跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 06:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡明勳
研究生(外文):Ming-Hsun Tsai
論文名稱:克沙奇B3病毒感染Huh7細胞影響細胞受體的表現
論文名稱(外文):Expression of cellular receptor of coxsackievirus B3 infection in Huh7 cells
指導教授:劉清泉劉清泉引用關係
指導教授(外文):Ching-Chuan Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:58
中文關鍵詞:克沙奇-腺病毒受體內化肝細胞克沙奇病毒B群衰變促進因子
外文關鍵詞:HepatocyteInternalizationDecay-accelerating factorCoxsackievirus and adenovirus receptorGroup B Coxsackievirus
相關次數:
  • 被引用被引用:1
  • 點閱點閱:365
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
克沙奇病毒B群屬於B型人類腸病毒的成員,包含6種血清型。一些新生兒腸病毒重症與克沙奇病毒B群感染有關,諸如腦膜腦炎、肝炎、心肌炎、肺炎及凝血病變。於1994到2008年,陸續在台灣有克沙奇病毒B群引起新生兒猛爆性肝炎的流行,但克沙奇病毒感染肝細胞則甚少研究報告。細胞受體對於病毒的組織趨向性很重要,已知克沙奇病毒B群利用克沙奇-腺病毒受體(coxsackievirus and adenovirus receptor, CAR)及衰變促進因子(decay- accelerating factor, DAF) 作為主要的受體或副受體來感染細胞,為了研究克沙奇病毒感染時細胞受體的表現,我們以人類肝細胞株Huh7建立體外感染模式。流式細胞儀分析顯示兩受體均高度表現在Huh7細胞,利用抗克沙奇-腺病毒受體的單株抗體可以抑制克沙奇病毒B3型感染,而抗衰變促進因子的單株抗體有協同抑制的效果。感染後8小時細胞表面的克沙奇-腺病毒受體會顯著的減少,而衰變促進因子並不受到影響,這在其他克沙奇病毒株感染也可以觀察到。進一步發現克沙奇病毒感染時會降低克沙奇-腺病毒受體的蛋白質表現,但並不影響轉錄作用也不會轉換成可溶形式釋出。利用共軛焦顯微鏡觀察到感染後6到8小時有明顯的克沙奇-腺病毒受體內化(internalization),並與內吞體/溶��體的標記蛋白Lamp1共存,而經由劑量相關pH值改變的內吞作用(endocytosis)可以減緩感染後細胞表面克沙奇-腺病毒受體的減少。綜合上述,克沙奇病毒感染會促進克沙奇-腺病毒受體的內化,進而向下調節細胞受體的表現。
Group B coxsackieviruses (CVB) belong to members of Human Enterovirus B (HEV-B) and contain six serotypes (CVB1-6). They are associated with some severe illness in neonates, including meningoencephalitis, hepatitis, myocarditis, pneumonitis and coagulopathy. There are several epidemics of CVB-associated fulminant hepatitis in Taiwan between 1994 and 2008. Cellular receptors play an important role in the tissue tropism of viral infection. CVB was found to use the coxsackievirus and adenovirus receptor (CAR) and decay-accelerating factor (DAF, CD55) as a primary receptor and coreceptor to infect permissive cells. The previous studies suggested that CVB infection may influence the expressions of CAR and DAF on host cells. To investigate the change of viral receptor expressions of CVB3 infection on Huh7 cells, the in vitro infection model was established. Flow cytometry analysis showed that CAR and DAF are highly expressed on Huh7 cells. By antibody blocking assay, anti-CAR mAb was shown to block CVB3 infection on Huh7 cells, while anti-DAF mAb has synergistic inhibitory effect. At 8 hours of CVB3 infection, cellular expression of CAR was markedly reduced on Huh7 cells. Reduction of CAR expression was also observed among different CVB serotypes. CVB3 infection reduced CAR expression in protein level, but not in transcription level and not associated with converting to soluble form on Huh7 cells. Confocal microscopy analysis illustrated that internalization of CAR is associated with endosomal/lysosomal marker, Lamp1 at 8 hours postinfection. Moreover, low-pH mediated endocytosis may be involved in the mechanism of CAR internalization and digestion in dose-dependent manner. In conclusion, CVB infection could enhance CAR internalization and downregulate cellular CAR expression.
