跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/01/30 12:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張竣泓
研究生(外文):Chun-Hung Chang
論文名稱:探討一個新的endo-lysosomaladaptor,TAPE,在先天免疫的角色
論文名稱(外文):Role of a novel endo-lysosomal adaptor, TAPE, in the innate immunity
指導教授:凌斌凌斌引用關係
指導教授(外文):Pin Ling
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:61
中文關鍵詞:先天免疫
外文關鍵詞:TAPEinnate immunity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
先天性免疫反應(innate immune responses),在宿主上建立了第一道防線且會連結並調控後天免疫反應(adaptor immune responses)的啟動來抵抗外來病源菌的入侵;近年來研究的發展中,發現了可以偵測各種入侵體內病源菌的 pattern recognition receptors (PRRs)如 Toll-like receptors (TLRs)和 RIG-I-like receptors (RLRs),以及探討了 PRRs下游不同訊息調控分子的角色,然而,由於先天性免疫訊息傳遞網複雜度極高,到目前為止還是沒有完全的解開。在實驗室先前的研究中,我們發現了一個新的 adaptor分子,命名為 TAPE (TBK1-Associated Protein in the Endo-lysosomal compartments),TAPE分布於細胞的 endosome和 lysosome上,且TAPE可以分別活化 IFN-β及 NF-κB pathway。本篇論文研究目的就是要進一步釐清 TAPE如何參與先天免疫的訊息傳遞,以及了解 TAPE在抵抗病毒入侵時扮演了何種的角色。首先我證明 TAPE是位於 TBK1以及 IKKβ上游來分別調控 IFN-β及 NF-κB pathway的活化;此外,過度表現 TAPE也會促使 MAPK家族成員 ERK的磷酸化,磷酸化的 ERK在過去的研究中知道是可以促使細胞生長以及細胞激素(cytokine)的產生。另外在 TAPE-knockdown的細胞株中,發現 TRIF所活化的 IFN-β及 NF-κB pathway明顯的被抑制,但是 IPS-1和 MyD88活化的訊號不會受到 TAPE-knockdown的影響仍然存在;利用 siRNA的方式來進一步研究,證實了 TAPE對於在 endosome的 TLR3和TLR4,以及細胞質中的 MDA5和 RIG-I來活化下游訊號是必需的,但是 TLR5的訊號則不需要 TAPE來傳遞。因此,這些結果證實了TAPE會同時參與位於 endosome以及細胞質中的 PRRs的訊息傳遞,並活化下游並產生對抗病源菌入侵的免疫反應。在未來的研究中,我們會更進一步利用老鼠模式來探討在不同感染疾病中,是否 TAPE也參與其中且會扮演重要角色。
Innate immunity functions to serve the first line of host defense and then links to the initiation and programming of adaptive immunity to build up the full spectrum of immune defenses. Signaling networks underlying the innate immune system have emerged from identification and characterization of various pattern-recognition receptors (PRRs), such as Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs), and innate immune regulators. However, the complexity of these innate immune signaling networks is far from clear yet. Recently our group has identified a novel innate immune adaptor, termed TAPE (TBK1-Associated Protein in the Endo-lysosomal compartments), which is located in the endo-lysosomal compartments and activates the interferon-β (IFN-β) and NF-κB signaling pathways. The objective of my study is to elucidate the TAPE-mediated innate immune signaling pathway and determine the function of TAPE in the anti-viral innate immune responses. My results first revealed that TAPE activated the IFN-β and NF-κB signaling pathways through downstream kinases TBK1 and IKKβ, respectively. Ectopic expression of TAPE also led to the activation of ERK, which is a key protein kinase implicated in cell growth and cytokine production. Using the small interfering RNA approach, I demonstrated that TAPE knockdown impaired the TRIF signal to the IFN-β and NF-κB activation. Furthermore, TAPE knockdown also impaired the TRIF-mediated TLR3 and TLR4 signaling pathways but not the MyD88-mediated TLR5 signaling pathway. Surprisingly, my results also showed that TAPE knockdown could block the RIG-I and MDA-5 signals to the IFN-β activation but not the IPS-1 signal, suggesting that TAPE functions between RLRs and IPS-1. Besides, I further found that TAPE was required for TLR3- and RIG-I-mediated protection against HSV and VSV, respectively. Overall, these results indicate that TAPE is a novel innate immune regulator essential for relaying signals from both endosomal TLRs (TLR3 and TLR4) and cytosolic RLRs to the program of innate immune defenses. Future directions will attempt to determine the implication of TAPE in various infectious diseases in vivo.
