跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 04:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳修宗
研究生(外文):Shung-Tzung Chen
論文名稱:等向均勻介質之離散差排動力模擬
論文名稱(外文):Discrete Dislocation Dynamics Simulation in Homogenous and Isotropic Media
指導教授:王雲哲
指導教授(外文):Yun-Che Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:87
中文關鍵詞:Frank-Read 差排源Granato-Lücke 阻尼離散化差排動力分析
外文關鍵詞:Frank-Read sourceGranato-Lücke dampingDiscrete dislocation dynamics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
缺陷對於金屬材料力學行為一直扮演重要的角色,其中差排對於材料塑性,阻尼,應變硬化與潛變均具有關鍵地位,自 Volterra 提出空心圓柱差排變形模型以來,差排研究一直是一門重要的課題。然而,差排運算受限於複雜運算公式與材料內部大量生成差排數量,在實際運算上有其困難度,因此差排計算與實際巨觀物理現象存在著差距。離散化差排動力 (discrete dislocation dynamic) 模擬是一種數值模擬研究方法,首先以較簡單幾何模型 (如直線段) 離散分割複雜的差排幾何形狀,藉由直線段較易處理的力學公式求得應力場或與移動等相關方程式,再利用電腦大量快速運算能力處理龐大運算量。本論文將建立差排離散化模型將差排以節點與線段模擬,利用直線段差排應力場公式計算各線段所受交互作用應力,並與外部施加應力疊加,再利用 Peach-Koehler formula 計算差排線段受力,考慮差排運動時所受黏滯 (viscous drag) 阻力與作用力平衡,藉以一階微分運動方程式,利用數值積分 (Euler-trapezoidal method) 求解後即可使用程式 (Matlab) 模擬差排動態行為;在 Frank-Read source 模擬中可得知形成一個差排迴圈的時間是線性正比於黏滯阻尼係數與障礙物 (obstacle) 距離,且隨著驅動應力增加而快速減少,在 0.75Gpa 應力下,形成時間與障礙物距離比值為 9.3 ns/nm,在在 2.0Gpa 應力下,比值為 3.0 ns/nm。


關鍵字: 離散化差排動力分析, Granato-Lücke 阻尼, Frank-Read 差排源
Defects play an important role in metal mechanics behavior. Dislocation (line defect) relate to metal plastic deformation, damping, strain hardening and creep phenomenon. Since Volterra provide cut cylinder deformed model, dislocation study is an essential material science subject always. However, computation of dislocation is still difficult due to complicated formula and large dislocation numbers in material. The relationships between dislocations calculate results and macroscopic mechanical properties didn’t connect perfectly. Discrete dislocation dynamic (DDD) simulation is a numerically simulation approach. Firstly, one adopts simple components (ex. straight segments) which replaces complex geometry with piece-wise line. And take advantage of computer operation ability to handle large computation work. This thesis represents dislocation by node and line segment to set up geometry model. Apply straight segment dislocation stress equations to calculate each segment interaction stresses then overlap external stresses. By Peach-Koehler formula, one obtains dislocation line force. Consider force balance between driven force and viscous drag resistant force during dislocation moving. Finally, one derives a first-order differential equation which be solved by numerical integrator (Euler trapezoidal method). In practices, a Matlab code program simulates dislocation mobility behavior. In Frank-Read (FR) source simulation, the time which forms a dislocation loop is proportional to viscous drag coefficient and obstacle distance linearly. And the FR formation time decreases rapidly as applied stress increases. In 0.75 GPa stress level, the formation time versus obstacle distance ratio is 9.3 ns/nm. In 2.0 GPa stress level, the formation time versus obstacle distance ratio is 3.0 ns/nm.

Keyword: Discrete dislocation dynamics, Granato-Lücke damping, Frank-Read source
Abstract I
摘要 II
Acknowledgements III
Table of Contents IV
List of Tables VI
List of Figures VII
Nomenclature X

Chapter 1 Introduction 1
1.1 Motivation and Goals 1
1.2 Literature survey 2
1.3 Outline 5

Chapter 2 Theoretical development 6
2.1 Introduction dislocation 6
2.1.1 Burgers vector and line vector 6
2.1.2 Dislocation type 7
2.1.3 Dislocation motion 9
2.2 Stress field about a straight dislocation segment 12
2.3 Introduction dislocation simulation 17
2.4 Representation of dislocation 19
2.5 Driving force and distribution 21
2.6 Mobility equation 23
2.7 Time integrator 25
2.8 Topological Change 28
2.8.1 Re-mesh 28
2.8.2 Merge and split 30