Abstract in Chinese ii
Abstract iii
Acknowledgment iv
Contents v
Figure list vii
Abbreviations viii
Chapter 1 - Introduction 1
1.1 Classification of group B coxsackievirus 1
1.2 Epidemiology of group B coxsackievirus 1
1.3 Group B coxsackievirus and human diseases 2
1.4 Coxsackievirus structure 4
1.5 Life cycle of group B coxsackievirus 5
1.6 Cellular Receptors for group B coxsackievirus 6
1.6.1 Coxsackievirus and Adenovirus Receptor 7
1.6.2 Decay-Accelerating Factor 9
1.7 Expression and modulation of cellular receptor 11
1.8 Research motivation 13
1.9 Aims of study 13
Chapter 2 - Materials and Methods 14
2.1 Cells and viruses 14
2.2 Antibodies 14
2.3 Flow cytometry 15
2.4 Plaque assay 16
2.5 Antibody blocking assay 16
2.6 Enzyme-Linked ImmunoSorbent Assay 16
2.7 Reverse transcription polymerase chain reaction 17
2.7.1 RNA extraction 17
2.7.2 Reverse transcription 17
2.7.3 Polymerase chain reaction 18
2.8 Western blot analysis 18
2.9 Immunofluorescence assay 19
Chapter 3 - Results 21
3.1 Identification of receptor usage 21
3.2 Expression of cellular receptor on infected cells 22
3.3 Detection of soluble coxsackievirus and adenovirus receptor 23
3.4 Expressions of coxsackievirus and adenovirus receptor in RNA level and protein level 24
3.5 The intracellular localization of coxsackievirus and adenovirus receptor 25
3.6 Disruption of low-pH mediated internalization 26
Chapter 4 - Discussion 28
Chapter 5 -Conclusion 34
Chapter 6 –References 35
Figures 45
Ahn, J., Jee, Y., Seo, I., Yoon, S., Kim, D., Kim, Y. & Lee, H. (2008). Primary neurons become less susceptible to coxsackievirus B5 following maturation: The correlation with the decreased level of CAR expression on cell surface. J Med Virol 80, 434-440.
Allan, V., Thompson, H. & McNiven, M. (2002). Motoring around the Golgi. Nat Cell Biol 4, 236-236.
Anders, M., Christian, C., McMahon, M., McCormick, F. & Korn, W. (2003). Inhibition of the Raf/MEK/ERK pathway up-regulates expression of the coxsackievirus and adenovirus receptor in cancer cells. Cancer Res 63, 2088-2095.
Bedard, K. & Semler, B. (2004). Regulation of picornavirus gene expression. Microbes Infect 6, 702-713.
Bergelson, J., Chan, M., Solomon, K., John, N., Lin, H. & Finberg, R. (1994). Decay-Accelerating Factor (CD55), a Glycosylphosphatidylinositol-Anchored Complement Regulatory Protein, is a Receptor for Several Echoviruses. Proc Natl Acad Sci 91, 6245-6248.
Bergelson, J., Cunningham, J., Droguett, G., Kurt-Jones, E., Krithivas, A., Hong, J., Horwitz, M., Crowell, R. & Finberg, R. (1997). Isolation of a Common Receptor for Coxsackie B Viruses and Adenoviruses 2 and 5. Science 275, 1320.
Bergelson, J., Krithivas, A., Celi, L., Droguett, G., Horwitz, M., Wickham, T., Crowell, R. & Finberg, R. (1998). The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J Virol 72, 415-419.
Bergelson, J., Mohanty, J., Crowell, R., StJohn, N., Lublin, D. & Finberg, R. (1995). Coxsackievirus B3 adapted to growth in RDcells binds to decay-accelerating factor (CD55). J Virol 69, 1903-1906.
Bowles, K., Gibson, J., Wu, J., Shaffer, L., Towbin, J. & Bowles, N. (1999). Genomic organization and chromosomal localization of the human Coxsackievirus B-adenovirus receptor gene. Hum Genet 105, 354-359.
Bruning, A. & Runnebaum, I. (2003). CAR is a cell-cell adhesion protein in human cancer cells and is expressionally modulated by dexamethasone, TNFalpha, and TGFbeta. Gene Ther 10, 198-205.
Carson, S. (2001). Receptor for the group B coxsackieviruses and adenoviruses: CAR. Rev Med Virol 11, 219-226.
