跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 11:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施慶煌
研究生(外文):Ching-huang Shih
論文名稱:低塑性粉質砂土之原狀與重模試體動態性質之探討
論文名稱(外文):Investigation on Dynamic Properties of Undisturbed andRemolded Specimens of Low Plastic Silty Sands
指導教授:陳景文陳景文引用關係
指導教授(外文):Jing-Wen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:176
中文關鍵詞:原狀試體動力三軸試驗重模試體液化阻抗體積應變
外文關鍵詞:undisturbed sampleDynamic triaxial testsremolded sampleliquefaction resistancevolume change after liquefaction
相關次數:
  • 被引用被引用:8
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
本研究以C.K.C.動力三軸儀,針對試體的原狀與重模狀態進行動態性質試驗,係採用台南歸仁地區現地取樣方式獲得之高品質不擾動土樣,並在試驗過程中改變不同圍壓狀態下,探討原狀試體與重模試體間的液化阻抗、剪力模數與剪應變、液化後體積應變之影響;最後彙整本研究與所蒐集的台灣西南半部粉土質砂之相關資料,並針對其基本物性、微觀結構、礦物成分及液化阻抗之影響等方面探討。
據研究結果顯示,於動態行為方面,在相同細粒料含量及圍壓下之原狀試體液化阻抗較重模試體來的高,並由剪力模數與剪應變圖可知原狀試體抵抗外力及吸收能量之能力較重模試體來的佳;在體積應變方面,不論圍壓大小,液化後原狀試體之體積變化較重模試體來的小。
由彙整資料顯示台灣西南部地區,粉土質砂比重範圍為2.67-2.75之間,且皆呈無塑性(NP)或低塑性(PI<4)狀態;自然含水量與液性限度相當接近,為高靈敏性土壤之一;平均粒徑D50約在0.48-0.06mm之間,此結果與Seed(1967)與Lee&Fitton (1968)分別所提有關發生液化的指標和範圍,均與其吻合。在動態性質方面,原狀試體之液化阻抗隨細粒料含量增加而提高,重模試體則隨細粒料含量增加而液化阻抗隨之降低,其強度衰減會隨著細粒料含量的增加而增大;強度衰減率部分會隨試體的緊密狀態會有所改變,緊密狀態試體液化阻抗衰減率會比中等緊密狀態來的小。
The main purpose of this study is to study the influence of disturbance effect of soil samples on the liquefaction resistance of soil. The dynamic triaxial tests were conducted under different confining pressures to investigate the liquefaction resistance, shear modulus, shear strain and volume change after liquefaction of both undisturbed and remolded samples. The high-quality of undisturbed samples were collected in Kueiren area near Tainan City.
Based on test results, the liquefaction resistances of undisturbed samples were higher then those of remolded samples under the same fine content and same confining pressures; In compassion to the capability of absorbing the applied energy to the soils, the undisturbed samples were better then remolded once and volume changes of samples after liquefaction, the undisturbed samples were smaller then the remolded samples. According to test date of silty soil there collected from southwestern of Taiwan, the specific gravities of silty sand were ranging from 2.67 to 2.75. Most of silty sands were nonplastic or low plastic with plastic index lower than 4; Then liquid limits of the sands were near the field water contents and can be cataloged as sensitive soil. The mean grain sizes were in between 0.48mm and 0.06mm. The range of grain size was coincided with the range of grain size that were senstive to be liquefied.
The liquefaction resistances of undisturbed samples were increasing as the fine content of sample increase on the contrary, the resistances of remolded samples were decreasing as the fine content of sample increases. The rate of liquefaction resistance of a dense specimen is smaller then that of a intermediate dense specimen.
