跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 04:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王明宏
研究生(外文):Ming-Hung Wang
論文名稱:適應性門檻值決策
論文名稱(外文):An Adaptable Threshold Decision Method
指導教授:詹永寬詹永寬引用關係
指導教授(外文):Yung-Kuan Chan
學位類別:碩士
校院名稱:國立中興大學
系所名稱:資訊管理學系所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:39
中文關鍵詞:門檻值法Otsu法影像切割序列影像
外文關鍵詞:thresholdingOtsu’s methodimage segmentationserial images
相關次數:
  • 被引用被引用:3
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Otsu’s thresholding method (OTM) is one of the most commonly used thresholding methods. Unfortunately, the threshold obtained by OTM is biased in favor of the class, whose standard deviation or quantity (number) of data is larger. Besides, one may adopt distinct thresholds in different applications for a same data set. Accordingly, this thesis proposes an adaptable threshold decision method (ATDM) to provide the most appropriate thresholds for assorted applications. This thesis also proposes a PSO (particle swarm optimization) based parameters detector (PBPD) to decide the fittest parameters which are used by ATDM. Image segmentation extracts the regions of interest from an image for follow-up analyses, and thresholding is one important technique for image segmentation. This thesis will employ ATDM to detect the object contours in an image in order to investigate the performance of ATDM. The experiments show that ATDM can give impressive segmentation results.
Table of Contents

Abstract (in Chinese) i
Abstract (in English) ii
Table of Contents iii
List of Tables iv
List of Figures v
Chapter 1 Introduction 1
1.1 Thesis Motivation 1
1.2 Thesis Organization 4
Chapter 2 Related Works 5
2.1 Gray-Level Histogram based thresholding 5
2.2 Particle Swarm Optimization 6
2.3 Segmentation Evaluation 7
Chapter 3 An Adaptable Threshold Decision Method 9
3.1 Adaptable Threshold Decision Method 9
3.2 PSO-Based Parameters Detector 12
Chapter 4 Experiments and Analysis 14
Chapter 5 Conclusions and Future Works 35
References 37
References

[1]Agus, Z. A., and Akira, A., Image segmentation by histogram thresholding using hierarchical cluster analysis, Pattern Recognition Letters, vol. 27, issue 13, pp. 1515-1521, 2006.
[2]Carlisle, A., and Dozier, G., An off-the-shelf PSO, Proceedings of the Workshop on Particle Swarm Optimization, vol. 1, pp. 1-6, 2001.
[3]Chen C. J., Chang R. F., Moon W. K., Chen D. R., and Wu H. K., 2-D ultrasound strain images for breast cancer diagnosis using nonrigid subregion registration, Ultrasound in Medicine and Biology, vol. 32, no. 6, pp. 837-846, 2006..
[4]Clerc, M., The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization, Proceedings of the Congress on Evolutionary Computation, vol. 3, pp. 1951−1957, 1999.
[5]Cui, Z., Cai, X., and Zeng, J., Chaotic performance-dependent particle swarm optimization, International Journal of Innovative Computing, Information and Control, vol. 5, no. 4, pp.951-960, April 2009.
[6]Dubisson, M. P., and Jain A. K., A modified Hausdorff distance for object matching, In: Proceedings of ICPR’ 94, 12th International Conference on Pattern Recognition, pp. A-566-569, 1994.
[7]Glasbey, C. A., An analysis of histogram-based thresholding algorithms, CVGIP: Graphical Models and Image Processing, vol. 55, issue 6, pp. 532-537, 1993.
[8]Hou, Z., Hu, Q., and Nowinski, W. L., On minimum variance thresholding, Pattern Recognition letters, vol. 27, issue 14, pp. 1732-1743, 2006.
[9]Itai, Y., Kim, H. and Ishikawa, S., A segmentation method of lung areas by using snakes and automatic detection of abnormal shadow on the areas, International Journal of Innovative Computing, Information, and Control, vol. 3, no. 2 pp. 277-284, April 2007.
[10]Jiang, X., and Mojon, D., Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, issue 1, pp. 131-137, 2003.
[11]Kennedy, J., and Eberhart, R. C., Particle swarm optimization, In Proceedings of the IEEE international conference on neural networks, vol. 4, pp. 1942–1948, 1995.
[12]Lai, C. C., Wu, C. H., and Tsai, M. C., Feature selection using particle swarm optimization with application in spam filtering, International Journal of Innovative Computing, Information, and Control, vol. 5, no. 2, pp. 423-432, February 2009.
[13]Lee, S. U., Chung, S. Y., and Park, R. H., A comparative performance study of several global thresholding techniques for segmentation, Computer Vision, Graphics and Image Processing, vol. 52, no. 2, pp.171-190, 1993.
[14]Liao, P. S., Chen, T. S., and Chung, P. C., A fast algorithm for multilevel thresholding, Journal of Information Science and Engineering, vol. 17, no. 5, pp. 713-727, 2001.
[15]Ng, H. F., Automatic thresholding for defect detection, Pattern Recognition Letters, vol. 27, issue 14, pp. 1644-1649, 2006.
[16]Otsu, N., A threshold selection method from gray-level histograms, IEEE Transactions of Systems, Man, and Cybernetics, vol. 9, issue 1, pp.62-66, 1979.
[17]Qian, R. J., and Huang, T. S., Optimal edge detection in two dimensional images, IEEE Transactions on Image Processing, vol. 5, issue 7, pp. 1215-1220, 1996.
[18]Sahoo, P. K., Soltani, S., Wong, A. K., and Chan, Y. C., A survey of thresholding techniques, Computer Vision, Graphics and Image Processing, vol. 41, issue 2, pp. 233-260, 1988.
[19]Sammouda, R., Hassan, J., and Sammouda, M., CT image analysis for early detection of lung cancer, International Journal of Innovative Computing, Information, and Control, vol. 4, no. 11, pp. 2847-2860, November 2008.
[20]Sezgin, M., and Sanlur, B., Survey over image thresholding techniques and quantitative performance evaluation, Journal of Electronic Imaging, vol. 13, issue 1, pp. 146-165, 2004.
[21]Zhang, Y. J., A survey on evaluation methods for image segmentation, Pattern Recognition, vol. 29, issue 8, pp. 1335-1346, 1996.
[22]Kapur, J. N., Sahoo, P. K., and Wong, A. K. C., A new method for gray-level picture thresholding using the entropy of the histogram, Computer Vision, Graphics, and Image Processing, vol. 29, issue 3, pp. 273-285, 1985.
[23]Sahoo, P. K., and Arora, G., A thresholding method based on two-dimensional Renyi''s entropy, Pattern Recognition, vol. 37, issue 6, pp. 1149-1161, 2004.
[24]Sahoo, P. K., Wilkins, C., and Yeager, J., Threshold selection using Renyi’s entropy, Pattern Recognition, vol. 30, issue 1, pp. 71-84, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top