Carson, S., Hobbs, J., Tracy, S. & Chapman, N. (1999). Expression of the coxsackievirus and adenovirus receptor in cultured human umbilical vein endothelial cells: regulation in response to cell density. J Virol 73, 7077-7079.
Centers for Disease Control (2008). Cases of Notifiable Diseases. Taiwan Epidemiology Bulletin 24, 911-920.
Chen, J., Ghosh, R., Finberg, R. & Bergelson, J. (2003). Structure and chromosomal localization of the murine coxsackievirus and adenovirus receptor gene. DNA Cell Biol 22, 253-259.
Cheng, L., Ng, P., Chan, P., Wong, H., Cheng, F. & Tang, J. (2006). Probable intrafamilial transmission of coxsackievirus b3 with vertical transmission, severe early-onset neonatal hepatitis, and prolonged viral RNA shedding. Pediatrics 118, e929-933.
Cheung, P., Yuan, J., Zhang, H., Chau, D., Yanagawa, B., Suarez, A., McManus, B. & Yang, D. (2005). Specific interactions of mouse organ proteins with the 5'untranslated region of coxsackievirus B3: potential determinants of viral tissue tropism. J Med Virol 77, 414-424.
Choe, S., Dodd, D. & Kirkegaard, K. (2005). Inhibition of cellular protein secretion by picornaviral 3A proteins. Virology 337, 18-29.
Choi, B., Gatti, P., Fermin, C., Vigh, S., Haislip, A. & Garry, R. (2008). Down-regulation of cell surface CXCR4 by HIV-1. Virol J 5, 6.
Chou, L., Chang, C. & Wu, L. (1995). Neonatal coxsackievirus B1 infection associated with severe hepatitis: report of three cases. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 36, 296-299.
Cohen, C., Gaetz, J., Ohman, T. & Bergelson, J. (2001a). Multiple regions within the coxsackievirus and adenovirus receptor cytoplasmic domain are required for basolateral sorting. J Biol Chem 276, 25392-25398.
Cohen, C., Shieh, J., Pickles, R., Okegawa, T., Hsieh, J. & Bergelson, J. (2001b). The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci 98, 15191-15196.
Cornell, C., Kiosses, W., Harkins, S. & Whitton, J. (2006). Inhibition of protein trafficking by coxsackievirus b3: multiple viral proteins target a single organelle. J Virol 80, 6637-6647.
Cornell, C., Kiosses, W., Harkins, S. & Whitton, J. (2007). Coxsackievirus B3 proteins directionally complement each other to downregulate surface major histocompatibility complex class I. J Virol 81, 6785-6797.
Coyne, C. & Bergelson, J. (2005). CAR: a virus receptor within the tight junction. Adv Drug Deliv Rev 57, 869-882.
Coyne, C. & Bergelson, J. (2006). Virus-Induced Abl and Fyn Kinase Signals Permit Coxsackievirus Entry through Epithelial Tight Junctions. Cell 124, 119-131.
Coyne, C., Shen, L., Turner, J. & Bergelson, J. (2007). Coxsackievirus Entry across Epithelial Tight Junctions Requires Occludin and the Small GTPases Rab34 and Rab5. Cell Host & Microbe 2, 181-192.
Crowell, R. & Landau, B. (1997). A short history and introductory background on the coxsackieviruses of group B. Curr Top Microbiol Immunol 223, 1-11.
de Jong, A., Visch, H., de Mattia, F., van Dommelen, M., Swarts, H., Luyten, T., Callewaert, G., Melchers, W., Willems, P. & van Kuppeveld, F. (2006). The coxsackievirus 2B protein increases efflux of ions from the endoplasmic reticulum and Golgi, thereby inhibiting protein trafficking through the Golgi. J Biol Chem 281, 14144-14150.
de Jong, A., Wessels, E., Dijkman, H., Galama, J., Melchers, W., Willems, P. & van Kuppeveld, F. (2003). Determinants for membrane association and permeabilization of the coxsackievirus 2B protein and the identification of the Golgi complex as the target organelle. J Biol Chem 278, 1012-1021.
de Verdugo, U., Selinka, H., Huber, M., Kramer, B., Kellermann, J., Hofschneider, P. & Kandolf, R. (1995). Characterization of a 100-kilodalton binding protein for the six serotypes of coxsackie B viruses. J Virol 69, 6751-6757.