目錄
摘要 I
ABSTRACT III
致謝 V
目錄 IX
表目錄 XIV
圖目錄 XVI
照片目錄 XXI
符號表 XXII
第一章 緒 論 1
1-1前言 1
1-2研究動機與目的 2
1-3研究內容 2
1-4研究流程 3
第二章 文 獻 回 顧 5
2-1 液化 5
2-1-1 土壤液化機制與定義 5
2-1-2 反覆荷重下破壞準則之定義 7
2-1-3 砂土承受反覆荷重下之行為 8
2-2 土壤液化阻抗之影響因素 10
2-3 細粒料含量對土壤液化潛能之影響 17
2-3-1試體乾密度或孔隙比維持定值 18
2-3-2試體砂結構孔隙比維持定值 22
2-3-3試體相對密度維持定值 23
2-3-4細粒料塑性程度對動態強度之影響 27
2-4砂顆粒結構假想 32
2-5液化後的體積應變 35
2-6 重模製作方式 37
2-7 非擾動砂土試體取樣 41
2-8影響動態剪力模數之因素 43
2-8-1 剪應變振幅之影響 43
2-8-2 細粒料含量之影響 47
第三章 研究方法之控制條件 49
3-1 動力三軸剪力試驗之特性 49
3-2 前期微震效應 52
3-3 剪力模數之求取 53
第四章 試驗計劃及試驗設備 57
4-1 試驗土樣 57
4-2試驗內容 59
4-3 試驗儀器與設備 60
4-4 試驗步驟 66
4-4-1 儀器校正 66
4-4-2 試體土樣準備 66
4-4-3重模試體安裝 67
4-4-4 試體飽和 68
4-4-5 試體壓密 68
4-4-6 動態加載 69
4-4-7 體積應變試驗 69
4-4-8 資料處理 70
4-5 粉土質砂之低擾動新式取樣 70
4-5-1 Gel Push低擾動活塞取樣器 70
4-5-2 Gel Push低擾動活塞取樣過程 73
4-6 低擾動原狀試體之準備 75
4-6-1 低擾動原狀試體之準備 75
4-6-2 低擾動原狀試體之架設 75
第五章 試驗結果與分析 79
5-1 試驗土樣之基本性質 79
5-2 反覆動態三軸試驗之結果與分析 93
5-2-1試體液化破壞之定義 93
5-2-2試體承受反覆應力下的變形行為 97
5-2-3 試體承受反覆應力作用下孔隙水壓之變化 103
5-2-4 軸向應變與軸差應力之變化 106
5-3原狀土壤與重模土壤液化阻抗之關係 110
5-4 原狀與重模試體之剪應變與剪力模數之關係 117
5-4-1原狀與重模試體之G-γ之關係 117
5-4-2原狀與重模試體之G/Gmax-γ之關係 119
5-5土壤液化後體積應變之探討 120
第六章 粉土動態潛能之探討 127
6-1 台灣西南部地區粉質砂土性質彙整 127
6-2 土壤基本性質比較 128
6-3 影響粉土液化阻抗因素之探討 133
6-3-1細粒料含量對液化阻抗之影響 134
6-3-2 相對密度對液化阻抗之影響 138
6-3-3有效圍壓對液化阻抗之影響 139
第七章 結論與建議 151
7-1 結論 151
7-2建議 154
參考文獻 155
附錄一 GEL PUSH 取樣器之頂土流程 162
附錄二 台灣西南部四地區不同細粒料含量之反覆荷重結果彙整 165
作者簡歷 170
參考文獻
1.吳偉特,「台灣地區砂性土壤液化潛能之初步研究」,土木水利,第六卷,第二期 ,第39-70頁(1979)。
2.吳偉特與楊騰芳,「細粒料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59-74頁(1987)。
3.李維峰,「土壤液化防治之研究與發展趨勢」,地工技術,第103期,第89-91頁,3月(2005)。
4.林智偉,「無塑性細料對砂質土壤液化阻抗之研究」,國立成功大學土木工程系研究所,碩士論文(2006)。
5.孫家雯,「砂土細料界定對液化強度之影響」,國立台灣大學土木工程研究所,碩士論文(2003)。
6.許家豪,「不同粒徑細粒料對土壤液化阻抗影響之研究」,國立成功大學土木工程系研究所,碩士論文(2003)。
7.陳名利,「以剪力模數評估砂土液化潛能之研究」,國立台灣工業技術學院工程技術研究所營建工程組,碩士論文(1990)。
8.陳界文,「細粒料特性對土壤抗液化強度之影響」,國立台灣大學土木工程系研究所,碩士論文(2001)。
9.陳嘉裕,「細粒料含量對沙土浪化潛能之影響研究」,國立成功大學土木工程學研究所,碩士論文(1999)。
10.游家豪,「低塑性細料對粉質砂土動態性質之影響」,國立成功  大學土木工程系研究所,碩士論文(2007)。
11.黃安斌,林志平,紀雲曜,古志生,蔡錦松,李德河,林炳森, “台灣中西部粉土細砂液化行為分析,” 地工技術, 第103期, 第5-30頁(2005)。
12.楊騰芳,「細粒料在過壓密及前期微震作用下對飽和殺性土壤液化潛能之影響」,國立台灣大學土木工程研究所,碩士論文(1986)。
13.廖元憶,「台灣西南沿海高細粒料含量砂土的探討」,國立成功大學土木工程系研究所,碩士論文(2005)。
14.戴源昱,「台灣西南部粉土質細砂CRR與qc關係之標定」,國立交通大學土木工程研究所,碩士論文(2007)。
15.簡宏濱,「細料對七股地區土壤液化行為之研究」,國立成功大學土木工程研究所,碩士論文(1998)。
16.胡紹敏、李維峰、陳景文,「O2車站潛盾隧道到達工程災變原因探討」,地工技術,第105期,第35-46頁(2004)。