1. Introduction .....................................................7
1.1. Innate immune responses and PRRs ..............7
1.1.1. Toll like receptors (TLRs) ...................8

1.2. Innate signal transduction ...........................9
1.2.1. TLR adaptor molecules ........................9
1.2.2. The MyD88-dependent pathway ...............9
1.2.3. The TRIF-dependent pathway .................10
1.2.4. RIG-I-like receptors (RLRs) ..................11
1.2.5. Signal of cytosolic PRRs .................................11
1.2.6. TBK1 and IKKi link TLR and RLR signals to type I IFN induction .12

1.3. Viral recognition in innate immunity ...............................13
1.3.1. PRRs that detect RNA virus ..............................13
1.3.2. PRRs that detect DNA virus ............................14

1.4. Identification of TAPE ....................................15

2. Materials and methods ..........................................17
2.1. Cell lines, cell culture and TLR ligands ........................17
2.2. Plasmids ...........................................17
2.3. Extraction of Plasmid DNA ...................................18
2.4. RNA interference .................................................18
2.5. Transfection ........................................................19
2.6. Western blot analysis and antibodies ...............................20
2.7. Co-immunoprecipitation ...............................21
2.8. Reporter assay ......................................................21
2.9. Enzyme-linked immunosorbent assay (ELISA) ............22
2.10. Plaque assay ...................................................22

3. Results ............................................................................24
3.1. TAPE activates IFN-β through TBK1 ..................................24
3.2. TAPE activates NF-κB pathway through IKKβ and the ERK pathway ...24
3.3. TAPE functions downstream of the TRIF adaptor ..................25
3.4. TAPE is required for the TLR3 and TLR4 signaling pathway .......26
3.5. TAPE is required for the RIG-I and MDA5 signaling pathway .....27
3.6. The NFκB pathway triggered by TLR3, MDA5, or RIG-I would not be blocked in the TAPE-knockdown stable lines...............................................28
3.7. TAPE plays a critical role in the TLR3 and RIG-I mediated anti-viral responses..................................................28

4. Discussion .....................................................29

5. References ..............................................33
1.Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124:783-801.
2.Janeway, C. A., Jr. 1989. Approaching the asymptote? Evolution
and revolution in immunology. Cold Spring Harbor symposia on quantitative biology 54 Pt 1:1-13.
3.Lemaitre, B., E. Nicolas, L. Michaut, J. M. Reichhart, and J. A. Hoffmann. 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973-983.
4.Poltorak, A., X. He, I. Smirnova, M. Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. Freudenberg, P. Ricciardi-Castagnoli, B. Layton, and B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085-2088.
5.Martinon, F., and J. Tschopp. 2005. NLRs join TLRs as innate sensors of pathogens. Trends in immunology 26:447-454.
6.Creagh, E. M., and L. A. O'Neill. 2006. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends in immunology 27:352-357.
7.Medzhitov, R. 2007. Recognition of microorganisms and activation of the immune response. Nature 449:819-826.
8.Takeda, K., T. Kaisho, and S. Akira. 2003. Toll-like receptors. Annual review of immunology 21:335-376.
9.Beutler, B. 2004. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430:257-263.
10.Inohara, Chamaillard, C. McDonald, and G. Nunez. 2005. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annual review of biochemistry 74:355-383.
11.Fritz, J. H., R. L. Ferrero, D. J. Philpott, and S. E. Girardin. 2006. Nod-like proteins in immunity, inflammation and disease. Nature immunology 7:1250-1257.