Dorner, A., Xiong, D., Couch, K., Yajima, T. & Knowlton, K. (2004). Alternatively spliced soluble coxsackie-adenovirus receptors inhibit coxsackievirus infection. J Biol Chem 279, 18497-18503.
Dunn, J., Chapman, N., Tracy, S. & Romero, J. (2000). Genomic determinants of cardiovirulence in coxsackievirus B3 clinical isolates: localization to the 5'nontranslated region. J Virol 74, 4787-4794.
Excoffon, K., Gansemer, N., Traver, G. & Zabner, J. (2007). Functional effects of coxsackievirus and adenovirus receptor glycosylation on homophilic adhesion and adenoviral infection. J Virol 81, 5573-5578.
Excoffon, K., Hruska-Hageman, A., Klotz, M., Traver, G. & Zabner, J. (2004). A role for the PDZ-binding domain of the coxsackie B virus and adenovirus receptor (CAR) in cell adhesion and growth. J Cell Sci 117, 4401-4409.
Feuer, R., Mena, I., Pagarigan, R., Slifka, M. & Whitton, J. (2002). Cell cycle status affects coxsackievirus replication, persistence, and reactivation in vitro. J Virol 76, 4430-4440.
Hafenstein, S., Bowman, V., Chipman, P., Bator, K., Lin, F., Medof, M. & Rossmann, M. (2007). Interaction of decay-accelerating factor with coxsackievirus B3. J Virol 81, 12927-12935.
Harris, C., Abbott, R., Smith, R., Morgan, B. & Lea, S. (2005). Molecular dissection of interactions between components of the alternative pathway of complement and decay accelerating factor (CD55). J Biol Chem 280, 2569-2578.
He, Y., Chipman, P., Howitt, J., Bator, C., Whitt, M., Baker, T., Kuhn, R., Anderson, C., Freimuth, P. & Rossmann, M. (2001). Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor. Nat Struct Biol 8, 874-878.
Honda, T., Saitoh, H., Masuko, M., Katagiri-Abe, T., Tominaga, K., Kozakai, I., Kobayashi, K., Kumanishi, T., Watanabe, Y. & Odani, S. (2000). The coxsackievirus-adenovirus receptor protein as a cell adhesion molecule in the developing mouse brain. Mol Brain Res 77, 19-28.
Hotta, Y., Honda, T., Naito, M. & Kuwano, R. (2003). Developmental distribution of coxsackie virus and adenovirus receptor localized in the nervous system. Dev Brain Res 143, 1-13.
Hsu, K., Lonberg-Holm, K., Alstein, B. & Crowell, R. (1988). A monoclonal antibody specific for the cellular receptor for the group B coxsackieviruses. J Virol 62, 1647-1652.
Huang, K., Yang, Y., Lin, Y., Huang, J., Liu, H., Yeh, T., Chen, S., Liu, C. & Lei, H. (2006). The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection. J Immunol 176, 2825-2832.
Hunziker, I., Cornell, C. & Whitton, J. (2007). Deletions within the 5′ UTR of coxsackievirus B3: Consequences for virus translation and replication. Virology 360, 120-128.
Ito, M., Kodama, M., Masuko, M., Yamaura, M., Fuse, K., Uesugi, Y., Hirono, S., Okura, Y., Kato, K. & Hotta, Y. (2000). Expression of coxsackievirus and adenovirus receptor in hearts of rats with experimental autoimmune myocarditis. Circ Res 86, 275-280.
Karnauchow, T., Dawe, S., Lublin, D. & Dimock, K. (1998). Short Consensus Repeat Domain 1 of Decay-Accelerating Factor Is Required for Enterovirus 70 Binding. J Virol 72, 9380-9383.
Kashimura, T., Kodama, M., Hotta, Y., Hosoya, J., Yoshida, K., Ozawa, T., Watanabe, R., Okura, Y., Kato, K. & Hanawa, H. (2004). Spatiotemporal changes of coxsackievirus and adenovirus receptor in rat hearts during postnatal development and in cultured cardiomyocytes of neonatal rat. Virchows Archiv 444, 283-292.
Kawaguchi, T., Sakisaka, S., Sata, M., Mori, M. & Tanikawa, K. (1999). Different lobular distributions of altered hepatocyte tight junctions in rat models of intrahepatic and extrahepatic cholestasis. Hepatology 29, 205-216.
