米幼苗出土及生長的影響。國立中興大學農藝學研究所碩士論文。台中。
戴振洋、郭俊毅。2002。油菜“金寶-台中3號”之育成及栽培技術介紹。台中區農業改良場。
鍾雪花、楊萬年、呂應堂。2002。淹水脅迫下對菸草、油菜某些生理指標的比較研究。武漢植物學研究20(5):395-398。
羅志平。2006。小白菜經植物生長物質前處理對淹水逆境之反應。國立台灣大學園藝學系研究所碩士論文。台北。
Ahmed, S., E. Nawata, M. Hosokawa, Y. Domae, and T. Sakuratani. 2002. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci. 163:117-123.
Allen, G. G. and W. L. Crosby. 1989. Induction of alcohol dehydrogenase and lactate dehydrogenase in hypoxically induced barley. Plant Physiol. 90:860-866.
Aloni, B. and G. Rosenshtein. 1982. Effect of flooding on tomato cultivars:The relationship between proline accumulation and other morphological and physiological changes. Plant Physiol. 56:513-517.
Ashraf, M. and S. Mehmood. 1990. Effects of waterlogging on growth and
some physiological parameters of four Brassica species. Plant Soil 121:
203-209.
Atwell, B. J., M. C. Drew, and M. B. Jackson. 1988. The influence of oxygen deficiency on ethylene synthesis, 1-aminocyclopropane-1carboxylic acid levels and aerenchyma formation in roots of Zea mays L.. Plant Physiol. 72:15-22.
Armstrong, W. 1979. Aeration in higher plants. Advances Botanical Res. 7:225-232.
Armstrong, W., R. Brandle, and M. B. Jackson. 1994. Mechanisms of flood tolerance in plants. Acta. Bot. Neerl. 43:307-358.
Barclay, A. M. and R. M. M. Craword. 1981. Temperature and anoxic injury in pea seedlings. J. Exp. Bot. 32:943-949.
Barta, A. L. 1988. Response of field grown alfalfa to root waterlogging and shoot removal. I. plant injury and carbohydrate and mineral content of roots. Agron. J. 80:889-892.
Bates, L. S., R. P. Waldren, and I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39:205-207.
Beckman, T. G., R. L. Perry, and J. A. Flore. 1992. Short-term flooding affects gas exchange characteristics of containerized sour cherry trees. Hort. Sci. 27:1297-1301.
Benjamin, L. R. and H. Greenway. 1979. Effects of a range of O2 concentrations on porosity of barley roots and on their sugar and protein concentrations. Ann. Bot. 43:383-391.
Biemelt, S., U. Keetman, and G. Albrecht. 1998. Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings. Plant Physiol. 116:651-658.
Blokhina, O., E. Virolainen, and K. V. Fagerstedt. 2002. Antioxidants, oxidative damage and oxygen deprivation stress : a review. Ann. Bot. 91:179-194.
Blum, A. and A. Ebercon. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci. 21:43-47.
Bowler, C., M. V. Montagu, and D. Inze. 1992. Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43:83-116.
Bradford, K. J. 1983. Effects of soil flooding on leaf gas exchange of tomato plants. Plant Physiol. 73:475-479.
Bruneau, J. M., A. C. Worrell, B. Cambou, D. Lando, and T. A. Voclker. 1991. Sucrose phosphate synthase, a key enzyme for sucrose biosynthesis in plants : protein purification from corn leaves and immunological detection. Plant Physiol. 96:473-478.
Buwalda, F., E. G. Barrett-Lennard, H. Greenway, and B. A. Davies. 1988. Effects of growing wheat in hypoxic nutrient solutions and of subsequent transfer to aerated solutions. II. Concentrations and uptake of nutrients and sodium in shoots and roots. Aust. J. Plant Physiol. 15:599-612.
Cao, Y. and S. B. Cai. 1991. Some waterlogging tolerant wheat varieties. Crop Genet. Reso. 2:25-26.
