(3.236.214.19) 您好!臺灣時間:2021/05/06 21:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:詹爵安
研究生(外文):Chueh-An Chan
論文名稱:應用於雙頻帶無線區域網路之射頻前端電路設計
論文名稱(外文):The RF Front-End Design for Dual Band WLAN Applications.
指導教授:江衍忠
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:68
中文關鍵詞:無線區域網路IEEE802.11a/b/g雙頻帶低雜訊放大器混波器單旁帶混波器
外文關鍵詞:WLANIEEE802.11a/b/gdual bandLNAMixerSSB Mixer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:149
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究應用於IEEE802.11a/b/g的無線區域網路雙頻接收機部份電路,內容包含前端電路基本原理、雙頻帶低雜訊放大器、直接降頻混波器以及單旁帶混波器等之設計。使用國家晶片系統設計中心(CIC)提供的TSMC0.35 m BiCMOS SiGe製程。本論文除了第二章講述電路基本概念外,將以三個電路的設計,分成三個章節來說明。
第三章的內容為設計採用雙頻帶輸出阻抗完成之雙頻帶低雜訊放大器。模擬結果增益大於7 dB,雜訊指數小於3.7 dB,輸入1dB壓縮點為–13 ~ – 4 dBm。量測結果顯示在2.4GHz以及5.2GHz,其增益分別為3.28dB以及–4.62dB,而雜訊指數為6.38 dB以及8.43 dB,功率消耗為22.44 mW。
第四章的設計則為直接降頻混波器,輸出零中頻的設計頻寬為5MHz,射頻操作在2.4GHz以及5.2GHz。模擬結果轉換增益大於10dB,雜訊指數小於15dB,輸入1dB壓縮點大於-20dBm。
第五章的設計為單旁帶混波器,利用上旁帶混波器以及下旁帶混波器的概念設計一個切換式的單旁帶混波器。此電路的輸出可以操作在2.4GHz以及5.2GHz,模擬結果輸出振幅大於300mVp,其附加之相位雜訊皆低於-120dBc/Hz@1MHz frequency offset。
This thesis studies mainly in dual band receiver for IEEE802.11a/b/g WLAN. The contents include fundamental principles of RF front-end, the low noise amplifier (LNA), the direct conversion mixer, and the single sideband mixer (SSBM). All of the designs use the TSMC 0.35 m BiCMOS SiGe process which is provided by the National Chip Implementation Center (CIC). Besides of the RF principles provided in chapter two, there are three additional chapters for three kinds of circuits in this thesis as described as followed.
In chapter three, we implemented the dual band LNA using the dual band resonance. The simulation results shows that the power gain is greater than 7dB, the Noise Figure (NF) is better than 3.7dB, and the input 1dB compression point is -13 to -4dBm for both bands. The measurement results shows that the power gain is 3.62dB and -4.62dB, SSB noise figure is 6.38dB and 8.43dB for 2.4GHz and 5.2GHz bands, respectively. The DC power consumption is 22.44mW.
In chapter four, we design a down conversion mixer, the output bandwidth is 5MHz, and the design is for 2.4GHz and 5.2GHz applications. The simulation results shows that the conversion gain is greater than 10dB, the SSB NF is smaller than 15dB, and the input 1dB compression point is greater than -20dBm.
In chapter five, we implemented a switching SSBM using upper sideband mixer and lower sideband mixer architecture. It is also for 2.4GHz and 5.2GHz applications. The simulation results show that the output swings is greater than 300mVp, and the phase noise is smaller than -120dBc/Hz at 1MHz offset frequency for both upper and lower sideband.
誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 X
第一章 導論 1
1.1 研究動機 1
1.2 通訊系統規範介紹 1
1.2.1 IEEE 802.11a/b/g系統 1
1.2.2 IEEE 802.11n系統 2
1.3 文獻回顧 3
1.4 論文架構 3
第二章 前端電路基本原理 4
2.1 前端系統架構[15] 4
2.1.1 外差式接收機(Heterodyne Receiver) 4
2.1.2零中頻式接收機(Zero IF or Homodyne Receiver) 4
2.1.3 低中頻式接收機(Low IF Receiver) 6
2.2 射頻效能參數 7
2.2.1 功率增益 7
2.2.2 雜訊指數(Noise Figure, NF)[15][24] 8
2.2.3 非線性效應 9
2.2.3.1 非線性系統 9
2.2.3.2 1dB增益壓縮點 10
2.2.3.3 交互調變 11
2.2.4 穩定度 12
2.3 低雜訊放大器介紹 13
2.3.1 源極退化電感[25] 13
2.3.2 疊接組態 14
2.4 混波器介紹 14
2.4.1 單端平衡混波器[26] 15
2.4.2 雙端平衡混波器 15
第三章 雙頻帶低雜訊放大器 17
3.1 簡介 17
3.2 文獻回顧 17
3.3 雙頻帶低雜訊放大器設計 18
3.3.1 電路架構 19
3.3.2 輸入匹配 20
3.3.3 輸出匹配 21
3.4 模擬結果 22
3.5 雙頻帶低雜訊放大器佈局圖以及顯微鏡攝影圖 28
3.6 量測考量 29
3.6.1 S參數量測考量 29
3.6.2 雜訊指數量測考量 30
3.6.3 線性度量測考量 30
3.7 量測結果 31
3.7.1 S參數量測結果 31
3.7.2 雜訊指數量測結果 33
3.7.3 線性度量測結果 33
3.8 討論 35
第四章 混波器 36
4.1 簡介 36
4.2 混波器設計 37
4.2.1 電路架構 37
4.2.2 RF輸入放大級 38
4.2.3 IF輸出級與緩衝器(Buffer) 38
4.3 模擬結果 39
4.3.1 RF輸入2.4GHz,LO輸入2.395GHz 39
4.3.2 RF輸入5.2GHz,LO輸入5.195GHz 41
4.4 討論 43
第五章 單旁帶混波器 44
5.1 簡介 44
5.2 文獻回顧 47
5.3 正交訊號產生電路 49
5.3.1 RC-CR電路 49
5.3.2 多相位濾波器(Poly-phase filter) 49
5.3.3 Haven技術 50
5.3.4 除二電路 51
5.4 單旁帶混波器設計(SSBM) 52
5.4.1 上旁帶混波器(Upper sideband Mixer) 53
5.4.2 下旁帶混波器(Lower sideband Mixer) 53
5.4.3 多相位濾波器設計 54
5.4.4 電路架構 55
5.5 模擬結果 56
5.5.1 多項位濾波器模擬結果 56
5.5.2 RF端輸入1.2GHz,LO端輸入3.6GHz時,降頻至2.4GHz 58
5.5.3 RF端輸入1.3GHz,LO端輸入3.9GHz時,升頻至5.2GHz 60
5.6 單旁帶混波器佈局圖 63
5.7 量測考量 64
5.8 討論 64
第六章 結論 65
參考資料 66
[1] S. Wu and B. Razavi, “A 900 MHz/1.8 GHz CMOS receiver for dual band applications,” ISSCC Digest of Technical Papers, pp. 124-125, Feb. 1998.
[2] O. Charlon, M. Locher, H. Visser, D. Duperray, J. Cherr, M. Judson, A. Landesman, C. Hritz, U. Kohlschuetter, Y. Zhang, C. Ramesh, A. Daanen, M. Gao, S. Haas, V. Maheshwari, A. Bury, G. Nitsche, A. Wrzyszcz, W. Redman-White, H. Bonakdar, R. El Waffaoui, and M. Bracey, “A low-power high-performance SiGe BiCMOS 802.11a/b/g transceiver IC for cellular and bluetooth co-existence applications,” ESSCIRC, pp. 129-132, Sep. 2005.
[3] S. W. Kao, M. C. Kuo, C. S. Wang, Y. B. Lee, C. H. Chen, P. U. Su, and T. Y. Yang, “A Low-Power Dual-Band WLAN CMOS Receiver,” Asian Solid-State Circuits Conference, pp. 397-400, Nov. 2005.
[4] A. Ravi, B.R. Carlton, Y. Palaskas, G. Banerjee, R.E. Bishop, M.A. Elmala, R.B. Nicholls, I.A. Rippke, H. Lakdawala, L.M. Franca-Neto, S.S. Taylor, and K. Soumyanath, “A 1.4V, 2.4/5 GHz, 90nm CMOS system in a package transceiver for next generation WLAN,” VLSI Circuits Digest of Technical Papers, pp. 294-297, June 2005.
[5] Y. J. Ko, J. Y. Park, J. H. Ryu, K. H. Lee, and J. U. Bu, “A miniaturized LTCC multi-layered front-end module for dual band WLAN (802.1l a/b/g) applications,” Microwave Symposium Digest Pagers, pp. 563-566, 2004.
[6] V. K. Dao, Q. D. Bui, and C. S. Park, “A multi-band 900MHz/1.8GHz/5.2 GHz LNA for reconfigurable radio,” RFIC Symposium, pp. 69-72, June 2007.