Kim, K., Hufnagel, G., Chapman, N. & Tracy, S. (2001). The group B coxsackieviruses and myocarditis. Rev Med Virol 11, 355-368.
Kitazono, M., Goldsmith, M., Aikou, T., Bates, S. & Fojo, T. (2001). Enhanced adenovirus transgene expression in malignant cells treated with the histone deacetylase inhibitor FR901228. Cancer Res 61, 6328-6330.
Lacher, M., Tiirikainen, M., Saunier, E., Christian, C., Anders, M., Oft, M., Balmain, A., Akhurst, R. & Korn, W. (2006). Transforming growth factor-beta receptor inhibition enhances adenoviral infectability of carcinoma cells via up-regulation of Coxsackie and Adenovirus Receptor in conjunction with reversal of epithelial-mesenchymal transition. Cancer Res 66, 1648-1657.
Leong, L., Cornell, C. & Semler, B. (2002). Processing Determinants and Functions of Cleavage Products of Picornavirus Polyproteins. In Molecular Biology of Picornaviruses, pp. 187-197: Amer Society for Microbiology.
Leveque, N., Norder, H., Zreik, Y., Cartet, G., Falcon, D., Rivat, N., Chomel, J., Hong, S. & Lina, B. (2007). Echovirus 6 strains derived from a clinical isolate show differences in haemagglutination ability and cell entry pathway. Virus Res 130, 1-9.
Lin, T. L., Chen,K.T., Wang, E.T., Li,Y.S., Huang,C.W., Hsu,C.C.& Wu,H.S. (2007). A Serotype Analysis of Individual Cases of Severe Enterovirus in Taiwan Region, 1998~2006 Taiwan Epidemiology Bulletin 23, 279-280.
Lisewski, U., Shi, Y., Wrackmeyer, U., Fischer, R., Chen, C., Schirdewan, A., Juttner, R., Rathjen, F., Poller, W. & Radke, M. (2008). The tight junction protein CAR regulates cardiac conduction and cell-cell communication. J Exp Med.
Liu, P. & Opavsky, M. (2000). Viral myocarditis: receptors that bridge the cardiovascular with the immune system? Circ Res 86, 275-280.
Lukacik, P., Roversi, P., White, J., Esser, D., Smith, G., Billington, J., Williams, P., Rudd, P., Wormald, M. & Harvey, D. (2004). Complement regulation at the molecular level: The structure of decay-accelerating factor. Proc Natl Acad Sci 101, 1279-1284.
Milstone, A., Petrella, J., Sanchez, M., Mahmud, M., Whitbeck, J. & Bergelson, J. (2005). Interaction with coxsackievirus and adenovirus receptor, but not with decay-accelerating factor (DAF), induces A-particle formation in a DAF-binding coxsackievirus B3 isolate. J Virol 79, 655-660.
Modlin, J. & Rotbart, H. (1997). Group B coxsackie disease in children. Curr Top Microbiol Immunol 223, 53-80.
Muckelbauer, J., Kremer, M., Minor, I., Diana, G., Dutko, F., Groarke, J., Pevear, D. & Rossmann, M. (1995). The structure of coxsackievirus B3 at 3.5 a resolution. Structure 3, 653-667.
Muckelbauer, J. & Rossmann, M. (1997). The structure of coxsackievirus B3. Curr Top Microbiol Immunol 223, 191-208.
Nalbantoglu, J., Pari, G., Karpati, G. & Holland, P. (1999). Expression of the primary coxsackie and adenovirus receptor is downregulated during skeletal muscle maturation and limits the efficacy of adenovirus-mediated gene delivery to muscle cells. Hum Gene Ther 10, 1009-1019.
Noutsias, M., Fechner, H., de Jonge, H., Wang, X., Dekkers, D., Houtsmuller, A., Pauschinger, M., Bergelson, J., Warraich, R. & Yacoub, M. (2001). Human coxsackie-adenovirus receptor is colocalized with integrins alpha (v) beta (3) and alpha (v) beta (5) on the cardiomyocyte sarcolemma and upregulated in dilated cardiomyopathy: implications for cardiotropic viral infections. Circulation 104, 275-280.
Opresko, L., Chang, C., Will, B., Burke, P., Gill, G. & Wiley, H. (1995). Endocytosis and lysosomal targeting of epidermal growth factor receptors are mediated by distinct sequences independent of the tyrosine kinase domain. J Biol Chem 270, 4325-4333.
