跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/23 08:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪溪憲
研究生(外文):Hsi-Hsien Hung
論文名稱:寬範圍且高效率脈波頻率調變降壓轉換器
論文名稱(外文):Wide Range and High Efficiency Buck Converter with Pulse Frequency Modulation
指導教授:張振豪
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:62
中文關鍵詞:脈波頻率調變降壓式轉換器高效率脈波頻率調變降壓轉換器
外文關鍵詞:Pulse Frequency ModulationBuck Converter
相關次數:
  • 被引用被引用:2
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在傳統電源轉換器設計上,大多採用雙模式控制(PWM/PFM)來實現寬範圍負載電流電源轉換器。但在PWM電源轉換器上,因為電路特性的關係,必須額外設計補償電路。然而在積體電路上,電容值不易精確設計,因此有時也需在電路外,加入電容元件。所以在本論文中,設計一個具有提供寬範圍負載電流且高效率的PFM降壓電源轉換器,僅用單一控制模式來取代雙模式的做法,以減少設計上困難和不必要的外部元件。
  本論文提出控制電感電流的方式,減少功率晶體功率消耗和電感電流過充。當電感電流足夠供應負載時,電感電流控制器產生相對應控制電壓,藉此控制電壓送到關閉時間產生器,產生提早關閉功率晶體導通時間訊號。
  論文中使用的是TSMC 1P6M 0.18μm的製程完成電路設計,且提供輸出電壓範圍是0.3V~1.8V,負載輸出電流範圍為5mA~1A。在功率效率上,負載電流100mA時為最高效率 91%。晶片面積大約為3.3x1.5mm²。
In traditional power converters design, PFM and PWM dual control mode is frequently used for wide range loading current applications. For PWM control mode, extra circuits must be utilized for compensation. In addition, it is not easy to get exact capacitance in integrated circuits design and thus the circuits may need to add extra capacitors outside the chip. This thesis presents a wide range loading current and high efficient buck converter design with PFM, which uses single control instead of dual control mode to reduce design difficulty and outside devices.
This thesis proposed the control of inductor current to reduce power consumption of the power MOS transistors and to avoid overloading of inductor current. When the inductor current is sufficient to supply the loading current, the inductor current controller will generate a corresponding control voltage to the off-time generator, which can turn off the power MOS transistors.
This buck converter is designed by using TSMC 1P6M 0.18μm technology. The output voltage range is 0.3V~1.8V and the output current is 5mA~1A. The power efficiency of the converter is 91% at 100mA loading current. The size of the chip is 3.3x1.5mm².
誌謝 i
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1背景簡介 1
1.2研究動機 1
1.3論文架構 2
2.1切換式電源轉換器種類及原理 3
2.1.1降壓式轉換器(Buck Converter) 3
2.1.2升壓式轉換器(Boost Converter) 6
2.1.3升降式轉換器(Buck-Boost Converter) 8
2.2切換式電源轉換器的導通模式(Converter Conduction Mode) 11
2.2.1連續導通模式(Continuous Conduction Mode,CCM) 11
2.2.2不連續導通模式(Discontinuous Conduction Mode,DCM) 17
2.3切換式電源轉換器的控制方式(Converter Control Mode) 22
2.3.1電壓式脈波寬度調變降壓轉換器(Voltage-Mode PWM Buck Converter) 22
2.3.2電流式脈波寬度調變降壓轉換器(Current-Mode PWM Buck Converter) 24
2.3.3電壓式脈波頻率調變降壓轉換器(Voltage-Mode PFM Buck Converter) 26
2.3.4電流式脈波頻率調變降壓轉換器(Current-Mode PFM Buck Converter) 27
2.4同步整流技術(Synchronous Rectification) 28
第三章 電路分析與模擬 30
3.1系統架構分析 30
3.2遲滯比較器 (Hysteresis Comparator) 31
3.3電流感測電路(Current Sensing Circuit) 32
3.4 疊接運算放大器(Cascode OP Amplifier) 33
3.5電感電流控制器(Inductor Current Controller) 35
3.5.1快閃類比數位轉換器(Flash Analog to Digital Converter) 36
3.5.2 D型正反器(D Flip-Flop) 37
3.5.3 優先編碼器(Priority Encoder) 38
3.5.4 解碼器(Decoder) 38
3.5.5 電阻網路(Resistor Network) 39
3.5.6重置電路(Reset Circuit) 40
3.6 關閉時間產生器(Off-Time Generator ) 41
3.7 PFM控制器(PFM Controller) 42
3.8軟啟動電路(Soft Start Circuit) 42
3.9非重疊式緩衝電路(Non-overlap Buffer) 43
3.10零電流偵測器(Zero Current Detector) 45
第四章 系統模擬與佈局 46
4.1電流感測電路 46
4.2電感電流控制器 48
4.3關閉時間控制電路 51
4.4軟啟動電路 52
4.5 PFM控制電路 53
4.6完整系統模擬 54
4.6.1 電感電流比較 54
4.6.2負載電流為1000mA模擬圖 55
4.6.3負載電流為100mA模擬圖 56
4.6.4負載電流為5mA模擬圖 57
4.7功率效率 58
4.8佈局圖 59
第五章 結論 60
參考文獻 61
[1] 簡峯偉, “高效率且廣範圍之雙模式降壓轉換器,” 國立中興大學電機所論文,中華民國九十五年六月。

