跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:塗偉凱
研究生(外文):Wei-kai Tu
論文名稱:以三軸圓錐貫入試驗推估現地錐頭阻抗之研究
論文名稱(外文):The Estimation of the Field Cone Resistances Using Tri-axial Cone Penetration Tests
指導教授:陳景文陳景文引用關係
指導教授(外文):Jing-Wen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:134
中文關鍵詞:標準貫入試驗液化分析相對密度貫入阻抗三軸圓錐貫入試驗圍壓圓錐貫入試驗
外文關鍵詞:Liquefaction AnalysisStandard Penetration TestConfining PressureRelative DensityCone Penetration TestPenetration ResistanceTri-axial Penetration Test
相關次數:
  • 被引用被引用:1
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本研究為模擬現地圓錐貫入試驗(Cone Penetration Test)中貫入阻抗(Cone Resistance)之一系列實驗研究。利用三軸圓錐貫入儀進行室內的圓錐貫入實驗(Tri-axial Cone Penetration Test,簡稱TCPT)來求取貫入阻抗(qc(peak)),與現地的貫入阻抗(qc)做比較與關連性分析。根據台中港海埔新生地的鑽探報告,選取現場兩組最接近之標準貫入試驗(SPT)與圓錐貫入試驗(CPT)資料做為基準,利用TCPT模擬現地深度20m內的各深度土層錐頭阻抗,以相對密度(Dr)、細粒料含量(FC)、有效圍壓(σ’3)當做控制參數來進行本實驗。
實驗結果得知,室內三軸圓錐貫入阻抗與現場圓錐貫入阻抗之間,有良好的關連性方程式存在。此外,利用以此方程式將室內的貫入阻抗(qc(peak))轉換為現地等值之貫入阻抗值(簡稱qc(lab)),同時與實際現地貫入阻抗(qc),分別計算Robertson & Wride (1998)and Olsen(1997)提出利用圓錐貫入試驗推估土壤液化安全係數,分析兩者對於兩種液化分析方法的結果。
This study presents a series of experiments of the simulation on the field cone penetration test. Through the Tri-axial Cone Penetration Test (TCPT), the cone resistances in lab were obtained to compare and to correspond with those in field. Based on the soil investigation report of the reclaimed soils in Tai-Chung Harbor, two sets of Standard Penetration Test (SPT) and Cone Penetration Test (CPT) are selected to be the baseline data, and via TCPT, the cone resistances at each depth with corresponding relative density, fines content and effective confining pressures were acquired for a maximum depth of 20 m.
The results indicate a reasonable agreement between the cone resistances obtained from TCPT and field CPT. Using this relationship, the cone resistances in lab were transformed to the ones in filed. Both the transformed cone resistances and actual ones were applied the liquefaction analyses of soils proposed by Robertson & Wride (1998) and Olsen(1997). The analysis results of safety factors in liquefaction resistance were presented and also discussed.
摘 要 I
ABSTRACT II
誌 謝 III
目錄 V
圖目錄 IX
表目錄 XIV
照片目錄 XV
符號說明 XVI

第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 研究內容與流程 2
1-4 論文架構 3
第二章 文獻回顧 5
2-1 圓錐貫入試驗 5
2-1-1 圓錐貫入試驗背景 5
2-1-2 圓錐貫入試驗量測原理 8
2-1-3 圓錐貫入試驗步驟 9
2-2影響錐頭阻抗的因素 10
2-2-1 相對密度 10
2-2-2 覆土應力 13
2-2-3 粒徑大小 14
2-2-4 細粒料 15
2-2-5 過壓密比 17
2-2-6 錐頭性質 19
2-3 圓錐貫入試驗結果之應用 23
2-3-1 相對密度 24
2-3-2 摩擦角 25
2-3-3 SPT-N值 25
2-3-4 以圓錐貫入試驗推估土壤液化潛能 27
2-4 三軸圓錐貫入試驗 33
2-5 標度槽試驗 37
第三章 試驗計劃與研究方法 41
3-1 試驗土樣 41
3-2 試驗控制條件 43
3-3 試驗設備 48
3-4 試驗步驟 54
第四章 試驗結果與分析 58
4-1 三軸圓錐貫入試驗結果分析 60
4-1-1 貫入阻抗與細粒料含量之關聯 60
4-1-2 孔隙水壓與細粒料含量之關聯 64
4-1-3 貫入阻抗與相對密度之關聯 65
4-1-4 超額孔隙水壓與相對密度之關聯 68
4-1-5 貫入阻抗與圍壓之關聯 71
4-1-6 孔隙水壓與圍壓之關聯 71
4-2 現地試驗與室內試驗資料之整合 75
4-2-1 現地資料與試驗資料之關係 75
4-2-2 qc與 qc(peak)差異性之探討 78
4-2-3 現地與室內試驗資料運用液化方法 80
4-2-4 現地與室內試驗資料推估摩擦角 84
4-2-5 相對密度之推估與比較 86
第五章 結論與建議 87
5-1 結論 87
5-2 建議 88
參考文獻 90
附 錄 98
A. 數據資料 99
B. 荷重計之設計與製作 128
[1]ASTM (1998) ‘‘Standard Test Method for Mechanical Cone Penetration testing of soils, ’’Annual Book of ASTM Standards, D3441-95.
