(18.206.238.77) 您好!臺灣時間:2021/05/18 06:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝函芸
研究生(外文):Han-Yun Hsieh
論文名稱:台灣發霉米中具Zeranol免疫活性成份之偵測及鑑定
論文名稱(外文):Surveillance and identification of Zeranol-immunoreactive compounds in moldy rice in Taiwan
指導教授:周濟眾
指導教授(外文):Chi-Chung Chou
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫學系暨研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:85
中文關鍵詞:雙偵測高效能液相層析黴菌毒素電化學發霉米
外文關鍵詞:zeranolHPLCdual detectionmoldy rice
相關次數:
  • 被引用被引用:0
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Zeranol(Z)是一種具動情素活性的非類固醇類黴菌毒素(zearalenone , Zen)衍生物,為FDA核准使用於肉品工業的生長促進劑。而Zen為Fusarium屬所產生之黴菌毒素,此種黴菌可生長在發霉之燕麥、大麥、小麥、高粱及米上。近年來的研究指出,長期食用含有Z、Zen和其相關代謝產物(Zs)殘留的食物與乳癌的發生有關。因此,人類在進食發霉穀物的同時恐無法避免攝入Zs,尤其以米食為主的台灣人民暴露到Zs的量可能更多。本研究主要目的即在探討台灣本土米中Zs的含量且同時鑑定發霉米中具有Z免疫活性物質之結構。實驗計自台灣北、中、南、東區各連鎖超市及米店取得共221件様本,先以ELISA篩選出具Zs免疫活性之様本,再以高效能液相層析法予以鑑定。結果顯示,在所測的221個樣品中僅21個米樣品(9.5%)含有高於1 ppb之Zs免疫活性,且此殘留值遠低於FAO所制定之穀物中殘留標準50-1000 ppb。在所測的7個黃豆、3個玉米片樣品中則分別有4個(57.14%)及有3個(100%)高於1 ppb之Zs免疫活性。抽選特定樣品,以所發展之高效能液相層析配合紫外光及電化學偵測發現,所有抽撿樣品之Zs含量皆在偵測極限(10 ppb)以下。綜合以上結果,台灣新鮮米中之Zs殘留量極低。在Zs檢驗方法之開發上,我們以高效能液相層析同時串聯紫外光及電化學而完成雙偵測系統(HPLC-UV-EC)用以同時檢測Zs之存在;此法之UV偵測極限在10-45 ppb之間、電化學極限為25-90 ppb之間,且有良好的精確度及準確度。將上述方法應用在已發霉米之分析上發現,經過固相萃取(回收率80%左右)後,可見到疑似有Z和β-Zearalenol以及α-Zearalenol的波峰出現,其含量分別為18.74、8.15、3.39 ppm,顯示發霉米的確有食品安全上的疑慮。質譜鑑定具Zs免疫活性之成份初步發現為m/z 329、m/z 331、m/z 293及m/z 295之物質,其分子量與Zs或是黃麴毒素接近。綜合言之,本實驗除有助了解國內米中Zs的含量現況外,亦發展了一個適合常規檢驗並定量穀物中Zs的方法,且米類食品若保存不良而有發霉情形將造成食品安全上的疑慮。
Zeranol (Z) is a nonsteroidal agent with estrogenic activity that is used as a growth promoter in the cattle industry in the United States. Zeranol may also be formed in vivo from the metabolism of mycotoxin zearalenone (Zen) produced by Fusarium spp that grows on grains including maize, oat, barley, wheat, and sorghum. The residue of Z, Zen, and its metabolites (Zs) in food may exert estrogenic effects on mammalian endocrine system and contribute to the development of human breast cancer. Therefore, safe food free from Zs in meat and grains are important and reliable analytical methods are required to monitor Zs residue in food. The objectives of the study were to investigate the prevalence of Zs in rice products in Taiwan and to identify Z-immunoreactive compounds associated with mold production. A total of 221 rice samples were collected from north, middle, south and east regions of Taiwan over one-year period for screening of immunoreactive Zs activity by enzyme-linked immunosorbent assays (ELISA). The results indicated that only 21 rice samples (21/221=9.5%) have Z-immunoreactivity higher than 1 ng/g. This level is well bellow the FAO approval level of 50-1000 ppb in grains, suggesting that the contamination level of Zs in fresh rice in Taiwan was low. A simple and rapid high performance liquid chromatography (HPLC) method with electrochemical (EC) and UV (wavelength=274 nm) dual detection was validated for simultaneous determination of Zs in various matrices such as rice, soybean, and cereals after solid-phase extraction. Recoveries were around 80% and the limits of detection ranged from 10 ng/ml to 25 ng/ml for UV and from 50 ng/ml to 90 ng/ml for EC detection with good accuracy and reproducility. Suspected Z, β-Zearalenol and α-Zearalenol peaks were observed in moldy rice, which may implicate possible exposure of Zs to human health. Mass spectrometry analysis of suspected Z-immunoreactive compound revealed substrates with m/z 329, m/z 331, m/z 293, and m/z 295. This developed method was suitable for a routine analysis of Z-immunoreactive compounds in grains and can uncover contamination of Zs in rice.
