跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 08:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡源福
研究生(外文):Yuan-fu Tsai
論文名稱:深層軟岩破壞特性之研究
論文名稱(外文):Investigating the Failure Mechanism of Highly PressuredSoft Rocks
指導教授:李德河李德河引用關係
指導教授(外文):Der-Her Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:165
中文關鍵詞:擠注壓力三維應力路徑水力破裂壓力二氧化碳地質封存Mohr-Coulomb 破壞準則水力破裂試驗脆延性轉換壓力
外文關鍵詞:Mohr-Coulomb failure criteriabrittle-ductile transition pressurehydraulic fracturing pressurethree-dimensional stress pathCO2 geological storageinjection pressurehydraulic fracturing test
相關次數:
  • 被引用被引用:4
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
二氧化碳的減量可採用替代能源方式處理或用嚴格的排放基準來管制外,運用二氧化碳封存技術對於降低二氧化碳總量將更有效率。地質封存是以高壓擠注方式將液態二氧化碳注入地層中,但過高的擠注壓力可能會造成地層破裂,使二氧化碳散逸。
本研究以牛山背斜構造露頭處取樣之岩石材料進行力學試驗來瞭解其力學特性與破壞準則,並以中空試體施作水力破裂試驗來瞭解其水力破裂壓力與圍壓之關係,並討論其三維應力路徑,最後探討其作為封存場址之適合性。試驗結果如下:
1. 六重溪層砂岩與崁下寮層泥岩皆屬軟弱岩石,兩者的張力強度不
高,約為單壓強度的7~12%左右。
2. 由應力-應變關係與體積應變之變化可知砂岩材料的脆延性轉換
壓力介於20MPa~25MPa 之間,而泥岩材料則為20MPa 左右。兩種材料的正割模數與圍壓皆有良好的線性關係。
3. Mohr-Coulomb 破壞準則在描述兩種岩石材料的尖峰應力時,並不適用進入延性破壞後之應力摩爾圓,而在殘餘狀態時,Mohr-Coulomb 破壞準則能有效且準確的描述材料在破壞後的殘餘應力值。
4. 在尖峰狀態下兩種岩石材料的Mohr-Coulomb 破壞包絡線如下:
砂岩材料: τp = 6.2+0.55xσ
It is more efficient for reducing the total amount of carbon dioxide to use the technology of carbon dioxide storage, except dealing with alternative energy source or control of strict discharge basis. The geological storage
means injecting the liquid carbon dioxide into the storage rock by high injection pressure, but too high injection pressure may cause the storage rcok to break and carbon dioxide to dissipate.
In this study, a series of tests was conducted to understand the mechanics characteristic and failure criteria of the rock by getting in the exposure of the
Nioushan Anticline, and we proceed the hydraulic fracturing test to understand the relationship between the hydraulic fracturing pressure and the confining pressure and the three-dimensional stress paths by the hollow
cylinder samples, and finally talk about the suitability to be used as the geological storage site. The test result is as follows:
1. It all belongs to the weak rock with the Liuchungsi sandstone and Kanhsialiao mudstone, and the tenslie strength of the two is not strong about 7~12% of the uniaxial compressive strength.
2. By the stress-strain curves and the change of the volume strain can know that the brittle-ductile transition pressure of the sandstone material is between 20MPa and 25MPa, and it of the mudstone material is about 20MPa.
The both secant modulus and confining pressure is linear.
3. When describing the peak stress of the two by Mohr-Coulomb failure criteria, it is not suitable of the stress mohr circle after ductile failure, but it is effective and accurate by describing the residual stress after failuring in the residual state.