Orthopoulos, G., Triantafilou, K. & Triantafilou, M. (2004). Coxsackie B viruses use multiple receptors to infect human cardiac cells. J Med Virol 74, 291-299.
Otero, J., Folgueira, L., Trallero, G., Prieto, C., Maldonado, S., Babiano, M. & Martinez-Alonso, I. (2001). A-549 is a suitable cell line for primary isolation of coxsackie B viruses. J Med Virol 65, 534-536.
Pallansch, M. (1997). Coxsackievirus B epidemiology and public health concerns. Curr Top Microbiol Immunol 223, 13-30.
Pasch, A., Kupper, J., Wolde, A., Kandolf, R. & Selinka, H. (1999). Comparative analysis of virus-host cell interactions of haemagglutinating and non-haemagglutinating strains of coxsackievirus B3. J Gen Virol 80, 3153-3158.
Perez-Ruiz, M., Navarro-Mari, J., Palacios, V. & Rosa-Fraile, M. (2003). Human rhabdomyosarcoma cells for rapid detection of enteroviruses by shell-vial assay. J Med Microbiol 52, 789-791.
Raschperger, E., Thyberg, J., Pettersson, S., Philipson, L., Fuxe, J. & Pettersson, R. (2006). The coxsackie-and adenovirus receptor (CAR) is an in vivo marker for epithelial tight junctions, with a potential role in regulating permeability and tissue homeostasis. Exp Cell Res 312, 1566-1580.
Sakurai, F., Akitomo, K., Kawabata, K., Hayakawa, T. & Mizuguchi, H. (2007). Downregulation of human CD46 by adenovirus serotype 35 vectors. Gene Ther 14, 912-919.
Santoro, F., Kennedy, P., Locatelli, G., Malnati, M., Berger, E. & Lusso, P. (1999). CD46 is a cellular receptor for human herpesvirus 6. Cell 99, 817-827.
Sasse, A., Wallich, M., Ding, Z., Goedecke, A. & Schrader, J. (2003). Coxsackie-and-adenovirus receptor mRNA expression in human heart failure. J Gene Med 5, 876-882.
Schinazi, R., Ilan, E., Black, P., Yao, X. & Dagan, S. (1999). Cell-based and animal models for hepatitis B and C viruses. Antivir Chem Chemother 10, 99-114.
Schmidtke, M., Selinka, H., Heim, A., Jahn, B., Tonew, M., Kandolf, R., Stelzner, A. & Zell, R. (2000). Attachment of coxsackievirus B3 variants to various cell lines: mapping of phenotypic differences to capsid protein VP1. Virology 275, 77-88.
Schneider-Schaulies, J. (2000). Cellular receptors for viruses: links to tropism and pathogenesis. J Gen Virol 81, 1413-1429.
Schneider -Schaulies, J., Schnorr, J., Brinckmann, U., Dunster, L., Baczko, K., Liebert, U., Schneider-Schaulies, S. & ter Meulen, V. (1995). Receptor usage and differential downregulation of CD46 by measles virus wild-type and vaccine strains. Proc Natl Acad Sci US A 92, 3943-3947.
Selinka, H., Wolde, A., Pasch, A., Klingel, K., Schnorr, J., Lindberg, A. & Kandolf, R. (2002). Comparative analysis of two coxsackievirus B 3 strains: Putative influence of virus-receptor interactions on pathogenesis. J Med Virol 67, 224-233.
Selinka, H., Wolde, A., Sauter, M., Kandolf, R. & Klingel, K. (2004). Virus-receptor interactions of coxsackie B viruses and their putative influence on cardiotropism. Med Microbiol Immunol 193, 127-131.
Shafren, D., Bates, R., Agrez, M., Herd, R., Burns, G. & Barry, R. (1995). Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment. J Virol 69, 3873-3877.
Shafren, D., Dorahy, D., Ingham, R., Burns, G. & Barry, R. (1997a). Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry. J Virol 71, 4736-4743.
Shafren, D., Williams, D. & Barry, R. (1997b). A decay-accelerating factor-binding strain of coxsackievirus B3 requires the coxsackievirus-adenovirus receptor protein to mediate lytic infection of rhabdomyosarcoma cells. J Virol 71, 9844-9848.