目錄

英文摘要 ......................................................... i
中文摘要 .............................................. iii
目錄.................................................... iv
目次.................................................... iv
圖次.................................................... iv



前言..................................................... 1
第一章 文獻探討......................................... 3
1-1  Zeranol(Z)之簡介................................ 3
1-1.1 Z和其代謝產物(Zs)之來源...................... 3
1-1.2 Zs之動情素活性及毒性 .......................... 5
1-1.3 Zs在肉品工業及穀物中殘留相關規定 .............. 7
1-2 現有檢測Zs的分析方法............................... 9
1-2.1 免疫分析法..................................... 9
a. ELISA與RIA..................................... 9
b. TR-FIA ........................................10
1-2.2 色層分析法.................................... 10
a. 薄層層析法 (Thin-layer chromatography)..... 10
b. 高效能液相層析(High-performance
liquidchromatography)........................ 11
c. 質譜儀偵測器(mass spectrometry, MS)......... 11
1-3 高效能液相層析系統搭配紫外光及電化學雙偵測之原理及應用 ….............. 13
1-3.1 電化學分析法簡介 ............................. 13
a. 循環伏安法(Cyclic voltammetry).............. 14
b. 安培法(Amperometry, i-t curve).............. 15
c. 電化學搭配流動注入分析器(EC-Flow injection
analysis).................................... 16
1-3.2 電極之選擇及應用.............................. 18
1-3.3 紫外光偵測器之原理與應用...................... 19
a. 固定波長UV偵測器(fixed wavelength UV detector)
...............................................20
b. 多波長UV偵測器(multi wavelength UV detector)
...............................................21
第二章 材料與方法 ...................................... 22
2-1 台灣地區市售米中Zs相關代謝產物之殘留調查.......... 22
2-1.1 米樣本收集 ................................... 22
2-1.2 樣品前處理.................................... 23
2-1.3 酵素連結免疫吸附法 (Enzyme linked immunosorbent
assay) ....................................... 23
2-2 以HPLC搭配紫外光和電化學雙偵測系統偵測Zs之標準方法.24
2-2.1 儀器及設備.................................... 24
a. 電化學分析儀 ................................. 24
b. 流動注入分析系統 (Flow injection analysis).. 24
c. 高效能液相層析系統 ........................... 25
2-2.2 標準品及移動相之配置.......................... 25
a. 標準品之配製 ................................. 25
b. 移動相之製備 ................................. 25
2-2.3 HPLC串聯紫外光和電化學雙偵測系統之建構及配置.. 26
2-2.4 HPLC串聯紫外光和電化學雙偵測系統之分析條件... 27
a. HPLC分析條件.................................. 27
b. 安培法分析 ................................... 27
2-2.5 再現性之探討.................................. 28
a. 內及日間變異分析 (Intra-day and inter-day
variation)................................... 28
2-3 回收率試驗........................................ 29
2-4 發霉樣品分析 ..................................... 30
2-4.1 發霉基質製造 ............................... 30
2-4.2 發霉基質萃取及分析 .......................... 30
2-4.3 發霉產物的質譜結構鑑定分析條件............... 30
2-5 實驗藥品及儀器列表................................ 32
2-5.1 實驗藥品..................................... 32
