(44.192.10.166) 您好!臺灣時間:2021/03/06 03:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃室維
研究生(外文):Shi-wei Huang
論文名稱:以單一因子分析FCCSP構裝體之疲勞壽命
論文名稱(外文):Using The Method Of Single-Factor To Analysising The Fatigue Life Of FCCSP
指導教授:陳榮盛陳榮盛引用關係
指導教授(外文):Run-sen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:95
中文關鍵詞:錫球
外文關鍵詞:solder ball
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,隨著半導體技術日新月異,輕薄、短小、散熱效果以及電性是半導體元件發展的重點,然而,覆晶接合(FC)又稱C4接合,屬於面積陣列(Area Array)的方式接合,依據日本人在西元1995年對晶片尺寸封裝(CSP)所做的定義為(1)構裝尺寸小於晶片尺寸五分之ㄧ以下之構裝体總稱;(2)封裝形式為現有封裝品(如BGA,LGA,SON型等)之衍生;(3)在構造上,含有載體(Carrier)和介入物(Inter poser)。
本研究採用ANSYS9.0套裝分析軟體進行分析,其中錫球之外型式以Surface Evolver軟體求得,並將覆晶晶粒尺寸封裝(FCCSP)構裝體施予-20℃~110℃溫度循環負載,印刷電路板因其上包含銅箔,故假設其為正交性材料,而錫球選用葛拉佛拉-阿瑞尼阿斯潛變模式(Garofalo-Arrhenius Creep),並使用Coffin-Manson疲勞壽命預測公式計算覆晶晶粒尺寸封裝(FCCSP)錫球的疲勞壽命。
本文針對基板熱膨脹係數,基板楊氏係數,基板厚度,底膠熱膨脹係數,底膠楊氏係數,印刷電路板熱膨脹係數,印刷電路板楊氏係數,錫球上墊半徑,錫球下墊半徑,印刷電路板厚度,溫度循環平均溫度,溫度循環振幅等因子進行單一因子分析,以評估各因子對封裝結構疲勞壽命的效應。
由結果顯示,藉由增加基板熱膨脹係數,減少基板楊氏係數,增加基板厚度,減少印刷電路板熱膨脹係數,減少印刷電路板楊氏係數,減少錫球上墊半徑,增加錫球下墊半徑,減小印刷電路板厚度,減小溫度循環平均溫度,減小溫度循環範圍的振幅皆能有效提高覆晶晶粒尺寸封裝(FCCSP)構裝體的疲勞壽命,其餘因子對覆晶晶粒尺寸封裝(FCCSP)構裝體疲勞壽命的影響性不大。
In recent years, with the progress of the technology of semiconductor, the requirement for thinner aspect, small size, better dissipation effect and good performance in electricity have become the main consideration for the development of the device of the semiconductor. However, the connection of flip chip so-called the C4 connection is recognized as the method of area array connection. Based on the Japanese definition in 1995, CSP is defined as(1)The package size is one-fifth less than the chip size(2)The type of package is derived from the existing package (such as BGA,LGA,SON etc.)(3)The structure of the package includes the carrier and the inter poser.
This study applies the ANSYS9.0 software for analysis, in which the outline of the solder ball is obtained by the software of Surface Evolver. Furthermore, the structure of FCCSP is subjected to the thermal cyclic loading between -20℃ and 110℃ as well as the Garofalo-Arrhenius Creep Model is chosen for the solder ball, then the Coffin-Manson equation is applied to predict the fatigue life of the solder ball of FCCSP.
In this study, the CTE of substract, the young’s modulus of substract, the thickness of substract, the CTE of underfill, the Young’s modulus of underfill, the CTE of PCB, the Young’s modulus of PCB, the thickness of PCB, the radius of the upper soder ball pad, the radius of lower soderball pad, the average temperature of cyclic temperature, and the amplitude of cyclic temperature are applied respectively to conduct the single-factor analysis to estimate the effect of individual factor on the fatigue life of solder ball.
The single-factor analysis shows that the solder fatigue life increases along with the reductions of the Young’s modulus of the substract, the CTE and Young’s modulus of the PCB, the radius of the upper soderball pad, the thickness of the PCB, the amplitude of cyclic temperature, the average temperature of cyclic temperature, as well as along with the increasings of the CTE and thickness of the substract, the radius of the lower soderball pad. Thus other factors have no significant effects on the fatigue life of the solder ball.
中文摘要 I
英文摘要 II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
符號說明 XIV
第一章 緒論 1
1-1 前言 1
1-2研究動機與目的 3
1-3文獻回顧 4
1-4研究方法 6
1-5章節提要 7
第二章 理論基礎 8
2-1 研究主題 8
2-2疲勞與葛拉佛拉-阿瑞尼阿斯穩態潛變數學模式 9
2-3彈性及塑性理論基礎 11
2-4多線性等向性硬化法則 12
2-5牛頓-瑞佛森法 12
2-6錫球的破壞準則 15
2-7異向性與銅箔印刷電路板 15
2-8低循環疲勞壽命 18
2-9錫球外型預測 21

