(3.238.130.97) 您好!臺灣時間:2021/05/13 23:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭碩仁
研究生(外文):Shuo-ren Jeng
論文名稱:利用PS-b-PMMA共聚高分子薄膜製備奈米結構之矽奈米柱太陽電池
論文名稱(外文):Formation of nanostructure by self-assembled PS-b-PMMA block copolymer method for silicon nanowire solar cell applications
指導教授:裴靜偉
指導教授(外文):Zing-way Pei
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:110
中文關鍵詞:太陽電池
外文關鍵詞:PS-b-PMMA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們探討利用共聚物薄膜PS-b-PMMA形成PS奈米球的方法以及利用感應式偶合電漿離子乾蝕刻製作出矽奈米柱的結構。
In this thesis, we probe into, utilize copolymer membrane PS-b-PMMA form PS endure rice method of ball and the universe etch, make, offer silicon endure rice structure of column with reaction coincidence electric thick liquid ion.
Take an exam of the thesis to reveal, we can be endured the structure of hole of rice on Silicon wafer by macromolecule PS-PMMA which endure the rice size at appropriate temperature, heating time and condition of the heating temperature. Among course to make Cheng, we find glacial acetic acid heat PS-b-PMMA endure rice step of hole will form polystyrene (PS) Endure rice globular structure , from experimental result point out all: With heating the changes of time and temperature, the membrane becomes globular to take shape catenately crackedly finally, and can have and change and endure the quantity change of the rice ball in accordance with heating time.
Etch (RIE) via the universe of electric thick liquid of reactivity ion ,In order to endure rice ball as stop layer regard as, etch, hide, put on. And it is for strengthening endure it is the dark and wide in rice the columns than ,utilize SiO2 not to be come endure there aren''t rice the ball patterns, can get, endure rice silicon of structure endure rice column array, utilize PECVD grow up I layer and N layer form P-I-N type endure the Milan column solar cell and then.
誌謝辭..........................................3
中文摘要........................................4
Abstract........................................5
表目次..........................................6
圖目次..........................................7
第一章 基本介紹和研究動機......................13
1.1 太陽電池簡介...............................13
1.2 P-N太陽電池介紹............................14
1.3 矽奈米柱太陽電池之研究動機.................19
第二章 文獻回顧.................................23
2.1 PS-PMMA材料特性與介紹.................23
2.1.1PS-PMMA高分子共聚物之介紹 ...........23
2.1.2 PS-PMMA薄膜之應用...................25
2.2 矽奈米柱之介紹..............................29
2.2.1矽奈米柱的成長方法.........................29
2.2.2矽奈米柱之應用.............................31
2.3 PS奈米球介紹..............................32
第三章 實驗方法和設計..........................38
3.1矽奈米柱太陽能電池製程步驟...................38
3.2製程儀器與量測儀器介紹.......................44
3.2.1 試片清洗..................................44
3.2.2 旋轉塗佈機................................44
3.2.3反應性離子電漿蝕刻系統.....................45
3.2.4 熱蒸鍍系統................................47
3.2.5 IPCE量測架構說明:.........................48
第四章 結果與討論..............................59
4.1 PS奈米球之發現............................59
4.2 PS-PMMA奈米孔洞製備方法...............61
4.3 奈米球製備方法..............................65
4.3.1改變PS-b-PMMA的濃度對於奈米球之影響........68
4.3.2 浸泡冰醋酸溫度與時間對奈米球之影響........68
4.3.3 奈米球成份分析............................74
4.3.4於Coating完PS-r-PMMA未浸泡甲苯對於奈米球之影響..............................................75
4.3.5改變PS-r-PMMA的厚度對於奈米球之影響........76
4.4排列整齊的奈米球製備方法.....................77
4.4.1 PS-b-PMMA厚度對於奈米球之影響.............80
4.4.2 相同溫度下浸泡不同時間冰醋酸的演進........81
4.4.3浸泡相同時間下不同溫度冰醋酸之演進.........85
4.5 蝕刻奈米球結構..............................87
4.5.1 RF Power對於蝕刻奈米球之討論..............87
4.5.2 下電極對於蝕刻奈米球之討論................88
4.5.3 蝕刻時間對於奈米球之討論..................89
4.5.4 蝕刻氣體流量對於奈米球之討論..............90
4.5.5 蝕刻Silicon奈米柱之討論...................91
4.6 P-I-N奈米柱元件量測.........................97
第五章 結論....................................102
第六章 量測實驗室軟體設計......................103
6.1 NI-LABVIEW軟體介紹..........................103
6.2 NI-LABVIEW連接儀器架設......................103
6.3 IPCE量測程式設計............................105
6.4 HP-4145量測程式設計.........................107
參考文獻........................................108
第一章
[1.1] S.O.Kasap,“Optoelectronics and Photonics principles and practices”

