(3.236.122.9) 您好!臺灣時間:2021/05/14 06:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃禹傑
研究生(外文):Yu-Chieh Huang
論文名稱:高光取出率氮化鎵發光二極體
論文名稱(外文):High Light Extraction Efficiency of GaN-based Light-Emitting Diodes
指導教授:林佳鋒林佳鋒引用關係
指導教授(外文):Chia-Feng Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:45
中文關鍵詞:光取出高光取出光取出率高光取出率氮化鎵氮化鎵發光二極體發光二極體
外文關鍵詞:light extractionlight extraction efficiencyhigh light extractionhigh light extraction efficiencyLEDGaN LEDGaN-based LEDGaN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:330
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
在本論文中,利用乾式蝕刻法與濕式蝕刻法製作了三種不同側壁蝕刻形貌的發光二極體,分別是梯形、乾式蝕刻倒梯形與濕式蝕刻倒梯形。希望藉由這些發光二極體的發光分佈量測,以了解晶粒側壁蝕刻形貌對光取出的影響。
在遠場光型量測時,發現了不同的側壁蝕刻形貌在各方向的光取出強度也會有所不同。以梯形側壁發光二極體而言,晶粒正下方(180°)的光強度有著26%的提升,比正向的光強度明顯提升許多。光強度的增加來自於晶粒內部的全反射光,被側壁的斜面偏折至晶粒背部。而倒梯形也是利用相同的原理,不過光卻是被偏折至晶粒上方。因此可確定,可以利用改變發光二極體側壁的形貌,來達成光取出效率目的。
在發光功率的量測上,標準的發光二極體為10.82 mW,梯形、乾式蝕刻倒梯形及濕式蝕刻倒梯形分別為11.03、11.53及11.73 mW,分別有1.9、6.5以及8.4 %的提升,發現在遠場光型中正上方提升最多的濕式蝕刻倒梯形,封裝後發光功率提升的幅度也最高。再一次證明可以藉由改變側壁的形貌,來達成製作高效率發光二極體的目的。另外,在20 mA點亮時,順向偏壓都約在3.3 V;在1008小時的壽命測試中,衰減幅度在10%之內。證實了改變側壁的蝕刻形貌並不會對發光二極體的電性有所影響。
In this thesis, the GaN-based light emitting diodes (LED) with inclined chip sidewalls to increase light extraction efficiency have been studied. By using the dry-etching and crystallographic wet chemical etching techniques, we can obtain the different three kinds of LED chip sidewalls. We call them as Trapezoid LED, Dry-etching Inverted Trapezoid (IT) LED and Wet-etching IT-LED.
In the far-field emission patterns analysis, the difference of light emission patterns from the LEDs can be seen clearly. For example, the Trapezoid LED has a great enhancement of light intensity at back-side of LED chip, 26% at 180°. The enhancement on the LED light intensity can be attributed to the total internal reflection (TIR), which was guided-and-deflected to the back-side of LED chip by the chip sidewalls. IT-LED also show the similar mechanism, but the enhancement was occurred in the front-side of chip because of the TIR was guided-and-deflected to the front-side.
With a 20 mA current injection, the output power of the standard LED, Trapezoid LED, Dry-etching IT-LED and Wet-etching IT-LED were 10.82, 11.03, 11.53 and 11.73 mW, respectively. It is clear from the result that the improvement on light output power is due to the enhancement of extraction efficiency using the chip-sidewall-shaping technique. Based on the results of these LEDs forward I-V characteristics and device reliability test, we can see that there is no harmful influence of electric properties about the chip-sidewall-shaping technique
In order to seek for higher light extraction efficiency, we attempt to combine the chip-sidewall-shaping and patterned sapphire substrate techniques for LEDs fabrication in the future.