[7] T. K. K. Tsang and M. N. El-Gamal, “Dual-band sub-1 V CMOS LNA for 802.11a/b WLAN applications,” ISCAS, Vol. 1, pp. 217-220, May 2003.
[8] V. K. Dao, B. G. Choi, and C. S. Park, “A dual-band CMOS RF front-end for 2.4/5.2 GHz applications,” Radio and Wireless Symposium, pp. 145-148, Jan. 2007.
[9] L. H. Lu, H. H. Hsieh, and Y. S. Wang, “A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier,” Microwave and Wireless Components Letters, Vol. 15, pp. 685-687, Oct. 2005.
[10] C. B. A. Edwin, S. I. Federico, and M. de la Rosa Jose, “Adaptive CMOS LNAs for beyond-3G RF receivers - a multi-standard GSM/WCDMA/BT/ WLAN case study,” ISCAS, pp. 417-420, May 2009.
[11] G. Cusmai, M. Brandolini, P. Rossi, and F. Svelto, “A 0.18-μm CMOS selective receiver front-end for UWB applications,” IEEE Journal of Solid-State Circuits, Vol. 41, pp. 1764-1771, Aug. 2006.
[12] H. Hashemi and A. Hajimiri, “ Concurrent multiband low-noise amplifiers - Theory, design, and applications,” IEEE Transaction on Microwave Theory Technology, Vol. 50, No. 1, pp. 288-301, Jan. 2002.
[13] M. B. Amor, A. Fakhfakh, H. Mnif, and M. Loulou, “ Dual band CMOS LNA design with current reuse topology,” Design and Test of Integrated Systems in Nanoscale Technology, 2006.
[14] E. G. Ouail, K. Eric, J. B. Begueret, and B. Didier, “Concurrent dual-band low noise amplifier for 802.11a/g WLAN applications,” ICECS, pp. 66-69, Dec. 2006.
[15] B. Razavi, RF Microelectronics, Prentice Hall Ptr, 1998.
[16] Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge Univ Pr, 2003.
[17] B. Razavi, Design of analog CMOS integrated circuits. McGraw-Hill, Inc. International Edition, 2001.
[18] T. P. Liu, “A 2.7V dual-frequency single-sideband mixer,” VLSI, pp. 124-127, 1998.
[19] X. Jiang, W. Li, and N. Li, “QSSB mixer design for MB-OFDM UWB frequency synthesizer,” The 7th international conference on ASIC, pp. 688-691, Oct. 2007.
[20] Jri Lee, “A 3-to-8-GHz fast-hopping frequency synthesizer in 0.18-μm CMOS technology,” IEEE Journal of Solid-State Circuits, Vol. 41, No. 3, pp. 566-573, Mar. 2006.
[21] Leifso, C.; Nisbet, J, “A monolithic 6 GHz quadrature frequency doubler with adjustable phase offset,” IEEE Journal of Solid-State Circuits, Vol. 41, NO. 2, pp. 405-412, Feb. 2006.
[22] A. A. Abidi, “Direct-conversion radio transceivers for digital communications,” IEEE Journal of Solid-State Circuits, Vol. 30, pp. 1399-1410, Dec. 1995.
[23] B. Razavi, RFIC Design Challenges, Design Automation Conference, 1998.
[24] Guillermo Gonzlez, Microwave Transistor Amplifier Analysis and Design, New Jersey, Prentice Hall Inc, Second Edition, 1996.
[25] D. K. Shaeffer, and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE Journal of Solid-State Circuits, Vol. 32, No. 5, May 1997.
[26] B. Gilbert, “A precise four quadrant multiplier with sub-nanosecond response,” IEEE Journal of Solid-State Circuits, Vol. SC-3, pp. 365–373, Dec. 1968.
[27] Tai-You Lu and Wei-Zen Chen, “A 3-to-10GHz 14-band CMOS frequency synthesizer with spurs reduction for MB-OFDM UWB system,” IEEE ISSCC, pp. 126-127, Feb. 2008
[28] Chinmaya Mishra, Alberto Valdes-Garcia, Faramarz Bahmani, Anuj Batra, Edgar Sánchez-Sinencio, and Jose Silva-Martinez, “Frequency planning and synthesizer architectures for multiband OFDM UWB radios,” IEEE Transaction on Microwave Theory and Technology, Vol. 53, No. 12, pp. 3744-3755, Dec. 2005.
[29] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE Journal of Solid-State Circuits, Vol. 39, pp. 1415-1424, 2004.
[30] F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi “CMOS mixers and polyphase filters for large rejection,” IEEE Journal of Solid-State Circuitss, Vol. 36, NO.6, pp. 873-887, Jan. 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