(3.238.130.97) 您好!臺灣時間:2021/05/10 13:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王誌源
研究生(外文):Jhih-Yuan Wang
論文名稱:N通道低溫複晶矽薄膜電晶體操作在交流訊號下關閉區域之可靠性研究
論文名稱(外文):Study on the Reliability of N-Channel Low Temperature Poly-Si Thin Film Transistors Dynamically Operated in OFF Region
指導教授:劉漢文
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:115
中文關鍵詞:複晶矽交流關閉區域可靠
外文關鍵詞:ReliabilityLTPSTFTOff region
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
低溫複晶矽薄膜電晶體目前被廣泛的應用,因此研究低溫複晶矽薄膜電晶體可靠度是一件很重要的議題。當低溫複晶矽薄膜電晶體應用於液晶面板顯示器上時,是利用交流訊號於閘極端來控制元件開關,資料訊號於汲極端。而當元件正常運作時,必定會觸及導通區域及關閉區域。從我們的實驗結果中,可以發現,當元件操作在關閉區域時,比操作於導通區域時有更大的元件特性衰退量。故本篇論文中,我們將探討低溫複晶矽薄膜電晶體操作在關閉區域時之可靠度研究。

在第一部份中,我們於閘極端給予交流訊號作電壓應力測試,分析元件電性特性隨應力時間變異之關係。從實驗中,我們發現元件操作關閉區域時,有非常顯著的衰退量。並且隨著頻率增加,衰退量也會明顯的上升。我們提出一個衰退模型來解釋元件的衰退機制。並且嘗試著不改變元件架構下,利用取樣電流、電容-電壓量測、順向反向電流-電壓量測來驗證我們所提出的衰退模型。

在第二部分中,我們除了於閘極端給予交流訊號,並且於汲極端給予直流訊號作電壓應力測試。使電壓應力測試更接近真實的元件操作情形。從實驗中,我們發現元件操作在關閉區域下,在較低頻時,汲極端給予-5V直流電壓其衰退量會比汲極端給予+5V直流電壓之衰退量來的大。而在較高頻時,結果剛好相反。我們利用取樣電流、電容-電壓量測、順向反向-電流電壓量測來證實我們所提出的主要傷害區域及衰退機制模型。
LTPS (Low Temperature Poly-Si) TFTs have been widely used recently. Therefore, the study of LTPS reliability is one of the most important issues. When the LPTS TFTs were worked on the liquid crystal display, the TFT’s On/Off states are controlled by AC signal on the gate, data signal on the drain. When the TFTs normally work, they would be toggled in the OFF region. From the results of experiment, we could find that the TFTs operated in the Off region had larger degradation than it operated in the On region. Thus, in this thesis, we will study the reliability of the LTPS TFTs operated in Off region.

In the first part, the gate of TFTs under AC signal stress were had to analysis the relationship between the characteristic of TFTs and stress time. In our experiments, we could find that there were obvious degradation, when TFTs were operated in the Off region. Moreover, the degradation of TFTs increased as well as the frequency increasing. We proposed a degradation model to explain the degradation mechanisms of TFTs. We used three measuring items, sampling current measurement, C-V measurement and Forward Reverse-IV measurement, to verify the degradation model we presented.

In the second part, we apply AC signal stress on the gate and DC signal stress on the drain. Let the bias stress approach the real operation of TFTs. In our experiments, we could find that TFTs stressed in the low frequency, Vd=-5V condition had larger degradation than Vd=+5V condition. The TFTs stressed in the high frequency, Vd=+5V condition had larger degradation than Vd=-5V condition. We also used three measuring items, sampling current measurement, C-V measurement and Forward Reverse-IV measurement, to verify the degradation model we presented.
誌謝 i
中文摘要 ii
Abstract iii
目次 iv
表目次 vi
圖目次 vii
第一章 簡介 1
1.1低溫複晶矽薄膜電晶體 1
1.2 可靠度工程 4
1.3 研究動機 6
1.4 文獻探討 6
第二章 元件介紹及基本原理 8
2.1 元件製作流程 8
2.2 量測系統設定 10
2.2.1量測儀器介紹 10
2.2.2 交流訊號參數 12
2.3 電晶體之各種電性參數粹取 13
2.3.1 載子遷移率(mobility)和轉導(GM)之定義 13
2.3.2 臨界電壓(Vth)之定義 14
2.3.3 次臨界擺幅(Subthreshold Swing SS)之定義 14
2.3.4 導通電流(Ion)之定義 14
2.3.5 漏電流(Ioff)之定義 15
第三章 實驗方法及流程 16
3.1 交流電壓應力測試 16
3.2 電容-電壓(C-V)量測 19
3.3 取樣電流(Sampling Current)量測 19
3.4 順向反向-電流電壓(FR-IV)量測 19
第四章 結果與討論 22
4.1 交流訊號於閘極端之可靠度測試 22
4.1.1 固定頻率及操作在不同工作區域下之交流訊號可靠度測試 22
4.1.2 改變頻率及操作在不同工作區域下之交流訊號可靠度測試 26
4.1.3 固定頻率及改變交流訊號範圍起始點於閘極端之可靠度測試 33
4.1.4 改變頻率及固定交流訊號範圍於閘極端之可靠度測試 37
4.1.5 改變頻率及固定交流訊號範圍於閘極端之取樣電流量測 41
4.1.6 元件操作在交流訊號下關閉區域之衰退機制 44
4.1.7 改變頻率及固定交流訊號範圍於閘極端之電容-電壓(C-V)量測 46
4.1.8改變頻率及固定交流訊號範圍於閘極端之順向-反向電流電壓(FR-IV)量測 49
4.1.9 改變切換時間及固定交流訊號範圍於閘極端之可靠度測試 52
4.2 交流訊號於閘極端及直流訊號於汲極端之可靠度測試 56
4.2.1 改變直流訊號於汲極端之可靠度測試 56
4.2.2 改變頻率及直流訊號於汲極端之可靠度測試 60
4.2.3 改變頻率及直流訊號於汲極端之取樣電流量測 82
4.2.4元件操作在交流訊號下關閉區域及直流訊號於汲極端之衰退機制 89
4.2.5 改變頻率、直流訊號於汲極端及固定交流訊號範圍於閘極端之電容-電壓(C-V)量測 93
4.2.6 改變頻率、改變直流訊號於汲極端及固定交流訊號範圍於閘極端之順向反向-電流電壓(FR-IV)量測 99
4.2.7 改變切換時間及固定直流訊號於汲極端、交流訊號範圍於閘極端之可靠度測試 105
第五章 結論 109
參考文獻 113
〔1〕H. Kuriyama et al., “An asymmetric memory cell using a C-TFT for ULSI SRAM, ”Symp. On VLSI Tech., 1992.