[2]ASTM (2000) ‘‘Standard Test Method for performing Electronic Friction Cone and Piezocone Penetration Testing of soils, ’’Annual Book of ASTM Standards, D5778-95.
[3]Begemann, H. K. S. Ph. (1965) ‘‘The friction jacket cone as an aid in determining the soil profile’’.Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Montreal, 1,17-20.
[4]Bemben, S. M. and Myers, H. J. (1974) ‘‘The influence of rate of penetration on static cone resistance in Connecticut River Valley varved clay’’. Proceedings of the European Symposium on Penetration Testing, ESOPT, Stockholm, 2.2, 33-4.
[5] Been, K., Crooks, J. H. A., Becker, D. E. and Jefferies, M. G. (1986) ‘‘The cone penetration test in sands:part I,state parameter interpretation,’’Geotechnical, Vol. 36, No. 2, pp. 239-249.
[6]Baligh, M. M. and Levadoux, J. N. (1986) ‘‘Consolidation after undrained piezocone penetration. II: Interpretation’’.Journal of Geotechnical Engineering, ASCE, 112(7), 727-45.
[7]Baldi, G., Bellotti, R., Ghionna, V., Jamiolkowski, M. and Pasqualini, E. (1986) ‘‘Interpretation of CPTs and CPTUs; 2nd part : drained penetration of sands’’. Proceedings of the Fourth International Geotechnical Seminar, Singapore, 143-56.
[8]Been, K., Lingnau, B. E., Crooks, J. H. A and Leach, B. (1987a) ‘‘Cone penetration test calibration for Erksak sand’’.Canadian Geotechnical Journal, 24(4), 601-10.
[9]Bellotti, R., Crippa, V., Pedroni, S. and Ghionna, V. N. (1988) ‘‘Saturation of sand specimen for calibration chamber tests’’. Proceedings of the International Symposium on Penetration Testing, ISOPT-1, Orlando, 2, 661-72, Balkema Pub., Rotterdam.
[10]Braja M. Das (2004) ‘‘ Principle of Foundation Engineering’’ California State University, Sacramento, Fifth Edition.
[11]Ghionna, V. N. and Jamiolkowsi, M. (1992) ‘‘A critical appraisal of calibration chamber testing of sands’’. Proceedings of the International Symposium on Calibration Chamber Testing, Potsdam, New York, 1991, 13-40, Balkema Pub., Rotterdam
[12]Holden, J. C. (1971) ‘‘Laboratory research on static conepenetrometers’’. University of Florida, Gainesville, Department of Civil Engineering, Internal Report CE-SM-71-1.
[13]Holden, J. G.. (1977) ‘‘The calibration of electrical penetrometers in sands, ’’ Norwegian Geotech. Inst., Int. Rep. 52108-2, (29pp).
[14]Holden, J. C. (1992) ‘‘History of the first six CRB calibration chambers’’. Proceedings of the International Symposium on Calibration Chamber Testing, Potsdam, New York, 1991, 1-12.
[15]Jamiolkowski, M., Ladd, C. C., Germaine, J. T. and Lancellotta,R. (1985) ‘‘New developments in field and laboratory testing of soils’’. State-of-the art report. Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 1, 57-153, Balkema Pub., Rotterdam.
[16]Kulhawy, F. H. and Mayne, P. h. (1990) ‘‘Manual on estimating soil properties for foundation design’’.Electric Power Research Institute, EPRI, August, 1990
[17]Lambe, T. W., and Whiteman, R. V. (1969). Soil Mechanics, Wiley, New York.
[18]Lunne, T. and Christophersen, H. P. (1983) ‘‘Interpretation of cone penetrometer data for offshore sands’’. Proceedings of the Offshore Technology Conference, Richardson, Texas, Paper No. 4464.