Shieh, J. & Bergelson, J. (2002). Interaction with decay-accelerating factor facilitates coxsackievirus B infection of polarized epithelial cells. J Virol 76, 9474-9480.
Spiller, O., Criado-Garcia, O., Rodriguez, D. & Morgan, B. (2000). Cytokine-mediated up-regulation of CD55 and CD59 protects human hepatoma cells from complement attack. Clin Exp Immunol 121, 234-241.
Stanway, G., Brown, F., Christian, P., Hovi, T., Hyypia, T., King, A., Knowles, N., Lemon, S., Minor, P. & Pallansch, M. (2005). Family Picornaviridae. In Virus Taxonomy Eighth Report of the International Committee on Taxonomy of Viruses, pp. 757–778: Elsevier.
Strous, G., Du Maine, A., Zijderhand-Bleekemolen, J., Slot, J. & Schwartz, A. (1985). Effect of lysosomotropic amines on the secretory pathway and on the recycling of the asialoglycoprotein receptor in human hepatoma cells. J Cell Biol 101, 531-539.
Thoelen, I., Magnusson, C., Tagerud, S., Polacek, C., Lindberg, M. & Van Ranst, M. (2001). Identification of Alternative Splice Products Encoded by the Human Coxsackie-Adenovirus Receptor Gene. Biochem Biophys Res Commun 287, 216-222.
Tomko, R., Xu, R. & Philipson, L. (1997). HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci 94, 3352-3356.
van Kuppeveld, F., Hoenderop, J., Smeets, R., Willems, P., Dijkman, H., Galama, J. & Melchers, W. (1997). Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J 16, 3519-3532.
van Ooij, M., Vogt, D., Paul, A., Castro, C., Kuijpers, J., van Kuppeveld, F., Cameron, C., Wimmer, E., Andino, R. & Melchers, W. (2006). Structural and
functional characterization of the coxsackievirus B3 CRE (2C): role of CRE (2C) in negative-and positive-strand RNA synthesis. J Gen Virol 87, 103-113.
Vincent, T., Pettersson, R., Crystal, R. & Leopold, P. (2004). Cytokine-mediated downregulation of coxsackievirus-adenovirus receptor in endothelial cells. J Virol 78, 8047-8058.
Vuorinen, T., Vainionpaa, R., Vanharanta, R. & Hyypia, T. (1996). Susceptibility of human bone marrow cells and hematopoietic cell lines to coxsackievirus B3 infection. J Virol 70, 9018-9023.
Walters, R., Freimuth, P., Moninger, T., Ganske, I., Zabner, J. & Welsh, M. (2002). Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape. Cell 110, 789-799.
Wang, S., Liu, C., Yang, Y., Yang, H., Lin, C. & Wang, J. (1998). Fatal coxsackievirus B infection in early infancy characterized by fulminant hepatitis. J Infect 37, 270-273.
Wessels, E., Duijsings, D., Notebaart, R., Melchers, W. & van Kuppeveld, F. (2005). A proline-rich region in the coxsackievirus 3A protein is required for the protein to inhibit endoplasmic reticulum-to-golgi transport. J Virol 79, 5163-5173.
Whitton, J. (2002). Immunopathology during coxsackievirus infection. Springer Semin Immunopathol 24, 201-213.
Zanone, M., Favaro, E., Ferioli, E., Huang, G., Klein, N., Perin, P., Peakman, M., Conaldi, P. & Camussi, G. (2007). Human pancreatic islet endothelial cells express coxsackievirus and adenovirus receptor and are activated by coxsackie B virus infection. FASEB J 21, 3308-3317.
Zautner, A., Jahn, B., Hammerschmidt, E., Wutzler, P. & Schmidtke, M. (2006). N-and 6-O-sulfated heparan sulfates mediate internalization of coxsackievirus B3 variant PD into CHO-K1 cells. J Virol 80, 6629-6636.
Zemskov, E., Mikhailenko, I., Strickland, D. & Belkin, A. (2007). Cell-surface transglutaminase undergoes internalization and lysosomal degradation: an essential role for LRP1. J Cell Sci 120, 3188-3199.
Zhang, S., Jia, H. B., Gong, B. S., Zhang, S. J., Li, X. & Yu, B. (2008). Role of coxsackievirus and adenovirus receptor in the pathogenesis of dilated cardiomyopathy and its influencing factor. Chin Med J (Engl) 121, 1445-1449.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top