中文摘要 ------------------------------------------------------------------------------------------- i
英文摘要 ------------------------------------------------------------------------------------------ ii
總目錄 -------------------------------------------------------------------------------------------- iii
圖目錄 --------------------------------------------------------------------------------------------- v
第一章 序論 -------------------------------------------------------------------------------------- 1
1.1 Ⅲ-氮化物的簡介 -------------------------------------------------------------------- 1
1.2 發光二極體發展史與文獻回顧 -------------------------------------------------- 2
第二章 實驗動機與原理 ----------------------------------------------------------------------- 4
2.1 實驗動機與目的 -------------------------------------------------------------------- 4
2.2 實驗原理 ----------------------------------------------------------------------------- 4
2.2.1 乾式蝕刻原理 ----------------------------------------------------------------- 4
2.2.2 濕式蝕刻原理 ----------------------------------------------------------------- 7
第三章 實驗步驟 -------------------------------------------------------------------------------- 9
3.1 發光二極體製備 -------------------------------------------------------------------- 9
3.1.1 梯形側壁發光二極體 ------------------------------------------------------ 10
3.1.2 乾式蝕刻倒梯形側壁發光二極體 --------------------------------------- 11
3.1.3 濕式蝕刻倒梯形側壁發光二極體 --------------------------------------- 12
3.2 實驗流程 ---------------------------------------------------------------------------- 13
3.2.1 乾式蝕刻條件測試 --------------------------------------------------------- 13
3.2.2 發光二極體特性量測 ------------------------------------------------------ 13
3.3 分析儀器 ---------------------------------------------------------------------------- 14
3.3.1 場發射掃描式電子顯微鏡 ------------------------------------------------ 14
3.3.2 遠場發光特性圖 ------------------------------------------------------------ 14
3.3.3 電激發光光譜 --------------------------------------------------------------- 15
第四章 實驗結果與討論 --------------------------------------------------------------------- 16
4.1 掃描式電子顯微鏡分析 ---------------------------------------------------------- 16
4.1.1 感應耦合電漿蝕刻參數對蝕刻輪廓影響 ------------------------------ 16
4.1.2 濕式蝕刻之蝕刻輪廓分析 ------------------------------------------------ 20
4.2 發光二極體之光電特性分析 ---------------------------------------------------- 22
4.2.1 發光二極體之光特性 ------------------------------------------------------ 22
4.2.2 發光二極體之電特性 ------------------------------------------------------ 29
4.2.3 光學模擬結果與量測值之比較 ------------------------------------------ 31
4.3 不同形貌發光二極體側壁對圖形化藍寶石基板成長晶片之影響 ------- 39
第五章 結論與未來方向 --------------------------------------------------------------------- 41
參考文獻 ----------------------------------------------------------------------------------------- 42
[1] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, "GaN:processing, defects, and devices," J. Appl. Phys., vol. 86, no. 1, 1999.
[2] H. Xing, P. M. Chavarkar, S. Keller, S. P. DenBaars, and U. K. Mishra, "Very high voltage operation (>330 V) with high current gain of AlGaN/GaN HBTs," IEEE Electron Device Lett., vol. 24, pp. 141-143, 2003.
[3] C. Gaquiere, S. Trassaert, B. Boudart, and Y. Crosnier, "High-power GaN MESFET on sapphire substrate," IEEE Microwave Guided Wave Lett., vol. 10, pp. 19-20, 2000.
[4] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, "Highpower microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates," IEEE Electron Device Lett., vol. 20, pp. 161-163, 1999.
[5] S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, "III-nitrides: Growth, characterization, and properties," J. Appl. Phys., vol. 87, pp. 965-1006, 2000.
[6] G. Landwehr, A. Waag, F. Fischer, H.-J. Lugauer, and K. Schuぴll, "Blue emitting heterostructure laser diodes," Physica E., vol. 3, pp. 158-168, 1998.
[7] E. Petrolatia and A. Di Carlo, "The influence of mobility unbalance on GaN based vertical cavitysurface emitting lasers," Appl. Phys. Lett., vol. 92, pp. 151116, 2008.
[8] N. Khan, A. Sedhain, J. Li, J. Y. Lin, and H. X. Jiang, "High mobility InN epilayers grown on AlN epilayer templates," Appl. Phys. Lett., vol. 92, pp. 172101, 2008.
[9] R. Juza and H. Hahn, Z. Anorg. Allg. Chem., vol. 234, pp. 282, 1938.
[10] H. P. Maruska and J. J. Tietjen, "The preparation and properties of vapor-deposited single-crystal-line GaN," Appl. Phys. Lett., vol. 15,
pp. 327-329, 1969.
[11] J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, "GaN blue light-emitting diodes," J. Lumin., vol. 5, pp. 84-86, 1972.
[12] H. P. Maruska, W. C. Rhines, and D. A. Stevenson, "Preparation of Mg-doped GaN diodes exhibiting violet electroluminescence," Mater. Res. Bull., vol. 7, pp. 777, 1972.
[13] S. Yoshida, S. Misawa, and S. Gonda, "Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates," Appl. Phys. Lett., vol. 42, pp. 427-429, 1983.
[14] H. Amano, I. Akasaki, T. Kozawa, K. Hiramatsu, N. Sawak, K. Ikeda, and Y. Ishi, "Electron beam effects on blue luminescence of Zinc-doped GaN," J. Lumin., vol. 121, pp. 40–41, 1988.
[15] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, "P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)," Jpn. J. Appl. Phys., vol. 28, pp. L2112-L2114, 1989.
[16] H. Amano, T. Asahi, and I. Akasaki, "Stimulated emission near ultraviolet at room temperature from a GaN film grown on sapphire by MOVPE using an AlN buffer layer," Jpn. J. Appl. Phys., vol. 29, pp. L205-L206, 1990.
[17] S. Nakamura, Jpn. J. Appl. "GaN growth using GaN buffer layer," Jpn. J. Appl. Phys., vol. 30, pp. L1705-L1707, 1991.
[18] S. Nakamura, T. Mukai, M. Senoh,and N. Iwasa, "Thermal annealing effects on p-type Mg-doped GaN films," Jpn. J. Appl. Phys., vol. 31, pp. L139-L142, 1993.
