跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 20:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昱源
研究生(外文):Yu-Yuan Chen
論文名稱:應用地電阻影像法探測墩基深度之初步研究
論文名稱(外文):The Evaluation of Pier Depth Using ERT Method
指導教授:倪勝火倪勝火引用關係
指導教授(外文):Ni, Sheng-huoo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:101
中文關鍵詞:非破壞性檢測地電阻影像法音波回音法視電阻率
外文關鍵詞:sonic echo methodapparent resistivityelectrical resistivity tomographynondestructive test
相關次數:
  • 被引用被引用:7
  • 點閱點閱:424
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的為應用地電阻影像法評估墩基深度之可行性,由於常用於基墩檢測的力學非破壞性檢測方法,易受到基礎本身的結構和承載土層的干擾,而地電阻影像法主要透過電流在地層中的流動,量測電位,測得視電阻率,再反算獲得真實地層的電阻率剖面圖,依電阻率的差異來判斷墩基的深度。
使用三種電極排列方法為Wenner、Schlumberger和Dipole-Dipole排列方法進行下淡水溪鐵橋第21號墩基的探測,由Wenner排列方式的地電阻影像圖,圖中顯示墩基所在位置會有類似長方形的高電阻率區域的存在,而其於兩種電極排列方法則沒有明顯的基墩存在,並以Wenner排列方法進行五根墩基深度的量測,探測出此五根墩基第三層的平均長度為3.5公尺,再以音波回音法為輔助方法,驗證地電阻影像法探測的結果,探測出第三層的平均長度為3.79公尺,此兩種方法的結果相近,增加地電阻影像法探測基墩深度的可靠性。
The purpose of this study is to use electrical resistivity tomography (ERT) to evaluate of the pier depth. Non-destructive test method is generally used in examination of foundation depth. The method is limited to be used by foundation structure and the soil bearing layer. The ERT method uses electric current to penetrate into soil to obtain the electric potential, apparent resistivity and earth resistivity tomography. This study tries to use the ERT method to determine the depth of pier with the difference of earth resistivity.
Three electrode arrays are used in this study to evaluate the pier depth of Xia-Dan-Shui-Xi bridge. They are Wenner, Schlumberger and the dipole-dipole array. The earth resistance tomography shows high resistivity rectangular region in the position of pillar base in the result of the Wenner array. However, there are not found the obvious phenomenon of existence of foundation piers in the Schlumberger and the dipole-dipole array. Five piers are tested using the Wenner array. The results show that the average depth is 3.5 meters. The result is checked by using sonic echo method, and found the depth is about 3.79 meters. Both results are similar, which will verify the reliability in the evaluation of the pier depth with using the ERT.
目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VIII
圖目錄 IX
符號說明 XV

第一章 緒論 1
1.1研究動機 1
1.2研究目的與方法 2
1.3研究內容 2
第二章 相關文獻回顧 3
2.1 起源 3
2.2 電流在土層的流動 3
2.2 模型和反算法的發展 4
2.3 現地的應用 5
第三章 相關理論 7
3.1歐姆定律(Ohm’s Law) 7
3.2 地電阻的量測 8
3.2.1 單點電極 8
3.2.2 雙點電極 9
3.3 地質材料之電阻率特性 10
3.4 均質土層中電流流線與電流密度 11
3.4.1 電流流線 11
3.4.2 電流密度 13
3.5 非均質土層 14
3.5.1 電流折射現象 14
3.5.2 非均質電流流線 15
3.6 地電阻的量測法 17
3.6.1 施測的流程 17
3.6.2 各種電極排列方法的測深參數 19
3.6.3各種電極排列 20
3.6.4 現地電極施測原理 22
3.7 反算原理 24
3.7.1 正算模型-2D Forward modeling 26
3.7.2 正算模擬處理二維的控制方程式 26
3.7.3 反算方法-2D inversed model 27
3.7.4 各種反算法 28
3.8波傳原理 30
第四章 墩基現地試驗 37
4.1 前言 37
4.2現地情況與檢測設備 37
4.2.1試驗地點 37
4.2.2 地電阻儀器與後處理反算軟體 40
4.2.3 音波回音法設備介紹 43
4.3試驗方法與步驟 46
4.3.1地電阻影像法施作 46
4.3.2音波回音法施作 47
4.4試驗分析結果討論 48
4.4.1地電阻影像法試驗結果 48
4.4.1.1不同電極排列方式施測結果 50
4.4.1.2 以Wenner method進行量測 53
4.4.2輔助方法音波回音法試驗結果 66
4.5 現地試驗結整理 71
第五章 結論與建議 73
5.1結論 73
5.2建議 74
參考文獻 75
附錄A 地電阻影像法結果 79
A.1 使用阻尼最小均方反算法結果 80
A.2使用平滑模型反算法結果 83
附錄B 音波回音法探測結果 86
附錄C 地電阻儀器量測操作 89
C.1儀器主要選單 89
C.2介紹儀器各個選項 89
C.3 儀器操作流程(自動量測) 91
C.4 執行檔的建立 94
C.5檔案的傳輸 94
C.6 範例 95
參考文獻
1.王子賓,「結合地電阻影像剖面法及透地雷達法調查DNAPLs之案例研究」,碩士論文,國立中央大學應用地質研究所 (2005)。
2.林志平,洪瑛鈞,尤仁弘,鄒和瀚,「電阻剖面影像法於壩體滲漏調查之應用」,先進工程學刊,第3卷,第1期,第49-55頁 (2008)。
3.洪彥豪,「應用地電阻影像剖面法於湖口斷層之研究」,碩士論文,國立中央大學應用地質研究所 (2004)。
4.陳宜傑,「應用地電阻法於土石流地滑之研究」,碩士論文,國立中央大學應用地質研究所 (2004)。
5.梁勛泓,「潮州斷層之電阻率構造研究」,碩士論文,國立中央大學應用地質研究所 (2007)。
6.潘宏璋,「應用地電阻影像剖面法於新竹斷層之研究」,碩士論文,國立中央大學應用地質研究所 (2003)。
7.蔡嘉信,「應用地電阻法研究南崁斷層」,碩士論文,國立中央大學應用地質研究所 (2008)。
8.Arulanandan, K. and Smith, S. S., ”Electrical Dispersion in Relation to Soil Structure,” Journal of the Soil Mechanics and Foundations Division, Vol. 99, No. 12, pp. 1113-1133 (1973).
