( 您好!臺灣時間:2021/07/24 08:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Jen-You Wu
論文名稱(外文):Using Noise Addition on Protecting Partially Open, Sensitive and Static Databases
指導教授(外文):Ting-Wei Hou
外文關鍵詞:Noise AdditionDatabase SafetyData PerturbationPrivacy PreservationSensitive Data
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
With the growth of electronic commerce, paperless operations are gradually replacing traditional operations. The computing speed progresses substantially along with the advancement of hardware. Fast and instant access is not a difficult issue under this background. However, databases with sensitive data might be broken through by the intruders by combining anonymous sensitive databases with disclosure databases. If this should happen to medical and military databases and it would cause damages that can not be recovered. Besides, the convenience that Internet brings is also accompanied with the phenomenon of increasing network crimes. It is a dilemma to either give the exact data or “perturbed’ data for the users. For example, if we export the “perturbed” data, it might be happen that a doctor cannot make emergency rescue rapidly due to the low accuracy of patients’ case history.
This thesis is to remove the uniqueness of sensitive data in databases under the premise of keeping the accuracy of statistical data. We propose two new algorithms: Reducing Noise Addition and Random Noise Interval Addition. Reducing Noise Addition combines tradition noise addition and group noise reducing to generalize the data in groups and removes the uniqueness of each tuple. Random Interval Noise Addition adds noise to the random values in groups and calculates an interval to cover the original data values. At last, but not the least, we implemented our algorithms in a web-based system to analyze its feasibility.
中文摘要 iii
Abstract iv
誌 謝 v
章節目錄 vi
圖目錄 viii
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究背景與目的 1
1.3 研究對象與限制 3
1.4 論文架構 3
第二章 文獻探討 5
2.1 敏感性資料外洩分析 5
2.2 資料擾亂相關技術的應用 6
2.2.2 資料產生(Data Generation)資料擾亂方法 7
2.2.2 隨機化(Randomization)資料擾亂方法 7
2.2.3 雜訊添加(Noise Addition)資料擾亂方法 9
2.3 綜合特性比較 10
第三章 系統設計 11
3.1 系統運作方式與架構 11
3.1.1 使用者權限控管 11
3.1.1 使用者需求 11
3.2 系統運作方式與架構 13
3.2.1 運作流程 14
3.2.2 系統管理者操作介面 16
3.2.3 系統使用者操作介面 17
3.2.4 雜訊添加規則 17
3.3 敏感性安全認證機制 27
3.3.1 敏感性測試 27
第四章 系統實作 28
4.1 系統實作環境說明 28
4.1.1 資料庫及管理工具 28
4.1.2 程式語言 30
4.2 程式清單與功能架構說明 31
4.3 實作展示 33
第五章 結論 39
5.1 結論 39
5.2 未來研究方向 40
自述 44
[1]Charu C. Aggarwal and Philip S. Yu, “On Static and Dynamic Methods for Condensation-Based Privacy-Preserving Data Mining”, ACM Transactions on Database Systems, vol.33 no.1, pp.1-39, March 2008.
[2]C. C. Aggarwal, "On Randomization, Public Information and the Curse of Dimensionality", Proc. of International Conference on Data Engineering, pp.136-145, 2007.
[3]R. Agrawal and R. Srikant. “Privacy Preserving Data Mining”, Proc. of the ACM SIGMOD, pp.439-450, 2000.
[4]D. Agrawal and C. C. Aggarwal, "On the Design and Quantification of Privacy Preserving Data Mining Algorithms", Proc. of ACM Special Interest Group on Management of Data, pp.247-255, 2001.
[5]Ruth Brand, “Microdata Protection through Noise Addition”, Inference Control in Statistical Databases, Lecture Notes in Computer Science v.2316, pp.97–116, 2002.
[6]L. Brankovic and H. Giggins, “Security, Privacy and Trust in Modern Data Management”, Chapter 12 in Statistical Database Security, pp.167-182, Springer Science+ Business Media, 2007.