第三章 分析模型之建立和評估 31
3-1建立原始分析模型 31
3-1-1 FCCSP構裝體模型 32
3-1-2模型之基本假設條件 32
3-1-3建立錫球外型曲線建立 33
3-1-4 FCCSP構裝體之邊界條件和負載 34
3-2 ANSYS分析軟體 35
3-3 FCCSP構裝體之邊界條件和負載 38
3-4最外側錫球所造成之遲滯現象 39
3-5 FCCSP構裝體原始模型之結果探討 40
第四章 單一因子對錫球疲勞壽命的影響 59
4-1各因子之水準 59
4-2單一因子之改變 60
4-3分析結果與討論 63
第五章 結論與未來研究方向 89
5-1結論 89
5-2未來研究方向 91
參考文獻 92
1. L. S. Goldmann, “Geometric Optimization of Controlled Collapse Interconnection”, IBM Journal of Research and Development, vol. 120, pp. 175-178, 1969.
2. K. N. Chiang, W. L. Chen, “Electric Packaging Reflow Shape Prediction for the Solder Mask Defined Ball Grid Array”, ASME J. Elec. Pack., Vol. 120, pp. 175-178, 1998.
3. 梁金條,“利用有限元素與田口方法探討FCCSP構裝無鉛錫球之最佳化疲勞壽命”, 成功大學工程科學系碩士畢業論文, 2006.
4.曾穗卿,“利用有限元素與田口方法探討FCCSP構裝無鉛錫球之最佳化疲勞壽命”, 成功大學工程科學系博士畢業論文, 2006.
5.林恆正, “以二階子模型結合實驗設計法進行多晶片模組可靠度之最佳化分析”, 成功大學工程科學系博士畢業論文, 2007.

6. Kamo Tomonori, Tajima Hideo, Nakamasamichi, Asai Shigemi, “Thermal analysis of printed Circuit Board in consideration of anisotropic thermal conductivity”, Nippon Kikai Gakkai Kansai Shibu Teiji Sokai Koenkai Koen Ronbunshu.
7. S. Wiese, “Constitutive Behavior of Lead-free Solders vs. Lead-containing Solders -Experiments on Bulk Specimens and Flip-Chip Joints”, Electronic Components and Technology Conference, 2001.
8. John H. Lau, “Modeling and Analysis of 96.5Sn-3.5Ag Lead-Free Solder Joints of Wafer Level Chip Scale package on Buildup Microvia Printed Circuit Board”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, No.1, pp. 51-58, January 2002.
9.陳彥文, “以田口氏品質工程分析堆疊晶QFN瞉裝體疲勞壽命之最佳化探討. ”, 成功大學工程科學系碩士畢業論文, 2008.
10.廖文基, “以田口法分析TFBGA掉落衝擊之最佳化設計. ”, 成功大學工程科學系碩士畢業論文, 2008.

11. R.C.Hibbeler, “Mechanics of Materials 4th Ediion
12. ANSYS Menu, “Structural Analysis User's Guide”.
13. ANSYS Menu, “Modeling and Meshing Guide/ Nonlinear Structural Analysis,” ANSYS 6.0, 8.3.1.1.1. Plastic Material Options.
14. ANSYS Menu, “Newton-Raphson Procedure”, ANSYS Theory Reference, Reversion5.5, pp. 15-28-40, 1998.
15. 李輝煌, “ANSYS工程分析基礎與觀念”,高立圖書有限公司,2000.
16. 賴盈元,成功大學工程科學系碩士畢業論文, 2007.
17. J. H. Lau and Shi-Wei R. Lee, “Chip Scale Package, CSP: Design, Materials, Processes, Reliability and Applications”, McGraw-Hill Companies, Inc. New York, 1999.
18 .L. F. Coffin, Jr., “A Study of Effects of Cyclic Thermal Stress on a Ductile Metal”, Trans. ASME, Vol. 76, pp. 931-950, 1954.
19 .W. Engelmaier, ”Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling”, IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. CHMT-6, No.3, pp. 52-57, 1983.
20.彭國倫,’’Fortran95程式設計”,�眳p出版社,1995.
21. D. R. J. Owen and E. Hinton, “Finite Elements in Plasticity: Theory and Practice”, Pineridge Press Limited, Swansea U.K., 1980.
22. Morihiko Ikemizu, Yuji Fukuzawa, Jirou Nakano, Testuya Yokoi, Kenji Miyajima, Hiroshi Funakura, Eiichi Hosomi, “CSP Solder Ball Reliability”, IEEE/CPMT International Electronics Manufacturing Technology Symposium, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