2-5.2 其他儀器..................................... 33
第三章 實驗結果 ........................................ 34
3-1 台灣地區市售米中Zs相關代謝產物之殘留檢查.......... 34
3-1.1 台灣地區市售米中Zs之ELISA檢驗結果 ............ 34
3-2 以HPLC串聯紫外光和電化學雙偵測系統偵測Zs之標準方法 35
3-2.1 Zs雙偵測標準層析圖 ........................... 36
3-2.2 偵測極限及定量極限之探討 ..................... 37
3-2.3 再現性探討: intra-day、inter-day變異性探討 ... 42
3-3 回收率試驗 ....................................... 43
3-4 發霉穀物中Zs之檢驗 ............................... 44
3-4.1 發霉米中Zs之檢驗 ............................ 44
3-4.2 發霉玉米片中Zs之檢驗..........................46
3-4.3 發霉黃豆中Zs之檢驗........................... 48
3-5 發霉產物之質譜結構鑑定 ..........................................................50
第四章 討論 ............................................ 54
4-1 以HPLC搭配紫外光和電化學雙偵測系統偵測Zs之標準方法.55
4-1.1 雙偵測方法之建立.............................. 55
4-1.2 各Zs之光學與電學訊號比較...................... 57
4-2 實際樣品中Zs檢測 ................................. 60
4-2.1 Zs於台灣各地區市售米中含量之情形.............. 60
4-2.2 Zs於發霉穀物中之偵測及含量.................... 61
4-2.3 發霉樣品產物之結構鑑定........................ 62
4-3 未來展望...........................................64
4-3.1  發霉樣品中黴菌種類之鑑定......................64
4-3.2  多重黴菌毒素或農藥之檢測......................65
4-3.3  雙偵測方法之應用..............................67
a. 前言.......................................67
b. 材料與方法..................................69
c. 結果與討論..................................69
第五章 參考文獻 .........................................76
呂鋒洲。黴菌毒素(譯述)。中正書局,台北市,台灣,1982。
胡啟章。電化學原理與方法。五南出版社,台北,台灣,2007。
孫逸民、沈玉舜、趙敏勳、謝明學、劉興鍵。儀器分析。全威圖書有限公司。台北縣。台灣。2006。
師維孝。中興大學獸醫系碩士學位論文。發展以電化學偵測Zeranol及分析動情素相關基因於台灣地區乳癌之表現,2006。
陳銘華。中興大學化學系碩士學位論文。液相層析質譜術於食物中黃麴毒素及赭麴毒素之檢測,2005。
黃振文、孫守恭、馬慧英。台灣產鐮胞菌之研究。中菌會刊。7:1-22, 1992。
賴玉艷。中興大學化學系碩士學位論文。利用化學修飾電極同步偵測次黃嘌呤、黃嘌呤、尿酸之研究,1999。
Abdelhamid AM, Kelada IP, Ali MM, and El-Ayouty SA. Influence of zearalenone on some metabolic, physiological and pathological aspects of female rabbits at two different ages. Arch Tierernahr. 42: 63-70, 1992.
Becci PJ, Johnson WD, Hess FG, Gallo MA, Parent RA, and Taylor JM. Combined
two-generation reproduction-teratogenesis study of zearalenone in the rat. J Appl Toxicol. 2: 201-206, 1982.
Berek L, Petri IB, Mesterhazy A, Teren J, Molnar J. Effects of mycotoxins on human immune functions in vitro. Toxicol In Vitro. 15: 25-30, 2001.
Berg, H. Pesticide use in rice and rice-fish farms in the Mekong Delta, Vietnam. Crop Prot. 20: 897, 2001.
Berthiller F, Sulyok M, Krska R, and Schuhmacher R. Chromatographic methods for the simultaneous determination of mycotoxins and their conjugates in cereals. Int J Food Microbiol. 119: 33-37, 2007.
Blokland MH, Sterk SS, Stephany RW, Launay FM, Kennedy DG, and van Ginkel
LA. Determination of resorcylic acid lactones in biological samples by GC-MS.
Discrimination between illegal use and contamination with fusarium toxins. Anal Bioanal Chem. 384: 1221-1227, 2007.