〔2〕Yamauchi, N.; Inaba, Y.; Okamura, M, “An integrated Photodetector-amplifier using a-Si p-i-n photodiodes and poly-Sithin-film transistors, ”IEEE Photonics Technology Letters, Volume 5, Issue 3, 1993.

〔3〕T. Yamanaka, T.Hashimoto, N.Hasegawa, T. Tanala, N. Hashimoto, A Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E.Takeda, and T.Nagano, “Advanced TFT SRAM cell technology using a phase-shift lithography, ” IEEE transaction on electron device, Volume. 42, 1995.

〔4〕Young, N.D.; Harkin, G.; BUNN, R.M.; McCulloch, D.J.; Wilks, R.W.; Knapp, A.G, “Novel fingerprint scanning arrays using polysilicon TFTs on glass And polymer substrates, ”IEEE, Electron Device Letters, Volume 18,Issue 1, 1997.

〔5〕Young, N.D.; Harkin, G.; Bunn, R.M.; McCulloch, D.J.; French, I.D., “The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process, ”IEEE transaction on electron device, Volume43, Issue 11, 1999

〔6〕Kow Ming CHANG, Yuan Hung CHUNG and Gin Ming LIN, “Hot Carrier Induced Degradation in Low Temperature Processed Polycrystalline Silicon Thin Film Transistors Using the Dynamic Stress, ”Japanese Journal of Applied Physics Volume.41, No.4A, 2002.


〔7〕Yukiharu URAOKA, Koji KITAJIMA, Hiroshi KIRIMURA, Hiroshi YANO, Tomoaki HATAYAMA and Takashi FUYUKI, “Degradation in Low-Temperature Poly-Si Thin Film Transistors Depending on Grain Boundaries, ”Japanese Journal of Applied Physics Volume.44, No.5A, 2005.

〔8〕Satoshi INOUE, Mutsumi KIMURA and Tatsuya SHIMODA“Analysis, “Classification of Degradation Phenomena in Polycrystalline-Silicon Thin Film Transistors Fabricated by a Low-Temperature Process Using Emission Light Microscopy, ”Japanese Journal of Applied Physics. Volume.42, 2003

〔9〕Kook Chul Moon, Jas-Hoon Lee, and Min-Koo Han,“The Study of Hot-Carrier Stress on Poly-Si TFT Employing C-V measurement, ”IEEE transaction on electron device, Volume.52, NO.4, 2005

〔10〕Yukiharu Uraoka, Hiroshi YANO, Tomoaki HATAYAMA and Takashi FUYUKI, “Comprehensive Study on Reliability of Low-Temperature Poly-Si Thin-Film Transistors under Dynamic Complimentary Metal-Oxide Semiconductor Operations, ”Japanese Journal of Applied Physics. Volume.41, 2002

〔11〕Ya-Hsiang Tai, Shih-Che Huang, and Po-Ting Chen, “Degradation Mechanism of Poly-Si TFTs Dynamically Operated in OFF Region, ” IEEE ELECTRON DEVICE LETTERS, Volume. 30, No.3, 2009

〔12〕Yukiharu URAOKA∗, Hiroshi YANO, Tomoaki HATAYAMA and Takashi FUYUKI, “Hot Carrier Effect in Low-Temperature poly-Si p-ch Thin Film Transistors under Dynamic Stress, ” Japanese Journal of Applied Physics. Volume.41, 2002

〔13〕Yukiharu Uraoka, Noboyuki Hirai, Hiroshi Yano, Tomoaki Hatayama, and Takashi Fuyuki, “Hot Carrier Analysis in Low-Temperature Poly-Si TFTs Using Picosecond Emission Microscope, ” IEEE transaction on electron device, Volume.51, NO.1, 2004

〔14〕Ya-Hsiang Tai, Shih-Che Huang, and Chien-Kwen Chen, “Analysis of Poly-Si TFT Degradation Under Gate Pulse Stress Using the Slicing Model, ” IEEE transaction on electron device, Volume.27, NO.12, 2006

〔15〕Yukiharu Uraoka, Tomoaki Hatayama, Takashi Fuyuki, Tetsuya Kawamura, and Yuji Tsuchihashi, “Reliability of Low Temperature Poly-Silicon TFTs Under Inverter Operation, ” IEEE transaction on electron device, Volume.48, NO.10, 2001

〔16〕Chin-Yang Chen, Jam-Wem Lee, Shen-De Wang, Ming-Shan Sieh, Po-Hao Lee, Wei-Cheng Chen, Hsiao-Yi Lin, Kuan-Lin Yeh, and Tan-Fu Lei, “Negative Bias Temperature Instability in Low-Temperature Polycrystalline Silicon Thin-Film Transistors,”IEEE transactions on electron devices, Volume.53, No.12, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