4. The Mohr-Coulomb failure envelope of two rocks in the peak state is as follows:
Sandstone: τp = 6.2+0.55xσ 􀁄
Mudstone: τp = 3.0+0.56xσ 􀁄
The Mohr-Coulomb failure envelope of two rocks in the residual state is as follows:
Sandstone: τr = 1.8+0.65xσ 􀁄
Mudstone: τr = 1.3+0.58xσ 􀁄
5. Because installing the triaxial cell is very difficult and selecting the internal waterproof material is not good, it causes the smaller hydraulic fracturing pressure and does not understand the true failure style of the
samples by samples were breaked when the triaxial cell was installed or samples were flooded on test by the hydraulic fracturing test.
6. It is not suitable by using Mohr-Coulomb failure criteria on three-dimensional stress space and samples were flooded on test, so the three-dimensional stress path does not touch the failure envelope.
7. Because it is near distance from the Nioushan Anticline to the sources of discharging CO2, it has the anticline, the depth of storage is enough, there is a thick cap rock in the Nioushan Anticline, and the rock strength is suitable, it is applicable to pre-study by geological storage site.
摘要....................................................I
ABSTRACT............................................... III
誌謝....................................................VI
目錄................................................... VII
表目錄..................................................X
圖目錄..................................................XI
照片目錄................................................XV
第一章 緒論.............................................1
1.1 前言................................................1
1.2 研究動機與目的......................................2
1.3 研究流程............................................3
第二章 文獻回顧.........................................5
2.1 全球暖化............................................5
2.1.1 暖化過程..........................................5
2.1.2 溫室效應..........................................6
2.1.3 暖化影響..........................................7
2.2 二氧化碳減量....................................... 11
2.3 地質封存技術........................................17
2.3.1 地質封存的種類....................................19
2.3.2 國內外發展現況....................................21
2.3.3 台灣適合地質封存場址..............................26
2.3.4 封存場址–牛山構造................................27
2.4 Mohr-Coulomb 破壞準則...............................31
2.5 三維應力............................................34
2.5.1 Haigh-Westergard 主應力空間.......................34
2.5.2 中空圓柱試體元素之應力狀態........................35
2.6 變形率分析法........................................38
第三章 水力破裂法原理及應用.............................41
3.1 水力破裂試驗........................................41
3.2 水力破裂試驗應用式..................................45
3.3 試驗室水力破裂試驗之理論............................51
3.4 影響水力破裂試驗的因素..............................54
3.5 水力破裂試驗相關研究................................60
第四章 試驗材料、方法及儀器.............................67
4.1 試驗材料及試體製作..................................67
4.2 超音波試驗..........................................76
4.2.1 儀器介紹..........................................76
4.2.2 試驗方法..........................................77
4.3 消散耐久性試驗......................................79
4.3.1 儀器介紹..........................................79
4.3.2 試驗方法..........................................79
4.4 單軸壓縮試驗........................................81
4.4.1 儀器介紹..........................................81
4.4.2 試驗方法..........................................81
4.5 巴西人法試驗........................................83
4.5.1 儀器介紹..........................................83
4.5.2 試驗方法..........................................83
4.6 DRA 試驗............................................85