Boswald C, Engelhardt G, Vogel H, and Wallnofer PR. Metabolism of the Fusarium mycotoxins zearalenone and deoxynivalenol by yeast strains of technological relevance. Nat Toxins. 3: 138-144, 1995.
Bouribonnes P, and Loquet C. Antibaeterual activity, DNA-attacking ability and mutagentic ability of mycotoxin zearalenone. Int Res Commun System Med Sci. 7: 204, 1979.
Caldwell RW, Tuite J, Stob M, and Baldwin R. Zearalenone production by Fusarium species. Appl Microbiol. 20: 31-34, 1970.
Calemine J, Zalenka J, Karpuzoglu-Sahin E, Ward DL, Lengi A, Ahmed SA. The immune system of geriatric mice is modulated by estrogenic endocrine disruptors (diethylstilbestrol, alpha-zearalanol, and genistein): effects on
interferon-gamma. Toxicology. 94: 115-128, 2003.
Calvert TW, Aidoo KE, Candlish AG, and Fuat AR. Comparison of in vitro cytotoxicity of Fusarium mycotoxins, deoxynivalenol, T-2 toxin and zearalenone on selected human epithelial cell lines. Mycopathologia. 159: 413-419, 2005.
Chen CJ, Kumara AS, Chung HH, Chien SH, Kuo MC, and Zen JM. An enzymeless electrochemical sensor for the selective determination of creatinine in human urine. Sens Actuator B. 115: 473-480, 2006.
Chichila TM, Silvestre D, Covey TR, and Henion JD. Distribution of zeranol in bovine tissues determined by selected ion monitoring capillary gas
chromatography/mass spectrometry. J Anal Toxicol. 12: 310-318, 1988.
Childress WL, Krull IS, and Selavka CM. Determination of deoxynivalenol (DON, vomitoxin) in wheat by high-performance liquid chromatography with photolysis and electrochemical detection (HPLC-hv-EC). J Chromatogr Sci. 28: 76-82, 1990.
Coe JE, Ishak KG, Ward JM, and Ross MJ. Tamoxifen prevents induction of hepatic neoplasia by zeranol, an estrogenic food contaminant. Proc Natl Acad Sci. 89: 1085-1089, 1992.
Cooper KM, Tuomola M, Lahdenpera S, Lovgren T, Elliott CT, and Kennedy DG. Development and validation of dry reagent time-resolved fluoroimmunoassays for zeranol and alpha-zearalenol to assist in distinguishing zeranol abuse from Fusarium spp. toxin contamination in bovine urine. Food Addit Contam. 19: 1130-1137, 2002.
Cooper KM, Ribeiro L, Alves P, Vozikis V, Tsitsamis S, Alfredsson G, Lovgren T, Tuomola M, Takalo H, Iitia A, Sterk SS, Blokland M, and Kennedy DG. Interlaboratory ring test of time-resolved fluoroimmunoassays for zeranol and alpha-zearalenol and comparison with zeranol test kits. Food Addit Contam. 20: 804-12, 2003.
Council Directive 85/649/EEC, 1985.
Council Directive 88/146/EEC, 1988.
de Andres F, Zougagh M, Castaneda G, Rios A. Determination of zearalenone and its metabolites in urine samples by liquid chromatography with electrochemical detection using a carbon nanotube-modified electrode. J Chromatogr A. 1212: 54-60, 2008.
Diekman MA, and Green ML. Mycotoxins and reproduction in domestic livestock. J Anim Sci 70: 1615-1627, 1992.
Directive of The European Parliament and of the Council. 96/22/EC, 1996.
Dixon SN. Radioimmunoassay of the anabolic agent zeranol I. Preparation and properties of a specific antibody to zeranol. J Vet Pharmacol Ther. 3: 177-181, 1980.
Dixon SN, and Russell KL. Radioimmunoassay of the anabolic agent zeranol. IV. The determination of zeranol concentrations in the edible tissues of cattle implanted with zeranol (Ragro). J Vet Pharmacol Therapeut. 9: 94-100, 1986.
D''Mello JPF, Placinta CM, and Macdonald AMC. Fusarium mycotoxins: a review of global implicationsfor animal health, welfare and productivity. Animal Feed
Science and Technology. 80: 183-205, 1999.