Chapter 3 Simulation results and discussion 32
3.1 Dislocation stress fields 33
3.1.1 Segment dislocation stress field comparison
with infinite dislocation 33
3.1.2 Dislocation array 38
3.2 Dislocation interactions 40
3.2.1 Two parallel dislocations attraction and
repulsion 41
3.2.2 Two perpendicular dislocations repulsion 52
3.3 Frank-Read sources 57
3.4 Relationship between dislocation and mechanics
properties of materials 67
3.4.1 Strength of metal crystals and dislocation
density 67
3.4.2 Deformation-Mechanism map 68
3.4.3 Mechanical damping due to dislocations 70
Chapter 4 Conclusions and future works 76
References 78
Appendix A Matlab program framework 83
自述 87
[1]T. Mura. A theory of fatigue crack initiation. Materials Science and Engineer, A176, 61-70. (1994)
[2]Niels Hansen. Polycrystalline Strengthening. Metallurgicacl Transactions A, 16A, 2167-2190. (1985)
[3]A. N. Stroh. A Theory of the Fracture of Metals. Advances in Physics, 1460-6976, 6, 24, 418-465. (1957)
[4]A. Granato and K. . Theory of Mechanical Damping Due to Dislocation. Journal of Applied Physics, 27, 583-593. (1956)
[5]A. Granato and K. . Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies. Journal of Applied Physics, 27, 7, 789-805. (1956)
[6]Fabio Marchesoni. Self-organized criticality and dislocation damping. Journal of Alloys and Compounds, 211/212, 124-127. (1994)
[7]U. F. Kocks. Kinetics of Solution Hardening. Metallurgical Transactions A, 16A, 2109-2129. (1985)
[8]J. D. Embury. Plastic Flow in Dispersion Hardened Materials. Metallurgical Transactions A, 16A, 2191-2200. (1985)
[9]A. J. Aredell. Precipitation Hardening. Metallurgical Transactions A, 16A, 2131-2165. (1985)
[10]Hussein M. Zbib, Tomas Dila Rubiab, Moono Rhee and John P. Hirth. 3D dislocation dynamics: stress-strain behavior and hardening mechanisms in fcc and bcc metals. Journal of Nuclear Materials, 276, 154-165. (2000)
[11]D. Kuhlamann-Wilsdert. Theory of Workhardening 1934-1984. Metallurgical Transactions A, 16A, 2091. (1985)
[12]V. Voltera. Sur l’equilibre des cirps elastiques multiplement connexes. Ann. Ecole Norm. Super. 24, 401-517. (1907)
[13]G. I. Taylor. The mechanism of plastic deformation of crystals Parts I, II,. Proceedings of the Royal Society A, 145, 362. (1934)
[14]W. C. Dash. Dislocations and mechanical properties of crystals. J. C. Fisher. New York, Wiley, (1957)
[15]J. A. Ewing and W. Rosenhain. The crystalline structure of metals. Philosophical Transactions of the Royal Society, A193, 353-375. (1899)
[16]Farid F. Abraham. How fast can crack move? A research adventure in materials failure using millions of atoms and big computers. Advances in Physics, 52, 727 – 790. (2003)
[17]J. Lepinoux and L. P. Kubin. The dynamic organization of dislocation structures: A simulation. Scripta Metall, 21, 833-838. (1987)
[18]N. M. Ghoniem and R. J. Amodeo. Computer simulation of dislocation pattern formation. Solid state phenomena, 3 & 4, 379-406. (1988)
[19]E. Van der Giessen and Needleman, A. Discrete dislocation plasticity: A simple planar model. Materials science & engineering, 3, 689-735. (1995)
[20]H. Y. Wang and R. O(N) LeSar. Algorithm for dislocation dynamics. Philosophical Magazine, A71, 149-164. (1995)
[21]K. C. Le and H. Stumpf. A model of elastic plastic bodies with continuously distributed dislocations. International Journal of Plasticity, 12, 611-627. (1996)
[22]L. P. Kubin and G. Canova. The modelling of dislocation patterns. Scripta Materialia, 27, 957-962. (1992)
[23]G. Canova, Y. Brechet and L. P. Kubin, B. Devincre, V. Pontikis and M. Condat. 3D Simulation of dislocation: motion on a lattice: Application to the yield surface of single crystals. Microstructures and Physical Properties (ed. J. Rabiet), CH-Transtech. (1993)
[24]J. P. Hirth, M. Rhee and H. M. Zbib. Modeling of deformation by a 3D simulation of multipole, curved dislocations. Journal of Computer-Aided Materials Design, 3, 164-166. (1996)
[25]D. Raabe, F. Roters and G. Gottstein. Simulation of the statics of 2D and 3D dislocation networks. Computational Materials Science, 5, 203-209. (1996)
[26]K. W. Schwarz and J. Tersoff. Interaction of threading and misfit dislocations in a strained epitaxial layer. Applied Physics Letters, 69, 1220. (1996)
[27]H. M. Zbib, M. Rhee and J. P. Hirth. On plastic deformation and the dynamics of 3D dislocations. International Journal of Mechanical Science, 40, 113-127. (1998)