12.Martinon, F., and J. Tschopp. 2007. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell death and differentiation 14:10-22.
13.Yoneyama, M., K. Onomoto, and T. Fujita. 2008. Cytoplasmic recognition of RNA. Advanced drug delivery reviews 60:841-846.
14.Geijtenbeek, T. B., S. J. van Vliet, A. Engering, B. A. t Hart, and Y. van Kooyk. 2004. Self- and nonself-recognition by C-type lectins on dendritic cells. Annual review of immunology 22:33-54.
15.Robinson, M. J., D. Sancho, E. C. Slack, S. LeibundGut-Landmann, and C. Reis e Sousa. 2006. Myeloid C-type lectins in innate immunity. Nature immunology 7:1258-1265.
16.Willment, J. A., and G. D. Brown. 2008. C-type lectin receptors in antifungal immunity. Trends in microbiology 16:27-32.
17.Ishii, K. J., S. Koyama, A. Nakagawa, C. Coban, and S. Akira. 2008. Host innate immune receptors and beyond: making sense of microbial infections. Cell host & microbe 3:352-363.
18.Bell, J. K., G. E. Mullen, C. A. Leifer, A. Mazzoni, D. R. Davies, and D. M. Segal. 2003. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends in immunology 24:528-533.
19.Akira, S., and K. Takeda. 2004. Toll-like receptor signalling. Nature reviews 4:499-511.
20.Takeuchi, O., S. Sato, T. Horiuchi, K. Hoshino, K. Takeda, Z. Dong, R. L. Modlin, and S. Akira. 2002. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169:10-14.
21.Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443-451.
22.Schwandner, R., R. Dziarski, H. Wesche, M. Rothe, and C. J. Kirschning. 1999. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. The Journal of biological chemistry 274:17406-17409.
23.Underhill, D. M., A. Ozinsky, A. M. Hajjar, A. Stevens, C. B. Wilson, M. Bassetti, and A. Aderem. 1999. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401:811-815.
24.Alexopoulou, L., A. C. Holt, R. Medzhitov, and R. A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732-738.
25.Hayashi, F., K. D. Smith, A. Ozinsky, T. R. Hawn, E. C. Yi, D. R. Goodlett, J. K. Eng, S. Akira, D. M. Underhill, and A. Aderem. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099-1103.
26.Takeuchi, O., T. Kawai, P. F. Muhlradt, M. Morr, J. D. Radolf, A. Zychlinsky, K. Takeda, and S. Akira. 2001. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13:933-940.
27.Heil, F., H. Hemmi, H. Hochrein, F. Ampenberger, C. Kirschning, S. Akira, G. Lipford, H. Wagner, and S. Bauer. 2004. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526-1529.
28.Diebold, S. S., T. Kaisho, H. Hemmi, S. Akira, and C. Reis e Sousa. 2004. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529-1531.
29.Wagner, H. 2002. Interactions between bacterial CpG-DNA and TLR9 bridge innate and adaptive immunity. Curr Opin Microbiol 5:62-69.
30.Mogensen, T. H. 2009. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240-273, Table of Contents.
31.Yamamoto, M., S. Sato, K. Mori, K. Hoshino, O. Takeuchi, K. Takeda, and S. Akira. 2002. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 169:6668-6672.
32.Fitzgerald, K. A., D. C. Rowe, B. J. Barnes, D. R. Caffrey, A. Visintin, E. Latz, B. Monks, P. M. Pitha, and D. T. Golenbock. 2003. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. The Journal of experimental medicine 198:1043-1055.
33.Yamamoto, M., S. Sato, H. Hemmi, S. Uematsu, K. Hoshino, T. Kaisho, O. Takeuchi, K. Takeda, and S. Akira. 2003. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nature immunology 4:1144-1150.