Dobson RL, Motlagh S, Quijano M, Cambron RT, Baker TR, Pullen AM, Regg BT, Bigalow-Kern AS, Vennard T, Fix A, Reimschuessel R, Overmann G, Shan Y, and Daston GP. Identification and characterization of toxicity of contaminants in pet food leading to an outbreak of renal toxicity in cats and dogs. Toxicol Sci. 106: 251-262, 2008.
Dolores BR, Lisbeth GM, and Rafael CR. Zearalenone contamination in corn for
human consumption in the state of Tlaxcala, Mexico. Food Chem. 100: 693-698, 2007.
Dusi G, Bozzoni E, Assini W, Tognoli N, Gasparini M, and Ferretti E. Confirmatory method for the determination of resorcylic acid lactones in urine sample using immunoaffinity cleanup and liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 637: 47-54, 2009.
Fara GM, Del Corvo G, Bernuzzi S, Bigatello A, Dipietro C, Scaglioni S, and
Chiumello G. Epidemic of breast enlargement in an Italian school. Lancet. 2: 295-297, 1979.
FDA. Federal Register. 67: 6867-6868, 2002.
FDA. Melamine and Analogues Safety/Risk Assessment on May 25, 2007.
Fitzpatrick DW, Picken CA, Murphy LC, and Buhr MM. Measurement of the relative binding affinity of zearalenone, alpha-zearalenol and beta-zearalenol for uterine and oviduct estrogen receptors in swine, rats and chickens: an indicator of estrogenic potencies. Comp Biochem Physiol C. 94: 691-694, 1989.
Gilmartin MAT, and Hart JP. Sensing with chemically and biologically modified carbon electrodes. A review. Analyst. 120: 1029, 1995.
Hagler WM, Mirocha CJ, Pathre SV, and Behrens JC. Identification of the naturally occurring isomer of zearalenol produced by Fusarium roseum ''Gibbosum'' in rice culture. Appl Environ Microbiol. 37: 849-853, 1979.
Hartmann N, Erbs M, Wettstein FE, Schwarzenbach RP, and Bucheli TD. Quantification of estrogenic mycotoxins at the ng/L level in aqueous environmental samples using deuterated internal standards. J Chromatogr A. 1138: 132-140, 2007.
Hsu CT, Lyuu HJ, Conte ED, Yang TH, and Zen JM. Profiling clinically important metabolites in human urine by an electrochemical system containing disposable electrodes. Sensors and Actuators .113: 22-28, 2006.
Hyeong LK, Allen CR, and Robert DS. Rapid separation and identification of urinary metabolites of zeranol by HPLC-UV spectrophotometry. J Agric Food Chem. 34: 312–315, 1986.
Ishii K, Sawano M, Ueno Y, and Tsunoda H. Distribution of zearalenone-producing Fusarium species in Japan. Appl Microbiol. 27: 625-628, 1974.
Irshaid F, Kulp SK, Sugimoto Y, Lee K, and Lin YC. Zeranol stimulates estrogen-regulated gene expression on MCF-7 human breast cancer cells and normal human breast epithelial cells. Biol Reprod. 60: 234-235, 1999.
Jimenez M and Mateo R. Determination of mycotoxins produced by Fusarium
isolates from banana fruits by capillary gas chromatography and high-
performance liquid chromatography. J Chromatogr A. 778: 363-372, 1997.
Jodlbauer J, Zollner P, and Lindner W. Determination of zeranol, taleranol,
zearalenone, α- and β-zearalenol in urine and tissue by high-performance
liquid chromatography-tandem mass spectrometry. Chromatographia. 51: 681-687, 2000.
Joint FAO/WHO Expert Committee on Food Addictives (JECFA). 32nd Report:
Residues of some veterinary drugs in animals and foods. WHO Food Addictives Series; WHO: Geneva, Switzerland, 23, 1987.
Joint FAO/WHO Expert Committee on Food Addictives (JECFA). Residues of some veterinary drugs in animals and foods. Zeranol. FAO Food & Nutrition Paper 1988. 41: 38-47, 1988.
Joseph W. Analytical electrochemistry, 2nd edition, Wiley-VCH, 1948.