4.6.1 儀器介紹..........................................85
4.6.2 試驗方法..........................................87
4.7 靜態三軸壓縮試驗....................................88
4.7.1 儀器介紹..........................................88
4.7.2 試驗方法..........................................90
4.8 水力破裂試驗........................................93
4.8.1 儀器介紹..........................................93
4.8.2 試驗方法..........................................95
第五章 結果與討論.......................................99
5.1 超音波試驗..........................................99
5.2 消散耐久性試驗......................................100
5.3 單軸壓縮試驗........................................102
5.4 巴西人法試驗........................................109
5.5 變形率變化法推估現地應力............................111
5.6 三軸壓縮試驗........................................116
5.6.1 三軸壓縮試驗結果..................................116
5.6.2 圍壓與彈性模數之關係..............................122
5.6.3 Mohr-Coulomb 破壞準則.............................124
5.7 水力破裂試驗........................................128
5.7.1 水力破裂試驗應力條件..............................128
5.7.2 各次水力破裂試驗情形..............................130
5.7.3 水力破裂試驗試體正割模數比較......................142
5.7.4 水力破裂試驗所得之張力強度........................144
5.7.5 三維應力空間......................................147
5.8 地質封存之適合性....................................151
第六章 結論與建議.......................................153
6.1 結論................................................153
6.2 建議................................................156
參考文獻................................................157
附錄 砂岩及泥岩材料超音波試驗結果.......................163
1. 呂明達、宣大衡、黃雲津、范振暉,「台灣陸上二氧化碳地質封存潛能推估」,.冶,第52 卷,第三期,第154~161 頁,2008。
2. 何信昌,謝凱旋,高銘健,陳華玟,「五萬分之一台灣地質圖」,圖幅第五十號-新化,經濟部中央地質調查所,2005。
3. 呂鴻光,「溫室氣體之衝擊與對策—我國之影響與因應措施」,田園城市文化事業有限公司,台北,第2 頁,2003。
4. 林政億,「以破壞力學分析水力破裂法之研究」,國立成功大學資源工程學系碩士論文,2006。
5. 邱至暐,「應用HTPF 應力分析法於水力破裂應力量測法數據分析之研究」,國立高雄第一科技大學營建工程系碩士論文,2005。
6. 宣大衡、范振暉,「二氧化碳的捕獲與封存」,地質,第26 卷2 期,第40~47 頁,2007。
7. 宣大衡、范振暉,「二氧化碳地質封存所面對之問題」,工業污染防治,第102 期,第109~125 頁,2007。
8. 俞旗文,「二氧化碳捕獲與封存」,水利土木科技資訊季刊,第41 期,第27~32 頁,2008。
9. 范振暉、宣大衡,「以地下封存方式進行二氧化碳減量之可行性探討」,第二屆資源工程研討會論文集,第278~283 頁,台南,9 月,2005。
10. 翁駿德,「水壓破碎法應用於滲透性砂岩之初步研究」,國立成功大學土木工程研究所碩士論文,1984。
11. 曾于�琚AChapter 5-Observations: Oceanic Climate Change and Sea Level,IPCC 第一工作組第四次評估報告導讀,台北,2007。
12. 曾慶�琚A「以水力破裂法探討高溫下大理石之張力強度」,國立成功大學土木工程研究所碩士論文,1994。
13. 經濟部能源局,「能源科技研究發展白皮書」,第331~333 頁,2007。
14. 劉致育,「利用中尺度震測系統來探討二氧化碳封存場址」,國立中央大學地球物理研究所碩士論文,2008。
15. ASTM, Standard practices for preparing rock core specimens and determining dimensional and shape tolerances, Annual Book of ASTM Standard, Designation D4543-04, 2000.
16. Barla, G., Bertacchi, P., Rossi, P. P., Vielmo, I., Hydraulic Fracturing Testing Method for Rock Stress Measurements in Italy, Proceedings of the International Symposium on Rock Stress and Rock Measurements, pp. 331~340, 1987.
17. Brown, E. T. and Hoek, E., Trends in relationships between measured in situ stresses and depth, Int. J. Rock Mech. Min. Sci. 15: pp. 211~215, 1978.
18. Chadwick, A., Arts, R., Bernstone, C., May, F., Thibeau, S., and Zweigel, P., Best Practice for the Storage of CO2 in Saline Aquifers: Observations and Guidelines from the SACS and CO2STORE Projects. European
Union, pp. 273, 2007.
19. Chen, W. F. & Han, D. J., Plasticity for Structural Engineers, Springer-Verlag Hong Kong Limited., pp. 26~70, 1991.
20. Climatic Research Unit, Glabal Temperature Record, Information sheets, homepage, 2009.
21. Cook, P. J., Sustainability and nonrenewable resources. Environmental Geosciences, 6(4),pp. 185~190, 1999.
22. Coulomb, C. A., Essai sur une application des regles de maximis et de minimis a quelques probl e mes de Statique relatifs a l’Architecture.Acad. R. Sci. Mem. Math. Phys., 7, pp. 343~387, 1776.