17.財團法人臺灣營建研究院,「高雄捷運工程橘線CO2區段標LUO09潛盾隧道坍陷原因鑑定報告」,初稿(2006)。
18.財團法人臺灣營建研究院,「高雄捷運O1車站土壤試驗報告」,(2007)。
19.Anderson,D.G.,”Dynamic Modulus of Cohesive Soils,”Thesis presented to the University of Michigan, in partial fulfillment of the requirements for the degree of Doctor of Philosophy,311p(1974).
20.Chaney, R. C., “Saturation effects on the cyclic strength of sands,” Earthquake Engineering and Soil Dynamics, ASCE, Vol. 1, pp. 342-358 (1978).
21.Chang, N. Y., Yeh, S. T., AND Kaufman, L. P., “Liquefaction potential of clean and silty sands,” Proceedings of the Third International Earthquake Microzonation Conference, Vol. 2, pp. 1017-1032 (1982).
22.Erten, D., AND Mather, M. H., “Cyclic undrained behavior of silty sand,” Soil Dynamics and Earthquake Engineering, Vol. 14, pp. 115-123(1995).
23.Finn, W. D. L., Pickering, D. J., AND Bransby, P. L., “Sand Liquefaction in Triaxial and Simple Shear Test, ” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97,No. SM4, pp. 639-659(1971).
24.Hardin, B.O. and W.L. Black, “Vibration Modulus of Normally Consalidation Clay,” Journal of Soil Mechanics and Foundations Division,ASCE Vol.94,NO.SM2,March,pp.353-369(1968).
25.Hardin,B.O. and V.P. Drneevich, “Shear Modulus and Damping in Soil: Measurement and Parameter Effects,” Journal of Soil Mechanics and Foundations Division,ASCE Vol.98,NO.SM6,June,pp.603-624(1972).
26.Hardin,B.O.”The Nature of Stress-Strain Behavior of Soils,”Proc. Of Earthquake Engineering and Soils Dynamics Conference, ASCE,Pasadena,California, Vol, 1,pp.3-90(1978).
27.Høeg, K., Dyvik, R., and Sandbaekken, G., “Strength of Undisturbed versus Reconstituted Silt and Silty Sand Specimens,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.126, No.7, pp.606-617 (2000).
28.Hofmann, B.A., Sego, D.C., and Robertson, P.K., “In Situ Ground Freezing to Obtain Undisturbed Samples of Loose Sand,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.126, No.11, pp.979-989 (2000).
29.Ishibashi, I. M., Sherlif, M. A., AND Cheng, W. L., “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,”Soils and Foundations, JSSMEF, Vol. 22, No. 1, pp. 37-48 (1982).
30.Ishihara, K ., AND Tadatsu, H., “Effects of Over-consolidation ko Conditions on the Liquefaction Characteristics of Sands,” Soils and Foundations, Vol. 19, No. 4, pp. 59-68 (1979).