Jutzi K, Cook AM, and Hutter R. The degradative pathway of the s-triazine melamine. The steps to ring cleavage. Biochem J. 208: 679-684, 1982.
Karlberg B, and Gil EP. Flow injection analysis-a practical guide. Elsevier Science, New York, U.S.A. 9-10, 2001.
Kennedy DG, McEvoy JDG, Hewitt SA, Cannavan A, Blanchflower WJ, and Elliott CT. Zeranol is formed from Fusarium spp. toxins in cattle in vivo. Food Addit Contam. 15: 393-400, 1998.
Kleinova M, Zollner P, Kahlbacher H, Hochsteiner W, and Lindner W. Metabolic
profiles of the mycotoxin zearalenone and of the growth promoter zeranol in
urine, liver, and muscle of heifers. J Agric Food Chem. 50: 4769-4776, 2002.
Kiessling KH, Pettersson H, Sandholm K, and Olsen M. Metabolism of aflatoxin, ochratoxin, zearalenone, and three trichothecenes by intact rumen fluid, rumen protozoa, and rumen bacteria. Appl Environ Microbiol. 47: 1070-1073, 1984.
Krska R and Josephs R. The state-of-the-art in the analysis of estrogenic mycotoxins in cereals. Fresenius J Anal Chem. 369: 469-476, 2001.
Kruger SC, Kohn B, Ramsey CD ,and Prioli R. Rapid immunoaffinity-based method for determination of zearalenone in corn by fluorometry and liquid
chromatography. J AOAC Int. 82: 1364-1368, 1999.
Kuiper-Goodman T, Scott PM, and Watanabe H. Risk assessment of the mycotoxin zearalenone. Regul Toxicol Pharmacol. 7: 253-306, 1987.
Leffers H, Naesby M, Vendelbo B, Skakkebaek NE, and Jorgensen M. Oestrogenic potencies of zeranol, oestradiol, diethylstilboestrol, Bisphenol-A and genistein: implications for exposure assessment of potential endocrine disrupters. Human Reprod. 16: 1037-1045, 2001.
Lin YC, Mulla Z, Kulp SK, Sugimoto Y, Farrar WB, and Brueggemeier RW. Biological activity in serum and meat of zeranol-implanted beef cattle: Regulation of proliferation and estrogen-induced gene expression in normal breast cells and MCF-7 cells. Proceedings of 10th international congress of endocrinology. 2-798, 1996.
Lin YC, kulp SK, Sugimoto Y, and Brueggemeier RW. Potential risk of growth
promoter in beef for breast cancer growth. Era of Hope, Department of Defense Breast Cancer Research Program Meeting Proceedings, II: 480, 2000.
Lipschitz WL and Stokey E. The mode of action of three new diuretics: melamine, adenine and formoguanamine. J Pharmacol. 83: 235–249, 1945.
Liu S, and Lin YC. Transformation of MCF-10A human breast epithelial cells by zeranol and estradiol-17beta. Breast J. 10: 514-521, 2004.
Liu G, Lin YY, Wu H, Lin Y. Voltammetric detection of Cr (VI) with disposable screen-printed electrode modified with gold nanoparticles. Environ Sci Technol. 41: 8129-8134, 2007.
Liu S, Sugimoto Y, Sorio C, Tecchio C, and Lin YC. Function analysis of
estrogenically regulated protein tyrosine phosphatase γ (PTP γ) in human breast cancer cell line MCF-7. Oncogene. 23: 1256–1262, 2004.
Liu Y, Zhang CZ, Yu XY, Zhang ZY, Zhang X, Liu RR, Liu XJ, and Gong ZM.
Development and evaluation of immunoassay for zeranol in bovine urine. J Zhejiang Univ Sci B. 8: 900-905, 2007.
Malekinejad H, Maas-Bakker R, and Fink-Gremmels J. Species differences in the hepatic biotransformation of zearalenone. Vet J. 172: 96-102, 2006.
Medina MB, Nagdy N. Improved thin-layer chromatographic detection of
diethylstilbestrol and zeranol in plasma and tissues isolated with alumina and ion-exchange membrane columns in tandem. J Chromatogr. 614: 315-323, 1993.