9.Constable, S.C., Parker, R.L., and Constable, C.G., “Occam’s Inversion: A Practical Algorithm for Generating Smooth Models from Electromagnetic Sounding Data,” Geophysics, Vol. 52, No. 3, Mar., pp. 289-300 (1987).
10. Coggon, J. H., “Eletromagnetic and Electrical Modeling by the Finite Element,” Geophysics, Vol. 36, pp. 132-155 (1971).
11. deGroot-Headlin, C., and Constable, S., “Occam's Inversion to Generate Smooth, Two-Dimensional Models from Magnetotelluric Data,” Geophysics, Vol. 55, No. 12, pp. 1613-1624 (1990).
12. Edwards, L.S., “A Modified Pseudosection for Resistivity and IP,” Geophysics, Vol. 42, No. 5, Aug., pp. 1020-1036 (1977).
13. Flint, R.C., Jackson, P.D., and McCann, D.M., “Geophysical Imaging Inside Masonry Structures,” NDT&E International, Vol. 32, pp. 469-479 (1999).
14. Furman, A., Ferre, T.A., and Heath, G.L., “Spatial Focusing of Electrical Resistivity Surveys Considering Geologic and Hydrologic Layering,” Geophysics, Vol. 72, No. 2, pp. 65-73 (2007).
15. Griffiths, D. H., Turnbull, J., and Olayinka, A. I., “Two-Dimensional Resistivity Mapping with A Computer-Controlled Array,” First Break, pp. 121-129 (1990).
16. Hubbert, M. K.,” The Theory of Groundwater Motion,” Journal of Geology, Vol. 48, pp.785-944 (1940).
17. Jepsen, A. F., “Numerical Modeling in Resistivity Prospecting,” PH. D. thesis. Univ. of California. Berkeley (1969).
18. Kearey, P. and Brooks, M., An Introduction to Geophysical Exploration-Chapter 8 Electrical Surveying, Second edition, Blackwell
scientific publication ( 1984).
19. Lines, L.R., and Treitel, S., “Tutorial A Review of Least-squares Inversion and Its Application to Geophysical Problems,” Geophysical Prospecting, Vol. 32, pp. 159-186 (1984).
20. Lowry, T., Allen, M.B., and Shive, P.N., “Singularity Removal: A Refinement of Resistivity Modeling Techniques,” Geophysics, Vol. 54, No. 6, pp. 766-774 (1989).
21. Loke, M.H. and Barker, R.D., “Least-squares Deconvolution of Apparent Resistivity Pseudosections,” Geophysics, Vol. 60, No. 6, pp. 1682-1690 (1995).
22. Loke, M.H. and Barker, R.D., “Rapid Least-Squares Inversion of Apparent Resistivity Pseudosections by A Quasi-Newton Method,” Geophsical Prospecting, Vol. 44, pp. 131-152 (1996).
23. Loke, M.H., “Time-Lapse Resistivity Imaging Inversion,” 5th Meeting of the Environmental and Engineering Society European Section, pp. 1-2 (1999).
24. Loke, M.H., “Electrical Imaging Surveys for Environmental and Engineering Studies-A Practical Guide to 2-D and 3-D Surveys”, pp. 31-34 (2000).
25. Loke, M.H. and Dahlin, T, “A Comparison of the Gauss-Newton and Quasi-Newton Methods in Resistivity Imaging Inversion,” Geophysics, pp. 149-162 (2002)
26. Loke, M.H., “Tutorial: 2-D and 3-D Electrical Imaging Surveys,” Geotomo Software, pp. 11-17 (2003).
27. Lataste, J.F., Sirieix, C., Breysse, D., and Frappa, M., “Electrical Resistivity Measurement Applied to Cracking Assessment on Reinforced Concrete Structures in Civil Engineering,” NDT&E International, Vol. 36, pp. 383-394 (2003).
28. Van Nostrand, R. G. and Cook, K. L., “Interpretation of resistivity data,” Geological Survey Professional, Paper 499, pp. 310 (1966).
29. Nasser, N., Daniele, B., Cocco, G., and Santarato, G., “Non-Invasive Characterisation of Ancient Foundations in Venice Using the Electrical Resistivity Imaging Technique,” NDT&E International, Vol. 39, pp. 67-75 (2006).
30. Sauer, M. C., Southwick, P. F., Spiegler, K. S., and Wyllie, M. R. J., “Electrical Conductance of Porous Plugs Ion Exchange Resin-Solution System,” Industrial and engineering chemistry, Vol. 47, No. 10, pp. 2187-2193 (1955).
31. Sasaki, Y., “Resolution of Resistivity Tomography Inferred from Numerical Simulation,” Geophysical Prospecting, Vol. 40, pp. 453-463 (1992).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top