[7]Josep Domingo-Ferrer, Francesc Seb’e, and Jordi Castell`a-Roca, “On the Security of Noise Addition for Privacy in Statistical Databases”, Proc. of Privacy of Statistical Databases 2004, Lecture Notes in Computer Science v.3050, pp.149–161, 2004.
[8]Wenliang Du and Zhijun Zhan, “Using Randomized Response Techniques for Privacy-preserving Data Mining”, Proc. of ACM International Conference on Knowledge Discovery and Data Mining, pp.305-358, Washington, D.C., August 24-27, 2003.
[9]C. Dwork. Krishnaram Kenthapadim F, McSherrt, I. Mironov and M. Naor, “Our Data, Ourselves: Privacy via Distributed Noise Generation.”, EUROCRYPT, pp.486-503, Russia, 2006.
[10]Alexandre Evfimievski, “Randomization in Privacy Preserving Data Mining”, Special Interest Group on Knowledge Discovery and Data Mining Explorations, 4(2), Issue 2, pp.43-48, Dec. 2002.
[11]A. Evfimevski, J. Gehrke, and R. Srikant, “Limiting Privacy Breaches in Privacy Preserving Data Mining,” Proc. of the ACM Special Interest Group on Management of Data/Principles of Database Systems Conference, pp.211-222, San Diego, CA, June 2003.
[12]S. Evfimievski, “Randomization Techniques for Privacy Preserving Association Rule Mining”, Special Interest Group on Knowledge Discovery and Data Mining Explorations, vol. 4, no. 2, pp.43-48, Dec 2002.
[13]W. A. Fuller," Masking Procedures for Microdata Disclosure Limitation" J. Official Stat, vol. 9, no. 2, pp.383-406, 1993.
[14]R. Garfinkel, R. Gopal, and D. Rice, "New Approaches to Disclosure Limitation While Answering Queries to a Database: Protecting Numerical Confidential Data Against Insider Threat Based on Data or Algorithms," Prof. of Hawaii International Conference on System Sciences, pp.1-18, 2006.
[15]Helen Giggins and Ljiljana Brankovic, “Statistical Disclosure Control: To Trust or Not to Trust”, Proc. of International Symposium on Computer Science and its Applications, pp.108-113, 2008.
[16]X. Huang and A. C. Madoc, "Image and Its Noise Removal in Nakagami Fading Channels," Proc. of IEEE 8th International Conference on Advanced Communication Technology, pp.570-573, 2005.
[17]Hillol Kargupta and Souptik Datta, “On the Privacy Preserving Properties of Random Data Perturbation Techniques”, Proc. of IEEE International Conference on Data Mining, pp.1-8 2003.
[18]J.J Kim and W.E. Winkler, “Multiplicative Noise for Masking Continuous Data”, unpublished manuscript, pp.1-17, 2001. (Available at http://www.census.gov/srd/papers/pdf/rrs2003-01.pdf.)
[19]Yufei Tao, “Privacy Preserving Publication: Anonymization Frameworks and Principles”, Handbook of Database Security, Springer Science+ Business Media, New York, pp.489-508, 2008.
[20]J. Traub, Y. Yemini and H. Wozniakowski, "Statistical Security of a Statical Database" ACM Trans. Database Syst., vol. 9, no. 4, pp.672-679, 1984.
[21]Jilles Vreeken, Matthijs van Leeuwen and Arno Siebes, “Preserving Privacy through Data Generation”, Proc. of Seventh IEEE International Conference on Data Mining, pp.685-690, 2007.
[22]S. De Capitani di Vimercati, “Recent Advances in Access Control”, Handbook of Database Security, Springer Science+ Business Media, New York, pp.1-26, 2008.
[23]Da-Wei Wang, “Preserving Confidentiality When Sharing Medical Database with the Cellsecu System”, International Journal of Medical Informatics 71, pp.17-23, 2003.
[25]施威銘研究室,新觀念ASP.NET 3.5 網頁程式設計,旗標出版股份有限公司,台北市,2008年。
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top