Migdalof BH, Dugger HA, Heider JG, Coombs RA, and Terry MK. Biotransformation of zeranol: Disposition and metabolism in the female rat, rabbit, dog, monkey, and man. Xenobiotica. 13: 209-221, 1983.
Miles CO, Erasmuson AF, Wilkins AL, Towers NR, Smith BL, Garthwaite I, Scahill BG, and Hansen RP. Ovine Metabolism of Zearalenone to α-Zearalanol (Zeranol). J Agric Food Chem, 44: 3244–3250, 1996.
Minervini F, Giannoccaro A, Cavallini A, and Visconti A. Investigations on cellular proliferation induced by zearalenone and its derivatives in relation to the estrogenic parameters. 159: 272-283, 2005.
Neumeister CE. Environmental sampling and analysis for zeranol. Am Ind Hyg Assoc J. 48: 919-921, 1987.
Palyusik M, Hagler WM, Horvath L, and Mirocha CJ. Biotransformation of zearalenone to zearalenol by Candida tropicalis. Acta Vet Acad Sci Hung. 28: 159-66, 1980.
Patel PJ, and Dixon SN. An enzyme immunoassay for the anabolic agent zeranol. Food Addit Contam. 6: 91-101, 1989.
Pfohl-Leszkowicz A, Chekir-Ghedira L, and Bacha H. Genotoxicity of zearalenone, an estrogenic mycotoxin: DNA adduct formation in female mouse tissues. Carcinogenesis. 16: 2315-2320, 1995.
Placinta CM, D’Mello JPF, and Macdonald AMC. A reviewed of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim.Feed Sci. Technol. 78: 21-37, 1999.
Pylkkanen L, Jahnukainen K, Parvinen M, and Santti R. Testicular toxicity and mutagenicity of steroidal and non-steroidal estrogens in the male mouse. Mutat Res. 261: 181-191, 1991.
Rao VK, Sharma MK, Goel AK, Singh L, Sekhar K. Amperometric immunosensor for the detection of Vibrio cholerae O1 using disposable screen-printed electrodes. Anal Sci 22: 1207-1211, 2006.
Saeger SD, Sibanda L,and Peteghem CV. Analysis of zearalenone and α-zearalenol in animal feed using high-performance liquid chromatography. Anal Chim Acta. 487: 137-143, 2003.
Saenz de Rodriguez CA, Bongiovanni AM, and Conde de Borrego L. An epidemic of precocious development in Puerto Rican children. J Pediatr. 107: 393-396, 1985.
Sakabe K, Okuma M, Karaki S, Matsuura S, Yoshida T, Aikawa H, Izumi S, Kayama F. Inhibitory effect of natural and environmental estrogens on thymic hormone production in thymus epithelial cell culture. Int J Immunopharmacol. 21: 861-868, 1999.
Schmidt K, Stachel C, and Gowik P. Development and in-house validation of an LC-MS/MS method for the determination of stilbenes and resorcylic acid lactones in bovine urine. nal Bioanal Chem. 391: 1199-1210, 2008.
Seo J, Kim HY, Chung BC, and Hong J. Simultaneous determination of anabolic steroids and synthetic hormones in meat by freezing-lipid filtration, solid-phase extraction and gas chromatography-mass spectrometry. J Chromatogr A. 1067: 303-309, 2005.
Shelton DR, Karns JS, McCarty GW, and Durham DR. Metabolism of melamine by Klebsiella terragena. Appl Environ Microbiol. 63: 2832-2835, 1997.
Skoog DA, Holler FJ, Nieman TA. Principles of Instrumental Analysis. 5th edition, Thomson, 1998.
Skrinjar M, Stubblefield RD, Stojanovic E, Dimic G. Occurrence of Fusarium species and zearalenone in dairy cattle feeds in Vojvodina. Acta Vet Hung. 43: 259-67, 1995.
Smith JE, and Henderson RS. Mycotoxins and animal foods. CRC Press. 1991.
Steele JA, Mirocha CJ, Pathre SV. Metabolism of zearalenone by Fusarium roseum Graminearum. J Agric Food Chem. 24: 89-97, 1976.
Stewart KK, Beecher GR, and Hare PE. Rapid analysis of discrete samples: The use of nonsegmented, continuous flow. Anal Biochem. 70: 167-173, 1976.