31.Ishihara, K., Liquefaction and Flow Failure During Earthquakes, Geotechnique, Vol.43, No.3, pp.315-415 (1993).
32.Iwasaki, T. and F. Tatsuoka, “Effects of Grain Size and Grading on Dynamic Shear Modului of Sands,”Soils and Foundations,(Japan), Vol.17, NO.3, Sept., pp.19-35 (1977).
33.Konrad, J.-M., St-Laurent, S., Gilbert, F., and Leroueil, S., “Sand Sampling below the Water Table Using the 200mm Diameter Laval Sampler,” Canadian Geotechnical Journal, Vol.32, pp.1079-1086 (1995).
34.Kuerbis, R., Nequssey, D., AND Vaid, Y. P., “Effect of Gradation and Fines Content on the Undrained Response of Sand,” Geotechnical Special Publication, No. 21, ASCE, pp. 330-345 (1988).
35.Lee. K.L., AND Albaisa, A., “Earthquake Induced Settlements in Saturated Soil,” Vibration Effects of Earthquake on Soil and Foundations , ASTM, STP 450, pp.71-96 (1969).
36.Marcuson, W. F., “Definition of Term Related to Liquefaction,” Journal of Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp. 565-588.(1978).
37.Mulilis, J. P., “The Effect of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands,” Report No. EERC 75-18, U. C. Berkeley Earthquake Engineering Research Center (1975).
38.Mulilis, J.P., Seed, H.B., Chan, C.K., Mitchell, J.K. and Arulanandan, K., “Effects of sample preparation on sand liquefaction,” Journal of the Geotechnical Engineering Division, ASCE, Vol.103, GT2, pp.91-108 (1977).
39.Peacock, W. H., AND Seed, H. B., “Sand Liquefaction Under Cyclic Loading Simple Shear Conditions, “Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, SM3, pp. 689-708(1968).
40.Seed, H. B., AND Lee, K. L., “Liquefaction of saturated sands during cyclic loading, ” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. SM6, pp. 105-134(1966).
41.Seed, H. B., “Evaluation of Soil Liquefaction Effects on Level Ground during Earthquakes,” Liquefaction Problems in Geotechnical Engineering, pp. 1-104 (1976).
42.The Japan Geotechnical Society, Remedial Measures Against Soil Liquefaction, Chapter2 “Cause of Liquefaction and Associated Effects on Structures,” pp. 11-18.
43.Tianqiang Guo, Shamsher Prakash., “Liquefaction of Silts and Silt-Clay Mixtures,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, pp. 706-710 (1999).
44.Vaid, Y. P., “Liquefaction of Silty soils,” Ground Failures under Seismic Conditions, Geotechnical Special Publication, No. 44, ASCE,pp. 1-16(1994).
45.Vaid, Y. P., Chern, J. C., AND Tumi, H., “Confining Pressure, Grain Angularity and Liquefaction,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 10, pp. 1229-1235 (1985).
46.Wong, R.T., Seed, H.B., AND Chan, C.K. “Cyclic Loading Liquefaction of Gravelly Soils,“ Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 101. No. GT6, pp. 571-583 (1975).
47.Xenaki, V. C., AND Athanasopoulos, G. A., “Liquefaction resistance of sand-silt mixtures:an experimental investigation of the effect of fines,” Soil Dynamics and Earthquake Engineering, Vol. 23, No. 3, pp. 183-194 (2003).
48.Yamamuro, J. A., AND Poul V. Lade, “Experiments and Modeling of Silty Sands Susceptible to Static Liquefaction,” Mechanics of Cohesive-Frictional Meterials, Vol. 4, pp. 545-564(1999).
49.Yamamuro, J.A., AND Kelly, M., “Monotonic and cyclic liquefaction of very loose sands with high silt content,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, pp. 314-323 (2001).
50.Yoshimi, Y., Tanaka, K., AND Tokimatsu, K. “Liquefaction Resistance of Partially Saturated Sand,” Soils and Foundations, Vol. 29, No. 3, pp. 157-162 (1988).
51.Yoshimi, Y., Tokimatsu, K., and Ohara, J., “In situ liquefaction resistance of clean sands over a wide density range,” Geotechnique 44, No.3, pp.479-494 (1994).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top