23. Gamble, J. C., Durability-plasticity classification of shales and other argillaceous rocks, Ph. D. thesis, University of Illinois, 1971.
24. Goodman, R. E., Indroduction to Rock Mechanics, John Wliey & Sons, 1989.
25. Haimson, B., Hydraulic Fracturing in Porous-Permeable Materials, Journal of Petroleum Technology, pp. 881~817, 1969.
26. Halmann, M. M. and M. Steinberg, Greenhouse Gas Carbon Dioxide Mitigation: Science and Technology, Boca Raton, Florida : Lewis Publishers, 1999.
27. Heystee, R., Roegiers, J. C., The effect of Stress no The Permeability of Rock Cores-A Facet of Hydraulic Fracturing, National Research council of Canada, pp. 195~204, 1981.
28. Hubbert M. K. & Willis D. G., Mechanics of Hydraulic Fracturing, Trans. AIME 210, pp. 153~168, 1957.
29. IPCC, Technical Summary, Special Report on Carbon dioxide Capture and Storage, 2005.
30. ISRM, Basic geotechnical description of rock masses, ISRM commission on classification of rocks amd rock masses, Internatioal Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, Vol. 18, pp. 85~110, 1981.
31. Ito T. & Sato A. & Hayashi K., Laboratory and field verification of a new approach to stress measurements using a dilatometer tool, Int. J. Rock Mech. Min. Sci., Vol. 38, pp. 1173~1184, 2001.
32. Jaeger, J. C., Cook, N. G. W., Fundamentals of Rock Mechanics, 3rd Edn, 1979.
33. Karstad, O., Geological Storage, Including Costs and Risks, in Saline Aquifers, IPCC, 2002.
34. Kechle, R. O., The Determination of Tectionic Stresses through Analysis of Hydraulic Well Fracturing, Journal of Geophysical Research, Vol. 69, No. 2, pp. 259~273, 1964.
35. Keeling, C. D., T. P. Whorf, and the Carbon Dioxide Research Group, Atmospheric CO2 concentrations (ppmv) derived from in situ air samples collected at Mauna Loa Observatory, Hawaii. Raw Data, 2002.
36. Kerr R., Climate change: Global warming is changing the world. Sciece 13(4), pp. 188~190, 2007.
37. Lamble, T. W., The engineering behavior of compacted clay, Jounal of the Soil Mechanics and Foundations Divison, ASCE, Vol. 84, No. SM2, Proceedings Paper 1654, pp. 1~34, 1958.
38. Mohr, C. O., Welche Umstande bedingen die Elastizitatsgrenze und den Bruch eines Materials, Z. Ver. Dtsch. Ing., 44, pp. 1524~130, pp. 1571~1577, 1900.
39. Seto, M., Nag, D. K., Vutukuri, V. S., In-situ rock stress measurement from rock cores using the acoustic emission method and deformation rate analysis, Geotechnical and geological engineering, Vol. 17, pp.
241~266, 1999.
40. Seto Mashiro, Soma, Nobukazu, Maeda, Nobuyuki, Matsui, Hiroya, Villaescusa, Ernesto, Katsuyama, Kunihisa, Methodology and studies of stress measurement by the AE and DRA methods using rock core (in Japanese), Shigen-to-Sozai (資源.素材), Vol. 117, pp. 829~835, 2001.
41. Yamamoto, K., Kuwahara, Y., Kato, N., Hirasawa, T., Defermation rate analysis: A new method for in situ stress estimation from inelastic deformation of rock sample under axial compressions, Tohoku geophysical journal, Vol. 33, No. 2, pp. 127~147, 1990.
42. Zoback, M. D., Rummel, F., Jung, R., Raleing, C. B., Laboratory Hydraulic Fracturing Experiments in Intack and Pre-fractured Rock, Int. J. Rock Mech. Sci. & Gromech. Abst., Vol. 14, pp. 49~58, 1977
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top