[28]H. M. Zbib, T. Diaz de la Rubia and V. A. Bulatov. A multiscale model of plasticity based on discrete dis1ocation dynamics. ASME, Journal of Engineering Materials and Technology, 124, 78-87. (2002)
[29]K. W. Schwarz. Local rules for approximating strong dislocation interactions in discrete dislocation dynamics Multiscale. Modelling and Simulation in Materials Science and Engineering, 11, 609-625. (2003)
[30]Vasily V. Bulatov, Luke L. Hsiung, Meijie Tang, Athanasios Arsenlis, Maria C. Bartelt, Wei Cai1, Jeff N. Florando, Masato Hiratani1, Moon Rhee1, Gregg Hommes, Tim G. Pierce and Tomas Diaz de la Rubia .Dislocation multi-junctions and strain hardening. Nature, 440, 7088, 1174-1178. (2006)
[31]K. W. Schwarz. Discrete Dislocation Dynamics Study of Strained-Layer Relaxation. PHYSICAL REVIEW, LETTERS, 91, 14, 145503. (2003)
[32]B. von Blankenhagen and P. Gumbsch. Continuum Scale Simulation of Engineering Materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 397-409. (2004)
[33]H. D. Espinosa, S. Berbenni, M. Panico, and K. W. Schwarz. An interpretation of size-scale plasticity in geometrically confined system. PANS, 102, 47, 16933-16938. (2005)
[34]F. Akasheh and H. M. Zbib. Interactions between glide dislocations and parallel interfacial dislocations in nanoscale strained layers. Journal of Applied Physics, 102, 034314. (2007)
[35]F. Akasheh and H. M. Zbib. Dislocation Dynamics analysis of dislocation intersections in nanoscale metallic multilayered composites. Journal of Applied Physics, 101, 084314. (2007)
[36]H. Tanga, K. W. Schwarzb and H.D. Espinosa. Dislocation escape-related size effects in single-crystal micropillars under uniaxial compression. Acta Materialia, 55, 1607-1616. (2007)
[37]Hussein M. Zbib, Tomas Diaz de la Rubia and Vasily Bulatov .A Multiscale Model of Plasticity Based on Discrete Dislocation Dynamics. Transactions of the ASME, 124, 78-87. (2002)
[38]Wei Cai and Vasily V. Bulatov. Mobility laws in dislocation dynamics simulations. Materials Science and Engineering A, 387, 277-281. (2004)
[39]Ferenc F. Csikor, Christian Motz, Daniel Weygand, Michael Zaiser and Stefano Zapperi. Dislocation Avalanches, Strain Bursts, and the Problem of Plastic Forming at the Micrometer Scale. Science, 318, 5848, 251-254. (2007)
[40]V. A. Lubarda and X. Markenscoff. The stress field for a screw dislocation near cavities and straight boundaries. Materials Science and Engineering A, 349, 327-334. (2003)
[41]J. Dundurs and T. Mura. Interaction between an edge dislocation and a circular inclusion. Journal of the Mechanics and Physics of Solids, 12, 177-189. (1964)
[42]Johannes Weertman and Julia R. Weertman. Elementary Dislocation Theory. Oxford University Press, New York, 9, (1992)
[43]Richard W. Hertzberg. Deformation and Fracture Mechanics of Engineering Materials, 4th ed. John Wiley & Sons, Inc., New York, 9, (1996)
[44]H. M. Zbib, M. Hiratani and M. Shehade. Continuum Scale Simulation of Engineering Materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 201-226. (2004)
[45]J. P. Hirth and J. Lothe. Theory of Dislocations. Wiley, New York, (1982)
[46]Wei Cai, Athanasios Arsenlisb, Christopher R. Weinbergera and Vasily V. Bulatovb. A non-singular continuum theory of dislocations. Journal of the Mechanics and Physics of Solids, 54, 561–587. (2006)
[47]Hussein M. Zbib, Moono Rhee and John P. Hirth .On Plastic Deformation and The Dynamics of 3D Dislocations. International Journal of Mechanical Sciences, 40, 2-3, 113-127. (1998)
[48]Vasily V. Bulatov and Wei Cai. Computer simulation of dislocations. Oxford University Press, New York, 196-240, (2006)
[49]Peter Linz and Richard Wang. Exploring numerical methods: an introduction to scientific computing using MATLAB. Jones and Bartlett Publishers, Inc. MA, 273-274, (2003)
[50]J. P. Hirth, H. M. Zbib and J. Lothe. Forces on high velocity dislocations. Modelling and Simulation in Materials Science and Engineering, 6, 165-169. (1998)
[51]N. M. Ghoniem and L. Z. Sun. Fast-sum method for the elastic field of three-dimension dislocation ensembles. Physical review B, 60, 128-140. (1999)
[52]James C. M. Li. The interaction of parallel edge dislocations with a simple tilt dislocation wall. Acta Metallurgica, 8, 296-311, (1960)
[53]Hartley and Hirth. Interaction of nonparallel, noncoplanar dislocations. Acta Metallurgica, 13, 79-88. (1965)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top