Carpenter, J. R. and C. A. Mitchell. 1980. Root respiration characteristics of flood-tolerant and intolerant tree species. J. Amer. Soc. Hort. Sci. 105:684-687.
Casano, L. M., L. D. Gomez, and V. S. Trippi. 1990. Oxygen- and light-induced proteolysis in isolated oat chloroplasts. Plant Cell Physiol. 31:377-382.
Castonguay, Y., P. Nadeau, and R. R. Simard. 1993. Effects of flooding on carbohydrate and ABA levels in roots and shoots of alfalfa. Plant Cell Environ. 16:695-702.
Chang, L. A., L. K. Hammett, and D. M. Pharr. 1982. Ethanol, alcohol dehydrogenase, and pyruvate decarboxylase in storage roots of four sweet potato cultivars during simulated flood-damage and storage. J. Amer. Soc. Hort. Sci. 107:674-677.
Chevrier, N., F. Sarhan, and Y. S. Chung. 1988. Oxidative damages and repair in Euglena gracilis exposed to ozone. I. SH groups and lipids. Plant Cell Physiol. 29:321-327.
Crawford, R. M. M. 1967. Alcohol dehydrogenase activity in relation to flooding tolerance in roots. J. Exp. Bot. 18:458-466.
Crawford, R. M. M. and M. Mcmanmon. 1978. Inductive response of alcohol and malic dehydrogenases in relation to flooding tolerance in roots. J. Exp. Bot. 19:435-441.
Daugherty, C. J. and M. E. Musgrave. 1994. Characterization of populations of rapid-cycling Brassica rapa L. selected for differential waterlogging tolerance. J. Exp. Bot. 45:385-392.
Dhandsa, R. S. and W. Matowe. 1981. Drought tolerance in two mosses : correlated with enzymatic defense against lipid peroxidation. J. Exp. Bot. 37:79-91.
Dodds, J. H., A. R. Smith, and M. A. Hall. 1984. The metabolism of ethyleneoxide in cultivars of Vicia faba, relationship with waterlogging resistance. Plant Growth Regul. 3:203-207.
Drew, M. C. 1997. Oxygen deficiency and root metabolism. Injury and acclimation under hypoxia and anoxia. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48:223-250.
Drew, M. C., B. G. Cobb, J. R. Johnson, D. Andrews, P. W. Morgan, W. Jordan, and C. J. He. 1994. Metabolic acclimation of roots tips to oxygen deficiency. Ann. Bot. 74:281-286.
Drew, M. C. and E. J. Sisworo. 1979. The development of waterlogging damage in young barley plants in relation to plant nutrient status and changes in soil properties. New Phytol. 82:301-314.
Else, M. A., K. C. Hall, G. M. Arnold, W. J. Davies, and M. B. Jackson. 1995. Export of abscisic acid, 1-aminocyclopropane-1-carboxylic acid, phosphate, and nitrate from roots to shoots of flooded tomato plants. Plant Physiol. 107:377-384.
Elstner, E. F. 1982. Oxygen activation and oxygen toxicity. Annu. Rev. Plant Physiol. 33:73-96.
Evans, D. E. 2003. Aerenchyma formation. New Phyto. 161:35-49.
Garnczarska, M. and W. Bednarski. 2004. Effect of a short-term hypoxic treatment followed by re-aeration on free radicals level and antioxidative enzymes in lupine roots. Plant Physiol. Biochem. 42:233-240.
Grishman, M. B. 1992. Reactive metabolites of oxygen and nitrogen. R. G. Landes Comp., Austin.
Gutierrez, B. F. H., R. S. Lavado, and C. A. Porcelli. 1996. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crops Res. 47:175-179.
He, C. J., M. C. Drew, and P. W. Morgan. 1994. Induction of enzyme associated with lysigenous aerenchyma formation in roots of Zea mays during hypoxia or nitrogen starvation. Plant Physiol. 105:861-865.
He, C. J., P. W. Morgan, and M. C. Drew. 1996a. Transduction of an ethylene signal is required for programmed cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiol. 112:463-472.