34.Oshiumi, H., M. Sasai, K. Shida, T. Fujita, M. Matsumoto, and T. Seya. 2003. TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to toll-like receptor 4 TICAM-1 that induces interferon-beta. The Journal of biological chemistry 278:49751-49762.
35.Lord, K. A., B. Hoffman-Liebermann, and D. A. Liebermann. 1990. Complexity of the immediate early response of myeloid cells to terminal differentiation and growth arrest includes ICAM-1, Jun-B and histone variants. Oncogene 5:387-396.
36.Takeuchi, O., K. Takeda, K. Hoshino, O. Adachi, T. Ogawa, and S. Akira. 2000. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int Immunol 12:113-117.
37.Yamamoto, M., S. Sato, H. Hemmi, H. Sanjo, S. Uematsu, T. Kaisho, K. Hoshino, O. Takeuchi, M. Kobayashi, T. Fujita, K. Takeda, and S. Akira. 2002. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420:324-329.
38.Fitzgerald, K. A., E. M. Palsson-McDermott, A. G. Bowie, C. A. Jefferies, A. S. Mansell, G. Brady, E. Brint, A. Dunne, P. Gray, M. T. Harte, D. McMurray, D. E. Smith, J. E. Sims, T. A. Bird, and L. A. O'Neill. 2001. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413:78-83.
39.Li, S., A. Strelow, E. J. Fontana, and H. Wesche. 2002. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proceedings of the National Academy of Sciences of the United States of America 99:5567-5572.
40.Hoebe, K., X. Du, P. Georgel, E. Janssen, K. Tabeta, S. O. Kim, J. Goode, P. Lin, N. Mann, S. Mudd, K. Crozat, S. Sovath, J. Han, and B. Beutler. 2003. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424:743-748.
41.Yamamoto, M., S. Sato, H. Hemmi, K. Hoshino, T. Kaisho, H. Sanjo, O. Takeuchi, M. Sugiyama, M. Okabe, K. Takeda, and S. Akira. 2003. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640-643.
42.Meylan, E., K. Burns, K. Hofmann, V. Blancheteau, F. Martinon, M. Kelliher, and J. Tschopp. 2004. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nature immunology 5:503-507.
43.Hacker, H., V. Redecke, B. Blagoev, I. Kratchmarova, L. C. Hsu, G. G. Wang, M. P. Kamps, E. Raz, H. Wagner, G. Hacker, M. Mann, and M. Karin. 2006. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439:204-207.
44.Sharma, S., B. R. tenOever, N. Grandvaux, G. P. Zhou, R. Lin, and J. Hiscott. 2003. Triggering the interferon antiviral response through an IKK-related pathway. Science 300:1148-1151.
45.Yoneyama, M., M. Kikuchi, T. Natsukawa, N. Shinobu, T. Imaizumi, M. Miyagishi, K. Taira, S. Akira, and T. Fujita. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature immunology 5:730-737.
46.Pichlmair, A., O. Schulz, C. P. Tan, T. I. Naslund, P. Liljestrom, F. Weber, and C. Reis e Sousa. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314:997-1001.
47.Takahasi, K., M. Yoneyama, T. Nishihori, R. Hirai, H. Kumeta, R. Narita, M. Gale, Jr., F. Inagaki, and T. Fujita. 2008. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell 29:428-440.
48.Takeuchi, O., and S. Akira. 2008. MDA5/RIG-I and virus recognition. Curr Opin Immunol 20:17-22.
49.Venkataraman, T., M. Valdes, R. Elsby, S. Kakuta, G. Caceres, S. Saijo, Y. Iwakura, and G. N. Barber. 2007. Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J Immunol 178:6444-6455.
50.Kawai, T., K. Takahashi, S. Sato, C. Coban, H. Kumar, H. Kato, K. J. Ishii, O. Takeuchi, and S. Akira. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nature immunology 6:981-988.
51.Meylan, E., J. Curran, K. Hofmann, D. Moradpour, M. Binder, R. Bartenschlager, and J. Tschopp. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167-1172.
52.Seth, R. B., L. Sun, C. K. Ea, and Z. J. Chen. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122:669-682.