[2] A. I. Pressman, Switching Power Supply design, New York: McGraw-Hill, 1991.

[3] H. W. Whittington, B.W. Flynn, and D. E. Macpherson, Switched Mode Power Supply: Design and Construction 2nd edition, Research Studies Press Ltd., 1997.

[4] D. O’ Sullivan, B. Spruyt, and A. Crausaz, “PWM conductance control,” in Proc.IEEE Power Electronics Specialists Conference, 1988, pp. 351-359.

[5] L. Dixon, “Average current mode control of switching power supplies,“ in Unitrode Power Supply Design Seminar Handbook (SEM-700), pp. 5-1 to 5-14, Unitrode Corporation, MA, 1990.

[6] B. Carsten, “Current mode control for high frequency switch mode,” in Proc. Power Convert and Intelligent Motion (PCIM), Apr. 1986, pp. 61-64.

[7] K. Kester and B. Erisman, “Switching Regulators,” Analog Devices Technical Library on Power Management, 1999.

[8] P. L. Miribel-Catala, M. Puig-Vidal, J. S. Marti, P. Goyhenetche, and X. Q. Nguyen, “An integrated digital PFM dc-dc boost converter for a power management application: a RGB backlight LED system driver,” in Proc. IEEE Annual Conference on Industrial Electronics, Nov. 2002, vol. 1, pp. 37-42.

[9] C. Y. Leung, P, K. T. Mok, and K. N. Leung, “A 1.2V buck converter with a novel on-chip low-voltage current-sensing scheme,” in Proc. International Symposium on Circuit and System, May 2004, vol. 5, pp. V-824-827.

[10] C. Yoo, “A CMOS buffer without short-circuit power consumption,” IEEE Transactions on Circuits and Systems II, vol.47, pp.935-937, Sept. 2000.

[11] D. Ma, W.-H. Ki, C. -Y. Tsui , and P.K.T Mok, “Single-Inductor multiple-output switching convert with time-multiplexing control in discontinuous conduction mode,” IEEE Journal of Solid-State Circuit, vol. 38, no. 1, pp. 542-547, Jan. 2003.

[12] S. Zhou and G. A. Rincón-Mora, “A high efficiency, soft-switching DC–DC converter with adaptive current-ripple control for portable applications,” IEEE Transactions on Circuits and Systems II, vol. 53, no. 4, Apr. 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top