[19]Lunne, T., Lacasse, S. and Rad, N. S. (1989) ‘‘SPT,CPT, pressuremeter testing and recent developments on in situ testing of soils’’.General report from the 12th International Conference on soil Mechanics and Foundation Engineering,Rio de Janeiro, 4 ,2339-403, Balkema Pub., Rotterdam.
[20]Lunne .T . Robertson P. K. and Powell J. J. M. (1997) ‘‘Cone Penetration Testing in Geotechnical Practice’’ London.
[21]Meyerhof ,G. G. (1956) ‘‘Penetration tests and bearing capacity of cohesionless soils’’.Journal of the Soil Mechanics and Foundations Division, ASCE, 82(SM1), 1-19.
[22] Mitchell J. K., and Tseng, D. J. (1990). ‘‘Assessment of liquefaction potential by cone penetration resistance.’’ Proc. H. Bolton Seed Memorial Symp., J. M. Duncan, ed., BiTech Publishing, Vancouver, B. C., 2, 335–350.
[23] Mayne, P. W. (1991) ‘‘Determination of OCR in clays by piezocone tests using cavity expansion and critical state concepts’’.Soils and Foundations, 31(2), 65-76
[24]Mayne, P. W. and Kulhawy, F. H. (1991) ‘‘Calibration chamber database and boundary effects correction for CPT data,’’ Proceedings, First International Symposium on Calibration Chamber Testing, Potsdam, New York, Editor, Huang, A.B., Elsevier, New York , pp. 257-264.
[25]Ma, M. Y. (1991) ‘‘Numerical simulation of cone penetration tests in a particular assembly,’’ Master Thesis, Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York.
[26]Olsen, R. S. (1988) ‘‘Using the CPT for dynamic site response characterization.’’Proc., Earthquake Engineering and Soil Dynamics II Conference, J. L. Von Thun, ed., Geotechnical Special Publ. No. 2, ASCE, New York, 374–388.
[27]Olsen, R. S., (1997) ‘‘Cyclic Liquefaction Based on the Cone Penetrometer Test,’’ Proceedings of NCEER Workshop on Evaluationof liquefaction Resistance of soils, Technical report: NCEER-97- 0022, National Center for Earthquake Engineering Research, State University of New York at Buffalo, pp 225-276.
[28]Parkin, A. K. and Lunne, T (1982) ‘‘Boundary effects in the laboratory calibration of a cone penetrometer in sand’’.Proceedings of the 2nd European Symposium on Penetration Testing, ESOPT II , Amsterdam, 2, 761-8, Balkema Pub., Rotterdam.
[29]Parkin, A. K. (1988) “The calibration of cone penetrometers ’’Proceedings, The First International Symposium on Penetration Testing , ISOP-1 , Orlando, Florida, editor, De Ruiter, Balkema, Rotterdam, pp. 221-243.
[30]Powell, J. J. M., Quarterman, R. S. T. and Lunne, T. (1988) ‘‘interpretation and use of the pizecone test in UK clays’’.Proceedings of the Geotechnology Conference: Penetration Testing in the UK, Birmingham, 151-6, Thomas Telford, London.
[31]Roy, M., Tremblay, M., Tavenas, F. and La Rochelle, P. (1982a) ‘‘Development of pore pressures in quasi-static penetration tests in sensitive clay’’. Canadian Geotechnical Journal, 19(2), 124-38.
[32]Robertson, P. K. and Campanella, R. G. (1983a) ‘‘Interpretation of Cone Penetration Tests. Part I:Sand.’’Canadian Geotechnical Journal, Vol 20, No.4 , pp. 718-733.
[33]Robertson, P. K. and Campanella, R.G. (1983b) ‘‘Interpretation of cone penetration tests: Part II: Clay’’. Canadian Geotechnical Journal, 20(4), 734-45.
[34]Robertson, P. K. and Campanella, R. G. and Whiteman, A. (1983) ‘‘SPT-CPT correlations ’’ Journal of Geotechnical Engineering, ASCE, 109(11), 1449-59.
[35]Robertson, P. K. and Campanella, R. G. (1985) ‘‘ Liquefaction potential of sands using the cone penetration test’’.Journal of Geotechnical Engineering, ASCE, 111(3), 384-403.
[36]Robertson, P. K. and Campanella, R. G., Gillespie, D. and Greig, J. (1986) ‘‘Use of piezometer cone data’’.Proceedings of the ASCE specialty Conference In situ ’86: Use of In Situ Tests in Geotechnical Engineering, Blacksburg, 1263-80, American Society of Engineerings (ASCE).