[1.2] 莊嘉琛,太陽能工程—太陽電池篇全華科技,2003年3月

[1.3] Brendan M. Kayes, Harry A. Atwater, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells” Journal Of Applied Physic 97, 114302 ,(2005)

[1.4] Lu Hu, Gang Chen, “Ananlysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications” NANO LETTERS, Volume 7, Number 11, (November 2007)

[1.5]Bozhi Tian, Xiaolin Zheng, Thomas J. Kempa, Ying Fang, Nanfnag Yu, Guihua Yu, Jinlin Huang, Charles M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources” NATURE LETTERS, Vol 449, (October 2007)

[1.6]L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “ Silicon nanowire solar cells” APPLIED PHYSICS LETTERS 91, 233117 (2007)

第二章
[2.1] 杜偉新,國立中興大學碩士論文 “ECRCVD成長矽奈米線之研究” 2004年8月

[2.2] Vladimir Sivakova, Frank Heyrothc, “Silicon nanowire growth by electron beam evaporation: Kinetic and energetic contributions to the growth morphology” Journal of Crystal Growth 300 (2007) 288–293

[2.3] Chih-Hsun Hsu, Hung-Chun Lo, Chia-Fu Chen, “Generally Applicable Self-Masked Dry Etching Technique for Nanotip Array Fabrication” NANO LETTERS Vol. 4, No.3, 471-475, (2004)

[2.4] Huang-Shen Lin, Chih-Chiang Kao, Hao-Chung Kuo, Shing-Chung Wang, and Gong-Ru Lin, “ Self-Assembled Ni Nanodot on SiO2 Film—A Novel Reactive Ion Etching Mask for Si Nanopillar Formation on Si Substrate ” IEEE ELECTRON DEVICE LETTERS

[2.5] Vladimir V. Poborchiia, Tetsuya Tadab,“Si pillar photonic crystal slab with linear defects: transmittance and waveguide properties”
Optics Communications 210 (2002) 285–290

[2.6] http://zh.wikipedia.org/wiki/Wiki

[2.7] 陳宣毅,物理雙月刊(廿四卷二期)“塊狀共聚物薄膜:自聚合的新材料”2002年 4 月

[2.8] Koji ASAKAWA, Toshiro HIRAOKA, “Nanopatterning with Microdomains of Block Copolymers using Reactive-Ion Etching Selectivity” Jpn. J. Appl. Phys. Vol. 41 (2002) pp. 6112–6118

[2.9] K. W. Guarini,a) C. T. Black,“Nanoscale patterning using self-assembled polymers for semiconductor applications” J. Vac. Sci. Technol. B 19,6, Dec 2001

[2.10] P. Mansky, Y. Liu, E. Huang,“Controlling Polymer-Surface Interactions with Random Copolymer Brushes”1458 (1997); 275 Science

[2.11] K. W. Guarini,a) C. T. Black,“Nanoscale patterning using self-assembled polymers for semiconductor applications” J. Vac. Sci. Technol. B 19,6, Dec 2001

[2.12] Vignesh Gowrishankar, Nathaniel Miller,“Fabrication of densely packed, well-ordered, high-aspect-ratio silicon nanopillars over large areas using block copolymer lithography” Thin Solid Films 513 (2006) 289–294

[2.13] Davood Shahrjerdi, Domingo I. Garcia-Gutierrez, “Fabrication of Ni Nanocrystal Flash Memories Using a Polymeric Self-Assembly Approach ”IEEE ELECTRON DEVICE LETTERS, VOL. 28, NO. 9, SEPTEMBER 2007

[2.14] K. W. Guarini,a) C. T. Black, “Nanoscale patterning using self-assembled polymers for semiconductor applications”J. Vac. Sci. Technol. B 19,6, Dec 2001

[2.15] Y.J. Zhang, W. Li, K.J. Chen, “Application of two-dimensional
polystyrene arrays in the fabrication of ordered silicon pillars
” Journal of Alloys and Compounds 450 (2008) 512–516

[2.16] Y.J. Zhang, W. Li, K.J. Chen, “Fabrication of large-scale
periodic silicon nanopillar arrays for 2D nanomold using
modified nanosphere lithography”Applied Surface Science 253
(2007) 9035–9038
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