53.Xu, L. G., Y. Y. Wang, K. J. Han, L. Y. Li, Z. Zhai, and H. B. Shu. 2005. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Molecular cell 19:727-740.
54.Ishikawa, H., and G. N. Barber. 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674-678.
55.Zhong, B., Y. Yang, S. Li, Y. Y. Wang, Y. Li, F. Diao, C. Lei, X. He, L. Zhang, P. Tien, and H. B. Shu. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29:538-550.
56.Peters, R. T., and T. Maniatis. 2001. A new family of IKK-related kinases may function as I kappa B kinase kinases. Biochimica et biophysica acta 1471:M57-62.
57.Pomerantz, J. L., and D. Baltimore. 1999. NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. Embo J 18:6694-6704.
58.Tojima, Y., A. Fujimoto, M. Delhase, Y. Chen, S. Hatakeyama, K. Nakayama, Y. Kaneko, Y. Nimura, N. Motoyama, K. Ikeda, M. Karin, and M. Nakanishi. 2000. NAK is an IkappaB kinase-activating kinase. Nature 404:778-782.
59.Bonnard, M., C. Mirtsos, S. Suzuki, K. Graham, J. Huang, M. Ng, A. Itie, A. Wakeham, A. Shahinian, W. J. Henzel, A. J. Elia, W. Shillinglaw, T. W. Mak, Z. Cao, and W. C. Yeh. 2000. Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription. Embo J 19:4976-4985.
60.Fitzgerald, K. A., S. M. McWhirter, K. L. Faia, D. C. Rowe, E. Latz, D. T. Golenbock, A. J. Coyle, S. M. Liao, and T. Maniatis. 2003. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nature immunology 4:491-496.
61.Sato, M., H. Suemori, N. Hata, M. Asagiri, K. Ogasawara, K. Nakao, T. Nakaya, M. Katsuki, S. Noguchi, N. Tanaka, and T. Taniguchi. 2000. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13:539-548.
62.Honda, K., H. Yanai, H. Negishi, M. Asagiri, M. Sato, T. Mizutani, N. Shimada, Y. Ohba, A. Takaoka, N. Yoshida, and T. Taniguchi. 2005. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434:772-777.
63.Hemmi, H., O. Takeuchi, S. Sato, M. Yamamoto, T. Kaisho, H. Sanjo, T. Kawai, K. Hoshino, K. Takeda, and S. Akira. 2004. The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. The Journal of experimental medicine 199:1641-1650.
64.McWhirter, S. M., K. A. Fitzgerald, J. Rosains, D. C. Rowe, D. T. Golenbock, and T. Maniatis. 2004. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proceedings of the National Academy of Sciences of the United States of America 101:233-238.
65.Perry, A. K., E. K. Chow, J. B. Goodnough, W. C. Yeh, and G. Cheng. 2004. Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. The Journal of experimental medicine 199:1651-1658.
66.tenOever, B. R., S. Sharma, W. Zou, Q. Sun, N. Grandvaux, I. Julkunen, H. Hemmi, M. Yamamoto, S. Akira, W. C. Yeh, R. Lin, and J. Hiscott. 2004. Activation of TBK1 and IKKvarepsilon kinases by vesicular stomatitis virus infection and the role of viral ribonucleoprotein in the development of interferon antiviral immunity. Journal of virology 78:10636-10649.
67.Kato, H., S. Sato, M. Yoneyama, M. Yamamoto, S. Uematsu, K. Matsui, T. Tsujimura, K. Takeda, T. Fujita, O. Takeuchi, and S. Akira. 2005. Cell type-specific involvement of RIG-I in antiviral response. Immunity 23:19-28.
68.Takaoka, A., Z. Wang, M. K. Choi, H. Yanai, H. Negishi, T. Ban, Y. Lu, M. Miyagishi, T. Kodama, K. Honda, Y. Ohba, and T. Taniguchi. 2007. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448:501-505.