[37]Robertson, P. K. and Campanella, R.G. (1989) ‘‘Design Manual for Use of CPT and CPTU’’,University of British Columbia,Vancouver, BC
[38]Robertson, P. K., and Wride, C. E., (1998) ‘‘Evaluation Cyclic Liquefaction Potential Using the Cone Penetration Test,’’Canadian Geotechnical Journal, Vol.35, pp. 442-459.
[39]Schmertmann, J. (1976) ‘‘ An Updated Correlation Between Relative Density, Dr, and Fugro-type Electric Cone Bearing, qc’’, Contract Report DACW 39-76 M 6646, Waterways ExperimentStation, Vicksburg, Miss., 1976.
[40]Schmertmann, J. H. (1978) ‘‘ Guidelines for cone penetration test,performance and design ’’. US Federal Highway Administration, Washington, DC, Report, FHWATS-78-209, 145.
[41] Seed, H. B., and Idriss,, I. M. (1971) ‘‘ Simplified procedure for evaluating soil liquefaction potential ’’. ASCE. Journal of soil Mechanics and Foundation Division. Vol.97, No. SM9, pp. 1249-73.
[42] Seed, H. B., Idriss, I. M., and Arango, I., (1983) ‘‘ Evaluation of Liquefaction Potential Using Field Performance Data ’, Journal of the Geotechnical Engineering Division, ASCE, Vol.109, No3 pp. 458-483.
[43]Seed, H. B., Tokimatsu, K., Harder. L. F. and Chung, R. (1985) ‘‘Influence of SPT procedures in soil liquefaction resistance evaluations ’’. Journal of Geotechnical Engineering, ASCE , 111(12) 1425-45.
[44] Seed, H. B. and De Alba, P. (1986) ‘‘ Use of SPT and CPT tests for evaluating the liquefaction resistance of sands ’’. Proceedings of the ASCE Specialty Conference In Situ’86: Use of In Situ Tests in Geotechnical Engineering, Blacksburg, 281-302.
[45]Shibata, T. and Teparaksa, V. (1988) ‘‘ Evaluation of liquefaction potentials of soils using cone penetration tests’’. Soil and foundations, 28(2), 49-60.
[46] Stark, T. D. and Olsen, S. M. (1995) ‘‘Liquefaction resistance using CPT and field case histories’’.Journal of Geotechnical Engineering , ASCE, 121(12), 859-69.
[47]Suzuki, Y., Tokimatsu, K., Taya, Y. and Kubota, Y. (1995) ‘‘Correlation between CPT data and dynamic properties of in situ frozen samples’’. Proceedings of the Third International Conference on Recent Advances in Geotechnical earthquake Engineering and Soils Dynamics, St. Louis, 1, 249-52, University of Missouri Rolla.
[48]Suzuki, Y., et al. (1995). ‘‘Empirical correlation of soil liquefaction based on cone penetration test.’’ Earthquake geotechnical engineering, K. Ishihara, ed., Balkema, Rotterdam, The Netherlands, 369–374.
[49]王統立,「高細料含量粉土細砂中CPT之標定試驗」,國立交通大學土木工程研究所,碩士論文,2000。
[50]李延恭、李豐博、陳桂璋(1986),‘‘不同貫入試驗結果分析台中港區砂土層工程性質之比較’’,地工技術,第39-50頁.
[51]李炳志,「三軸圓錐貫入阻抗與現地土壤液化之關聯研究」,國立成功大學土木工程研究所,碩士論文,2008。
[52]林保全,「水位與排水條件對動力夯實成效之實驗研究」,國立成功大學土木工程研究所,碩士論文,2007。
[53]張嘉偉,「圓錐貫入試驗在粉砂中之標定」,國立交通大學土木工程研究所,碩士論文,1998。
[54]陳建旭,「以微型錐貫入試驗評估不同細料含量貓羅溪土壤之液化強度」,國立台灣大學土木工程研究所,碩士論文,2006。
[55]陳福成,「浚填砂土水位對動力夯實成效影響之研究」,國立成功大學土木工程研究所,博士論文,2008。
[56]黃振昇,「以三軸圓錐貫入試驗推估浚填砂土之抗液化強度」,國立成功大學土木工程研究所,碩士論文,2007。
[57]藍少村,「降雨導致淺層邊坡破壞之模型試驗與分析」,國立成功大學土木工程研究所,碩士論文,2008。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