He, C. J., S. A. Finlayson, M. C. Drew, W. R. Jordan, and P. W. Morgan. 1996b. Ethylene biosynthesis during aerenchyma formation in roots of Maize subjected to mechanical impedance and hypoxia. Plant Physiol. 112:1679-1685.
Heath, R. L. and L. Paker. 1968. Photoperoxidation in isolated chloroplasts. I.
Kinetics and stochiometry to fatty acid peroxidation. Arch. Biochem. Biophys. 125:189-198.
Heides, V. H., B. M. Boer-Bolt, and M. H. Raalte. 1963. The effect of a low oxygen content of the medium on the roots of barely seedlings. Acta Bot. Neerl. 12:231-247.
Hoffman, N. E., A. F. Bent, and A. D. Hanson. 1986. Induction of lactate dehydrogenase isozymes by oxygen deficit in barley root tissue. Plant Physiol. 82:658-663.
Horchani, F., P. Gallusci, P. Baldet, C. Cabasson, M. Maucourt, D. Rolin, S. A. Smiti, and P. Raymond. 2008. Prolonged root hypoxia induces ammonium accumulation and decreases the nutritional quality of tomato fruits. J. Plant Physiol. 165:1352-1359.
Huang, B., J. W. Johnson, S. Nesmith, and D. C. Bridges. 1994. Growth, physiological and anatomical responses of two wheat genotypes to waterlogging and nutrient supply. J. Exp. Bot. 45:193-202.
Huang, B. and J. W. Johnson. 1995. Root respiration and carbohydrate status of two wheat genotypes in response to hypoxia. Ann. Bot. 75:427-432.
Hunt, P. G., R. B. Campbell, R. E. Sojka, and J. E. Parsons. 1981. Flooding- induced soil and plant ethylene accumulation and water status response of field-grown tobacco. Plant Soil. 59:427-439.
Hunter, M. I. S., A. M. Hetherington, and R. M. M. Crawford. 1983. Lipid peroxidation - a factor in anoxia intolerance in Iris species? Phytochem. 22:1145-1147.
Hurng, W. P. and C. H. Kao. 1993. Loss of starch and increase of α-amylase activity in leaves of flooded tobacco plants. Plant Cell Physiol. 34:531-534.
Hurng, W. P. and C. H. Kao. 1994. Effect of flooding on the activities of some enzymes of activated oxygen metabolism, the levels of antioxidants, and lipid peroxidation in senecing tobacco leaves. Plant Growth Regul. 14:37-44.
Hwang, S. Y., H. W. Lin, R. H. Chem, H. F. Lo, and F. Li. 1999. Reduction susceptibility to waterlogging together with highlight stress is related to increases in superoxide dismutase and catalase activities in sweet potato. Plant Growth Regul. 27:167-172.
Ismail, M. R. and K. M. Noor. 1996. Growth, water relations and physiological processes of starfruit (Averrhoa carambola L.) plants under root growth restriction. Scientia Hort. 66:51-58.
Issarakraisila, M., Q. Ma., and D. W. Turner. 2007. Photosynthetic and growth responses of juvenile Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapa subsp. parachinensis) to waterlogging and water deficit. Sci. Hortic. 111:107-113.
Jackson, M. B. 1985. Ethylene and responses of plants to soil waterlogging and submergence. Annu. Rev. Plant Physiol. 36:145-174.
Jackson, M. B., B. Herman, and A. Goodenough. 1982. An examination of the importance of ethanol in causing injury to flooded plants. Plant Cell Environ. 5:163-172.
Jackson, M. B. and M. C. Drew. 1984. Effect of flooding on growth and metabolism of herbaceous plants. In : T. T. Kozlowski (ed.), Flooding and Plant Growth. Academic Press Inc., New York. p. 47-128.
Jackson M. B., M. C. Drew, and S. C. Giffard. 1981. Effects of applying etnylene to the root system of Zea mays on growth and nutrient concentration in relation to flooding tolerance. Plant Physiol. 52:22-28.