69.Sadler, A. J., and B. R. Williams. 2008. Interferon-inducible antiviral effectors. Nature reviews 8:559-568.
70.Pichlmair, A., and C. Reis e Sousa. 2007. Innate recognition of viruses. Immunity 27:370-383.
71.Sato, S., M. Sugiyama, M. Yamamoto, Y. Watanabe, T. Kawai, K. Takeda, and S. Akira. 2003. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol 171:4304-4310.
72.Rudd, B. D., E. Burstein, C. S. Duckett, X. Li, and N. W. Lukacs. 2005. Differential role for TLR3 in respiratory syncytial virus-induced chemokine expression. Journal of virology 79:3350-3357.
73.Wang, T., T. Town, L. Alexopoulou, J. F. Anderson, E. Fikrig, and R. A. Flavell. 2004. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nature medicine 10:1366-1373.
74.Zhang, S. Y., E. Jouanguy, S. Ugolini, A. Smahi, G. Elain, P. Romero, D. Segal, V. Sancho-Shimizu, L. Lorenzo, A. Puel, C. Picard, A. Chapgier, S. Plancoulaine, M. Titeux, C. Cognet, H. von Bernuth, C. L. Ku, A. Casrouge, X. X. Zhang, L. Barreiro, J. Leonard, C. Hamilton, P. Lebon, B. Heron, L. Vallee, L. Quintana-Murci, A. Hovnanian, F. Rozenberg, E. Vivier, F. Geissmann, M. Tardieu, L. Abel, and J. L. Casanova. 2007. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317:1522-1527.
75.Kato, H., O. Takeuchi, S. Sato, M. Yoneyama, M. Yamamoto, K. Matsui, S. Uematsu, A. Jung, T. Kawai, K. J. Ishii, O. Yamaguchi, K. Otsu, T. Tsujimura, C. S. Koh, C. Reis e Sousa, Y. Matsuura, T. Fujita, and S. Akira. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101-105.
76.Lund, J., A. Sato, S. Akira, R. Medzhitov, and A. Iwasaki. 2003. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. The Journal of experimental medicine 198:513-520.
77.Hochrein, H., B. Schlatter, M. O'Keeffe, C. Wagner, F. Schmitz, M. Schiemann, S. Bauer, M. Suter, and H. Wagner. 2004. Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways. Proceedings of the National Academy of Sciences of the United States of America 101:11416-11421.
78.Krug, A., A. R. French, W. Barchet, J. A. Fischer, A. Dzionek, J. T. Pingel, M. M. Orihuela, S. Akira, W. M. Yokoyama, and M. Colonna. 2004. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21:107-119.
79.Nociari, M., O. Ocheretina, J. W. Schoggins, and E. Falck-Pedersen. 2007. Sensing infection by adenovirus: Toll-like receptor-independent viral DNA recognition signals activation of the interferon regulatory factor 3 master regulator. Journal of virology 81:4145-4157.
80.Zhu, J., X. Huang, and Y. Yang. 2007. Innate immune response to adenoviral vectors is mediated by both Toll-like receptor-dependent and -independent pathways. Journal of virology 81:3170-3180.
81.Ishii, K. J., C. Coban, H. Kato, K. Takahashi, Y. Torii, F. Takeshita, H. Ludwig, G. Sutter, K. Suzuki, H. Hemmi, S. Sato, M. Yamamoto, S. Uematsu, T. Kawai, O. Takeuchi, and S. Akira. 2006. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nature immunology 7:40-48.
82.Waibler, Z., M. Anzaghe, H. Ludwig, S. Akira, S. Weiss, G. Sutter, and U. Kalinke. 2007. Modified vaccinia virus Ankara induces Toll-like receptor-independent type I interferon responses. Journal of virology 81:12102-12110.
83.Delale, T., A. Paquin, C. Asselin-Paturel, M. Dalod, G. Brizard, E. E. Bates, P. Kastner, S. Chan, S. Akira, A. Vicari, C. A. Biron, G. Trinchieri, and F. Briere. 2005. MyD88-dependent and -independent murine cytomegalovirus sensing for IFN-alpha release and initiation of immune responses in vivo. J Immunol 175:6723-6732.