[19] S. Nakamura, T. Mukai, and M. Senoh, "P-GaN/N-InGaN/N-GaN double- heterostructure blue-light-emitting diodes," Jpn. J. Appl. Phys., vol. 32, pp. L8-L11, 1993.
[20] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, "High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes," Appl. Phys. Lett., vol. 67, pp. 1868-1870, 1994.
[21] S. Nakamura, T. Mukai, M. Senoh, S. Nagahama, and N. Iwasa, "InxGa(1-x)N/InyGa(1-y)N superlattices grown on GaN films," J. Appl. Phys., vol. 74, pp. 3911-3915, 1993.
[22] S. Nakamura, MRS BULLETIN, vol. 37, 1998.
[23] S. Nakamura, "Topical review InGaN-based violet laser diodes," Semicond. Sci. Technol., vol. 14, pp. R27-R40, 1999.
[24] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, "InGaN-based near-ultraviolet and blue-light-emitting diodeswith high external quantum efficiency using a patterned sapphire substrateand a mesh electrode," Jpn. J. Appl. Phys., vol. 41, pp. L1431-L1433, 2002.
[25] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y.C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Goぴ tz, N. F. Gardner, R. S. Kern, and S. A. Stockman, "High-power AlGaInN flip-chip light-emitting diodes," Appl. Phys. Lett., vol. 78, pp. 3379-3381, 2001.
[26] Z. S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N. W. Cheung, and M. C. Yoo, "Enhancement of (In,Ga)N light-Emitting diode performance by laser lift off and transfer from sapphire to silicon," IEEE Photon Technol. Lett., vol. 14, pp. 1400-1402, 2002.
[27] H. W. Choi, C. W. Jeon, and M. D. Dawson, "InGaN microring light-emitting diodes, " IEEE Photon Technol. Lett., vol. 16, pp. 33-35, 2004.
[28] A. Chakraborty, L. Shen, H. Masui, S. P. DenBaars, and U. K. Mishra, "Interdigitated multipixel arrays for the fabrication of high-power light-emitting diodes with very low series resistances," Appl. Phys. Lett., vol. 88, pp. 181120, 2006.
[29] 史光國,半導體發光二極體及固態照明
[30] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, "Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface," J. Appl. Phys., vol. 93, pp. 9383-9385, 2003.
[31] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu, and C. T. Lee, "Nitride-based LEDs with 800°C grown p-AlInGaN–GaN double-cap layers," IEEE Photon Technol. Lett., vol. 16, pp. 1447-1449, 2004.
[32] R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, "GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography," Appl. Phys. Lett., vol. 86, pp. 221101, 2005.
[33] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, "Improvement of InGaN-GaN light-emitting diodes with surface-textured indium-tin-oxide transparent ohmic contacts," IEEE Photon Technol. Lett., vol. 15, pp. 649-651, 2003.
[34] C. F. Shen, S. J. Chang, T. K. Ko, C. T. Kuo, S. C. Shei, W. S. Chen, C. T. Lee, C. S. Chang, and Y. Z. Chiou, "Nitride-based light emitting diodes with textured sidewalls and pillar waveguides," IEEE Photon Technol. Lett., vol. 18, pp. 2517-2519, 2006.
[35] C. F. Lin, Z. J. Yang, B. H. Chin, J. H. Zheng, J. J. Dai, B. C. Shieh, and C. C. Chang, "Enhanced light output power in InGaN light-emitting diodes by fabricating inclined undercut structure," J. Electrochemical Soc., vol. 153, pp. G1020-G1024, 2006.
[36] C. C. Kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu, and C. F. Lin, "Light-output enhancement in a nitride-based light-emitting diode with 22° undercut sidewalls," IEEE Photon Technol. Lett., vol. 17, pp. 19-21, 2005.
[37] C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, "Nitride-Based LEDs With Textured Side Walls," IEEE Photon Technol. Lett., vol. 16, pp. 750-752, 2004.
[38] X.-C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2–TiO2 sol-gel glass," Appl. Phys. Lett., vol. 86, pp. 114102, 2005.
[39] R. Li, T. Dai, L. Zhu, H. Pan, K. Xu, B. Zhang, Z. Yang, G. Zhang, Z. Gan, and X. Hu, "The reactive ion etching characteristics of AlGaN/GaN SLs and etch-induced damage study of n-GaN using Cl2/SiCl4/Ar plasma," Journal of Crystal Growth., vol. 298, pp. 375-378, 2007.
[40] U. Strauss, H.-J. Lugauer, A. Weimar, J. Baur, G. Bruぴderl, D. Eisert, F. Kuぴhn, U. Zehnder, and V. Haぴrle, "Progress of InGaN light emitting diodes on SiC, " phys. stat. sol. (c)., vol. 0, No. 1, 276–279 ,2002.
[41] J. S. Lee, J. Lee, S. Kim, and H. Jeon, "GaN Light-Emitting Diode with Deep-Angled Mesa Sidewalls for Enhanced Light Emission in the Surface-Normal Direction," IEEE Transactions on Electron Devices., vol. 55, NO. 2, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