Jackson, W. T. 1956. Flooding injury studies by approach-graft and split root system techniques. Am. J. Bot. 43:496-501.
Jenkin, I. E. T. and T. Rees. 1983. Effects of anoxia and flooding on alcohol dehydrogenase in roots of Glyceria maxima and Pisum sativum. Phytochem. 22:2389-2393.
Johnson, J., B. G. Cobb, and M. C. Drew. 1989. Hypoxic induction of anoxia tolerance in root tips of Zea mays. Plant Physiol. 91:837-841.
Kato, M. and S. Shimize. 1987. Chorophyll metabolism in higher plants. VII. Chorophyll degradation in senescing tobacco leaves : phenolic dependent peroxidative degradation. Can. J. Bot. 65:729-735.
Kato-Noguchi, H. and M. Morokuma. 2007. Ethanolic fermentation and anoxia tolerance in four rice cultivars. J. Plant Physiol. 164:168-173.
Kawase, M. 1976. Ethylene accumulation in flooded plants. Physiol. Plant. 36: 236-241.
Kawase, M. 1981a. Anatomical and morphological adaptation of plants to waterlogging. Hort. Sci. 16:30-34.
Kawase, M. 1981b. Effect of ethylene on aerenchyma development. Am. J. Bot. 68:651-658.
Keyhani, E. and J. Keyhani. 2004. Hypoxia/anoxia as signaling for increased alcohol dehydrogenase activity in saffron (Crocus sativus L.) Corm. Ann. N. Y. Acad. Sci. 1030:449-457.
Kuo, C. G. and B. W. Chen. 1980. Physiological responses of tomato cultivars to flooding. J. Amer. Soc. Hort. Sci. 105:751-755.
Laan, P. and C. W. P. M. Blom. 1990. Growth and survival responses of Rumex species to flooded and submerged conditions: The importance of shoot elongation, underwater photosynthesis and reserve carbohydrates. J. Exp. Bot. 41:775-783.
Ladygin, V. G. 1999. Effect of root zone hypoxia and anoxia on the functional activity and chloroplast ultrastructure in leaves of Pisum sativum and Glycine max. Fiziol. Rast. 46:246-258.
Lambers, H. and G. Smakman. 1978. Respiration of the roots of flood-tolerant and flood-intolerant Senecio Species : affinity for oxygen and resistance to cyanide. Physiol. Plantarum 42:163-166.
Law, M. Y., S. A . Charles, and B. Halliwell. 1983. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. Biochem. J. 210:899-903.
Leul, M. and W. J. Zhou. 1999. Alleviation of waterlogging damage in winter rape by uniconazole application:Effects on enzyme activity, lipid peroxidation, membrane integrity. J. Plant Growth Reg. 18:9-14.
Liao, C. T. and C. H. Lin. 1996. Photosynthetic responses of grafted bitter melon seedling to flood stress. Env. Exp. Bot. 36:167-172.
Lo, H. F., S. Y. Hwang, R. H. Chen, H. W. Lin, and L. F. O. Chen. 1999. Differential responses in leaf antioxidant enzyme activities to waterlogging in two sweet potato cultivars. Chinese Agro. J. 9:81-89.
Lowry, D. H., N. J. Rosebrough, A. L. Farr, and R. J. Randal. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265-275.
MacAdam, J. W., C. J. Nelson, and R. E. Sharp. 1992. Peroxidase activity in the leaf elongation zone of tall fescue : I. spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiol. 99:872-878.
McNamara, S. T. and C. A. Mitchell. 1989. Differential flood stress resistance of two tomato genotypes. J. Amer. Soc. Hort. Sci. 114:976-980.
Menegus, F., L. Cattaruzza, A. Chersi, A. Serva, and G. Fronza. 1988. Production and organ distribution of succinate in rice seedlings during anoxia. Physiol. Plantarium 74:444-449.
