[1] L. B. Lucy, A numerical approach to the testing of the fission hypothesis, The Astron, J.8, 12, 1013-1024 (1977).
[2] B. Nayroles, G. Touzot and P. Villon, Generalizing the finite element method diffuse approximation and diffuse elements, Computational Mechanics, 10, 307-318 (1992).
[3] T. Belytschko, L. Gu and Y. Y. Lu, Fracture and crack growth by element-free Galerkin methods, Modeling and Simulation in Materials Science and Engineering,2 , 519-534 (1994).
[4] W. K. Liu, S. Jun and Y. F. Zhang, Reproducing kernel particle methods, Int. J. Numerical methods Engineering, 20, 1081-1106 (1995).
[5] J. S. Chen, C.T. Wu and W.K. Liu, Reproducing kernel particle methods for large deformation analysis of non-linear structures, Computer methods in Applied Mechanics And Engineering, 139, 195-227. (1996).
[6] E. Oñate, S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor and C. Sacco, A stabilized finite point method for analysis of fluid mechanics problems, Computer Methods in Applied Mechanics & Engineering, 139, 315-346 (1996).
[7] S. Li, W. Hao and W. K. Liu, Numerical simulation of large deformation of thin shell structures using meshfree methods, Computational Mechanics, 25, 102-116 (2000).
[8] G. J. Wagner and W. K. Liu, Turbulence simulation and multiple scale subgrid models, Computational Mechanics, 25, 117-136 (2000).
[9] J. S. Chen, H. P. Wang, S. Yoon and Y. You, Some recent improvements in meshfree methods for incompressible finite elasticity boundary value problems with contact, Computational Mechanics, 25, 137-156 (2000)
[10] K-J. Bathe and E. L. Wilson, Numerical methods in finite element analysis, Prentice-Hell INC, 1976
[11] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P. Krysl, An Overview and Recent Developments, Computer methods in Applied Mechanics & Engineering, 139, 3-47(1996).
[12] P. Krysl and T.Belytschko, A Library to Compute The Element Free Galerkin Shape Functions, Computer methods in Applied Mechanics & Engineering, 190, 2181-2205(2001).
[13] S. Y. Long, K.Y. Liu and D. A. Hu, A new meshless method based on MLPG for elastic dynamic problem. Engineering analysis with boundary elements, 30, 43-48(2006)
[14] Y. T. Gu and G. R. Liu, A meshless local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids, Computational Mechanics, 27, 188-198(2001)
[15] S. N. Atluri and T. L. Zhu, The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Computational Mechanics, 25,165-179(2000)
[16] T. Belytschko, Y. Y. Lu and L. Gu, Element-Free Galerkin methods. International journal for numerical methods in engineering, 37,229-256 (1994)
[17]許昱元, 無元素在彈性振動之分析, 碩士論文, 國立成功大學土木研究所, 2003.[18]李政達, 元素釋放法於彈性動力之研究, 碩士論文, 私立中原大學土木工程學系,2002.[19]盛若磐, 元素釋放法積分法則與權函數之改良, 近代工程計算論壇論文集, 國立中央大學土木系, 2000.
[20] 斯帝臺爾(Robert F. Steidel)著; 何建業譯, 機械振動學, 科技, 臺北巿, 1983.
[21]吳振瑞, 元素釋放法之邊界處理, 碩士論文, 國立中央大學土木工程研究所, 1999.