84.Ishii, K. J., T. Kawagoe, S. Koyama, K. Matsui, H. Kumar, T. Kawai, S. Uematsu, O. Takeuchi, F. Takeshita, C. Coban, and S. Akira. 2008. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451:725-729.
85.Gallagher, C. M., and J. A. Knoblich. 2006. The conserved c2 domain protein lethal (2) giant discs regulates protein trafficking in Drosophila. Developmental cell 11:641-653.
86.Jaekel, R., and T. Klein. 2006. The Drosophila Notch inhibitor and tumor suppressor gene lethal (2) giant discs encodes a conserved regulator of endosomal trafficking. Developmental cell 11:655-669.
87.Rogaeva, A., and P. R. Albert. 2007. The mental retardation gene CC2D1A/Freud-1 encodes a long isoform that binds conserved DNA elements to repress gene transcription. The European journal of neuroscience 26:965-974.
88.Rogaeva, A., K. Galaraga, and P. R. Albert. 2007. The Freud-1/CC2D1A family: transcriptional regulators implicated in mental retardation. Journal of neuroscience research 85:2833-2838.
89.Basel-Vanagaite, L., A. Alkelai, R. Straussberg, N. Magal, D. Inbar, M. Mahajna, and M. Shohat. 2003. Mapping of a new locus for autosomal recessive non-syndromic mental retardation in the chromosomal region 19p13.12-p13.2: further genetic heterogeneity. J Med Genet 40:729-732.
90.Basel-Vanagaite, L., R. Attia, M. Yahav, R. J. Ferland, L. Anteki, C. A. Walsh, T. Olender, R. Straussberg, N. Magal, E. Taub, V. Drasinover, A. Alkelai, D. Bercovich, G. Rechavi, A. J. Simon, and M. Shohat. 2006. The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non-syndromic mental retardation. J Med Genet 43:203-210.
91.Nakamura, A., M. Naito, T. Tsuruo, and N. Fujita. 2008. Freud-1/Aki1, a novel PDK1-interacting protein, functions as a scaffold to activate the PDK1/Akt pathway in epidermal growth factor signaling. Mol Cell Biol 28:5996-6009.
92.Matsuda, A., Y. Suzuki, G. Honda, S. Muramatsu, O. Matsuzaki, Y. Nagano, T. Doi, K. Shimotohno, T. Harada, E. Nishida, H. Hayashi, and S. Sugano. 2003. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene 22:3307-3318.
93.Chariot, A., A. Leonardi, J. Muller, M. Bonif, K. Brown, and U. Siebenlist. 2002. Association of the adaptor TANK with the I kappa B kinase (IKK) regulator NEMO connects IKK complexes with IKK epsilon and TBK1 kinases. The Journal of biological chemistry 277:37029-37036.
94.Hinz, M., M. Broemer, S. C. Arslan, A. Otto, E. C. Mueller, R. Dettmer, and C. Scheidereit. 2007. Signal responsiveness of IkappaB kinases is determined by Cdc37-assisted transient interaction with Hsp90. The Journal of biological chemistry 282:32311-32319.
95.Oshiumi, H., M. Matsumoto, K. Funami, T. Akazawa, and T. Seya. 2003. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nature immunology 4:161-167.
96.Vercammen, E., J. Staal, and R. Beyaert. 2008. Sensing of viral infection and activation of innate immunity by toll-like receptor 3. Clin Microbiol Rev 21:13-25.
97.Kawai, T., and S. Akira. 2006. Innate immune recognition of viral infection. Nature immunology 7:131-137.
98.Tanimura, N., S. Saitoh, F. Matsumoto, S. Akashi-Takamura, and K. Miyake. 2008. Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. Biochem Biophys Res Commun 368:94-99.
99.Barton, G. M., and J. C. Kagan. 2009. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nature reviews 9:535-542.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top