Meyer, W. S., D. C. Reicosky, H. D. Barrs, and R. C. G. Smith. 1987. Physiological responses of cotton to a single waterlogging at high and low N-levels. Plant Soil. 102:161-170.
Monk, L. S., R. M. M. Crawford, and R. Brandle. 1984. Fermentation rates and ethanol accumulation in relation to flooding tolerance in rhizomes of monocotyledonous species. J. Exp. Bot. 35:738-745.
Mujer, C. V., M. E. Rumpho, J. J. Lin, and R. A. Kennedy. 1993. Constitutive and inducible aerobic and anaerobic stress proteins in the Echinochloa complex and rice. Plant Physiol. 101:217-226.
Mustroph, A., E. I. Boamfa, L. J. J. Laarhoven, F. J. M. Harren, A. Y. Pors, and B. Grimm. 2006. Organ specific analysis of the anaerobic primary metabolism in rice and wheat seedlings II : Light exposure reduces needs for fermentation and extends survival during anaerobiosis. Planta 225:139-152.
Mustroph, A. and G. Albrecht. 2003. Tolerance of crop plants to oxygen deficiency stress : fermenative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiol. Plantarum 117:508-520.
Mustroph, A. and G. Albrecht. 2007. Fermentation metabolism in roots of wheat
seedlings after hypoxic pre-treatment in different anoxic incubation systems. J. Plant Physiol. 164:394-407.
Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867-880.
Paoletti, F., D. Aldinucci, A. Mocali, and A. Capparini. 1986. A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal. Biochem. 154:536-541.
Pavelic, D., S. Arpagaus, A. Rawyler, and R. Brandle. 2000. Impact of post-anoxia stress on membrane lipids of anoxia-pretreated potato cells. Plant Physiol. 124:1285-1292.
Pearce, D. M. E., K. C. Hall, and M. B. Jackson. 1992. The effects of oxygen, carbon dioxide and ethylene on ethylene biosynthesis in relation to shoot extension in seedlings of rice (Oryza sativa) and barnyard grass (Echinochloa oryzoides). Ann. Bot. 69:441-447.
Perata, P. and A. Alpi. 1993. Plant responses to anaerobiosis. Plant Sci. 93:1-17.
Pezeshki, S. R. 1993. Differences in patterns of photosynthetic responses to hypoxia in flood-tolerance and flood-sensitive trees species. Photosynthetica 28:423-430.
Raymond, P., A. A. Ani, and A. Pradet. 1985. ATP production by respiration and fermentation, and energy charge during aerobiosis and anaerobiosis in twelve fatty and starch germinating seeds. Plant Physiol. 79:879-884.
Reggiani, R., C. A. Cantu, I. Brambilla, and A. Bertani. 1988. Accumulation and interconversion of amino acids in rice roots under anoxia. Plant Cell Physiol. 26:981-987.
Reid, D. M. and K. J. Bradford. 1984. Effects of flooding on hormonal
relations. In T.T. Kozlowski (ed.) Flooding and plant growth. Academic Press, California, p. 195-219.
Reid, J., B. C. Loughman, and R. G. Ratcliffe. 1985. 31P NMR measurements of cytoplasmic pH resonance in maize root tips. J. Exp. Bot. 36:889-897.
Ricard, B., I. Couee, P. Raymond, P. H. Saglio, V. Saint-Ges, and A. Pradet. 1994. Plant metabolism under hypoxia and anoxia. Plant Physiol. Biochem. 32: 1-10.
Rivoal, J. and A. D. Hanson. 1994. Metabolic control of anaerobic glycolysis. Overexpression of lactate dehydrogenase in transgenic tomato roots supports the Davies-Roberts hypothesis and points to a critica1 role for lactate secretion. Plant Physiol. 106:1179-1185.
Roberts, J. K. M., J. Callis, D. Wemmer, V. Walbot, and M. Freeling. 1984a. Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc. Natl. Acad. Sci. 81:6029-6033.