Sylvia VL, Phillips TD, Clement BA, Green JL, Kubena LF, and Heidelbaugh ND.
Determination of deoxynivalenol (vomitoxin) by high-performance liquid
chromatography with electrochemical detection. J Chromatogr. 362: 79-85, 1986.
Suetz P, Mesterhazy Falkay GY, and Bartok T. Early telearche symptoms in children and their relation to zearalenone contamination in foodstuffs. Cereal Research Communication. 25: 429-436, 1997.
Taguchi S, Yoshida S, Tanaka Y, and Hori S. Simple and rapid analysis of trenbolone and zeranol residues in cattle muscle and liver by stack-cartridge solid-phase extraction and HPLC using on-line clean-up with EC and UV detection. Shokuhin Eiseigaku Zasshi. 42: 226-230, 2001.
Takemura H, Shim JY, Sayama K, Tsubura A, Zhu BT, and Shimoi K.  Characterization of the estrogenic activities of zearalenone and zeranol in vivo and in vitro. J Steroid Biochem Mol Bio 103: 170-177, 2007.
Tanaka K, Sago Y, Zheng Y, Nakagawa H, and Kushiro M. Mycotoxins in rice. Int J Food Microbiol. 119: 59-66, 2007.
Thouvenot D and Morfin RF. Radioimmunoassay for zearalenone and zearalanol in human serum: production, properties, and use of porcine antibodies. Appl Environ Microbiol. 45: 16-23, 1983.
Tuomola M, Cooper KM, Lahdenpera S, Baxter GA, Kennedy DG, Elliott CT, and Lovgren T. A specificity-enhanced time-resolved fluoroimmunoassay for
employing the dry reagent all-in-one principle. Analyst. 127: 83-86, 2002.
Turner NW, Subrahmanyam S, and Piletsky SA. Analytical methods for determination of mycotoxins: a review. Anal Chim Acta. 632: 168-180, 2009.
Urraca JL, Marazuela MD ,and Moreno-Bondi MC. Analysis for zearalenone and α-zearalenol in cereals and swine feed using accelerated solvent extraction and liquid chromatography with fluorescence detection. Anal Chim Acta. 524: 175-183, 2004.
Visconti A, and Pascale M. Determination of zearalenone in corn by means of immunoaffinity clean-up and high-performance liquid chromatography with
fluorescence detection. J Chromatogr A. 815: 133-140, 1998.
Wang HJ, Cao Z, Shen JZ, and Shi WM. Preparation and identification of monoclonal antibody to zeranol. Chin J Vet Med. 40: 3-5, 2004.
Weaver GA, Kurtz HJ, Behrens JC, Robison TS, Seguin BE, Bates FY, and Mirocha CJ. Effect of zearalenone on the fertility of virgin dairy heifers. Am J Vet Res. 47: 1397-1397, 1986.
Wehner FC, Marasas WF, and Thiel PG. Lack of mutagenicity to Salmonella typhimurium of some Fusarium mycotoxins. Appl Environ Microbiol. 35: 659-662, 1978.
Worldwide Regulations for Mycotoxins in Food and Feed in 2003, Compendium, Food and Agriculture Oranization of the United Nation (FAO), Rome, 2004.
Wortberg B, and Woller R. Detection of estrogen-like compounds by thin-layer chromatography. J Chromatogr. 156: 205-210, 1978.
Yuri T, Tsukamoto R, Miki K, Uehara N, Matsuoka Y, and Tsubura A. Biphasic effects of zeranol on the growth of estrogen receptor-positive human breast carcinoma cells. Oncol Rep. 16: 1307-1312, 2006.
Zinedine A, Soriano JM, Molto JC, and Manes J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol. 45: 1-18, 2007.
Zollner P, Berner D, Jodlbauer J, and Lindner W. Determination of zearalenone and its metabolites alpha- and beta-zearalenol in beer samples by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Biomed Sci Appl. 738: 233-241, 2000.
Zollner P, Jodlbauer J, Kleinova M, Kahlbacher H, Kuhn T, Hochsteiner W, and Lindner W. Concentration levels of zearalenone and its metabolites in urine and tissue samples of pigs fed with naturally contaminated oats. J Agric Food Chem. 50: 2494-2501, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top