Roberts, J. K. M., J. Callis, D. Wemmer, V. Walbot, and O. Jardetzky. 1984b. Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc. Natl. Acad. Sci. 81:3379-3383.
Robert, R., C. Steward, and J. D. Bewley. 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol. 65:245-248.
Romonell, K. M., A. Kuang, D. M. Porterfield, M. L. Crispi, Y. Xiao, G. Mcclure, and M. E. Musgrave. 2001. Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana. Plant Cell Environ. 24:419-428.
Rosen, H. 1957. A modified ninhydrin colorimetri analysis for amino acid. Arch. Biochem. Biophys. 67:10-15.
Rumpho, M. E. and Kennedy R. A. 1983. Anaerobiosis in Echinochloa crus-galli (barnyard grass) seedlings intermediary metabolism and ethanol tolerance. Plant Physiol. 72:44-49.
Sachs, M. M., M. Freeling, and R. Okimoto. 1980. The anaerobic proteins of maizes. Cell. 20:761-767.
Saglio, P. H. 1985. Effects of path or sink anoxia on sugar translocation in roots of maize seedling. Plant Physiol. 77:285-290.
Saglio, P. H., P. Raymond, and A. Pradet. 1980. Metabolic activity and energy charge of excised maize root tips under anoxia : control by soluble sugars. Plant Physiol. 66:1053-1057.
Sagisaka, S. 1976. The occurrence of peroxide in perennial plant, Populus gelrica. Plant Physiol. 57:308-309.
Salcheva, G. S. and L. P. Popova. 1982. Intensity of photosynthesis and activity of carboxylating enzymes in wheat and rye grown on waterlogged soil. Dokl. Blog. Akad. Nauk. 35:973-976.
Saltveit, M. E. 1989. Effects of alcohol and their interaction with ethylene on the ripening of epidermal discs of tomato fruit. Plant Physiol. 90:167-174.
Sapra, V. T. and A. O. Anaele. 1991. Screening soybean genotypes for drought and heat tolerance. J. Agron. Crop Sci. 167:96-102.
Save, V. and L. Serrano. 1986. Some physiological and growth responses of kiwi fruit (Actinidia chinensis ) to flooding. Plant Physiol. 66:75-78.
Setter, T. L., I. Waters, B. J. Atwell, T. Kupkanchanakul, and H. Greenway. 1987. Carbohydrate status of terrestrial plants during flooding. In Crawford, R. M. M., (ed.). Plant life in aquatic and amphibious habitats. Oxford:Blackwell Scientific. p. 411-443.
Sij, J. W. and C. A. Swanson. 1973. Effect of petiole anoxia on phloem transport in squach. Plant Physiol. 51:368-371.
Singh, B. B. 1988. Tolerance of soybean varieties to waterlogging. Indian J. Plant Physiol. 31:410-412.
Smiroff, N. 1995. Antioxdant systems and plant response to the environment. In N. Smirnoff (ed.) Environment and plant metabolisms:Flexibility and acclimation. Bios Scientific Publ, UK. p. 217-243.
Smirnoff, N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125:27-58.
Sonnewald, U. and L. Willmitzer. 1992. Molecular approaches to sink-source interactions. Plant Physiol. 99:1267-1270.
Stitt, M. and W. P. Quick. 1989. Photosynthetic carbon partitioning : its regulation and possibilities for manipulation. Plant Physiol. 77:633-641.
Tadege, M., I. Dupuis, and C. Kuhlemeier. 1999. Ethanolic fermentation:new functions for an old pathway. Trends Plant Sci. 4:320-325.
Tang, S. L. and H. H. Chang. 1990. Studies on the flooding tolerance during seed germination of soybean Ⅱ. Relationship between ADH activity, ethanol accumulation and flooding tolerance. J. Agric. Assoc. China. 150:22-33.
Thomson, C. J. and Greenway. 1991. Metabolic evidence for stelar anoxic in maize roots exposed to low O2 concentrations. Plant Physiol. 96:1294-1301.
Titarenko, T. Y. 2000. Test parameters of revealing the degree of fruit plants tolerance to the root hypoxia caused flooding of soil. Plant Physiol. Biochem. 38:115-121.
Ushimaru, T., M. Shibasaka, and H. Tsuji. 1992. Development of the O2•- detoxification system during adaptation to air of submerged rice seedlings. Plant Cell Physiol. 33:1065-1071.
Van-Breusegem, F., M. Van-Montagu, and D. Inze. 1985. Engineering stress tolerance in maize. Outlook Agric. 27:115-124.
Vartapetian, B. B. 1993. Plant physiological responses to anoxia. Int. Crop Sci. 1:721-726.
Vartapetian, B. B., I. N. Andreeva, and G. I. Kozlova. 1976. The resistance to anoxia and the mitochondrial fine structure of rice seedings. Protoplasma 88:215-224.
Vartapetian, B. B. and M. B. Jackson. 1997. Plant adaptations to anaerobic stress. Ann. Bot. 79:3-20.
Voesenek, L. A. C. J., F. J. M. Harren, G. M. Bogemann, C. W. P. M. Blom, and J. Reuss. 1990. Ethylene production and petiole growth in Rumex plants induced by soil waterlogging : the application of a continuous flow system and a laser driven intracavity photoacoustic detection system. Plant Physiol. 94:1071-1077.
Vu, J. C. V. and G. Yelenosky. 1991. Photosynthetic responses of citrus trees to soil flooding. Plant Physiol. 81:7-14.
Wample, R. L. and D. M. Reid. 1979. The role of endogenous auxin and ethylene in the formation of adventitious roots and hypocotyl hypertrophy in flooded sunflower plants (Helianthus annuus). Physiol. Plant. 45:219-226.
Wample, R. L. and R. W. Davies. 1983. Effect of flooding on starch accumulation in chloroplasts of sunflower (Helianthus annuus L.). Plant Physiol. 73: 195-198.
Wang, T. W. and Arteca, R. N. 1992. Effects of low O2 root stress on ethylene biosynthesis in tomato plants (Lycopersicon esculentum Mill cv Heinz 1350). Plant Physiol. 98:97-100.
Webb, T. and W. Armstrong. 1983. The effects of anoxia and carbohydrates on the growth and viability of rice, pea and pumpkin roots. J. Exp. Bot. 34: 579-603.
Wenkert, W., N. R. Fausey, and N. D. Watters. 1981. Flooding responses in Zea mays L. Plant Soil 62:351-366.
Wiedenroth, E. M. 1993. Responses of roots to hypoxia:their structural and energy relations with the whole plant. Environ. Exp. Bot. 33:41-51.
Xiao, Y., K. Wei, J. Chen, M. Zhou, and G. Zhang. 2005. Effects of waterlogging on photosynthesis and antioxidant enzyme activities of six barley genotypes with different waterlogging tolerance. Agri. Sci. China 4:310-316.
Xu, Y., Z. He, Y. Song, Z. Du, and D. Yin. 1993. Waterlogging damage of soybean and variety resistance. Soybean Genetics Newsletter 20:48-55.
Yan, B., Q. Dai, X. Liu, S. Huang, and Z. Wang. 1996. Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil. 179:261-268.
Yordanov, R. Y. and L. P. Popova. 2007. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol. Plant 29:535-541.
Yoshida, S., F. Dpuglosa, C. Janosh, and Gwaachai. 1976. Laboratory manual for physiological studies of rice. International Rice Research Institute, Los Banos, Phillippines. p. 46-49.
Zhang, G., A. K. Tanakamaru., A. J. Abe, and A. S. Morita. 2007. Influence of waterlogging on some anti-oxidative enzymatic activities of two barley genotypes differing in anoxia tolerance. Acta Physiol. Plant 29:171-176.
Zhou, W. J. and X. Q. Lin. 1995. Effects of waterlogging at different growth stages on physiological characteristics and seed yield of winter rape (Brassica napus). Field Crops Res. 44:103-110.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top