跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/30 05:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴憲欽
研究生(外文):Shian-Chin Lai
論文名稱:應用微流體晶片與震盪晶片生成光交聯微小球與微膠囊之研究
論文名稱(外文):Using Microfluidic Chip and Transducer for Photocrosslinking Microparticle and Microcapsule Generation
指導教授:林裕城林裕城引用關係
指導教授(外文):Yu-Cheng Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:94
中文關鍵詞:微膠囊震盪晶片光交聯微小球雙Y字型設計
外文關鍵詞:UV-crosslinking microparticlestransducerdouble Y cross-junctionmicrocapsule
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究利用雷射雕刻技術,製備聚甲基丙烯酸甲酯(Poly-methyl-methacrylate, PMMA) 微流體晶片,並結合震盪晶片,運用於光交聯微小球與微膠囊之製備。研究策略是將光交聯溶液(UV-Polymer solution)與礦物油(Mineral oil)注入微流道中,透過震盪晶片所產生之超音波製備出光交聯微乳化球。經實驗結果顯示輸入電壓之大小與超音波震盪距離皆會影響所生成之光交聯微乳化球的粒徑大小,且經由365 nm之紫外光照射,光交聯微乳化球可固化形成光交聯微小球,其粒徑大小分佈在1.2 ~ 9.5 μm之間。應用以上的結果,本研究進一步透過微膠囊(Microcapsules)製備原理,在後端流道加入雙Y字型設計,將散佈於礦物油內之光交聯微小球包覆於褐藻酸鈉(Alginate)內,並藉由控制褐藻酸鈉(包覆相)與葵花油(剪切相)流速,成功製備出粒徑大小分佈在89.0 ~ 248.9 μm之間的褐藻酸鈉微膠囊。
This study managed to generate UV-photopolymerized microparticles using an ultrasonic vibration microfluidic chip coupled with external UV-crosslinking reaction. We have demonstrated that the sizes of UV-crosslinking microparticles were able to be controlled from 1.2 μm to 9.5 μm in diameter (with a variation of less than 10%) by altering the ultrasonic vibration distance and the voltage of power supply provided to transducer. Then by using hydrodynamic focusing effect, we design a double Y cross-junction microfluidic chip to generate microcapsules. By altering the wrap phase and sheath phase flow rate, the microcapsule size is controlled, the distribution of which is from 89.0 μm to 248.9 μm in diameter (with a variation of less than 10%). The proposed ultrasonic vibration microfluidic chip was easy to fabricate and capable of high throughput and low cost.
中文摘要 ................................................ I
Abstract ............................................... II
誌謝 ...................................................III
目錄 ....................................................IV
圖目錄 ................................................VIII
表目錄 ................................................XIII
第一章 緒論...............................................1
1-1 前言..................................................1
1-2 藥物控制釋放系統之重要性...........................3
1-3 超音波霧化器與震盪晶片之介紹...........................6
1-4 藥物載體材料光交聯水膠之介紹..........................7
1-4-1 光交聯反應原理......................................8
1-4-2 製備光交聯水膠的方法...............................11
1-4-3 光交聯水膠的應用...................................12
1-5 包覆材料-褐藻酸鈉之介紹.............................13
1-6 文獻回顧.............................................15
1-7 研究動機與目的.......................................20
1-8 實驗架構.............................................21
第二章 微流體晶片設計與製作..............................22
2-1 微流體晶片之設計.....................................22
2-1-1 光交聯微小球製備型微流體晶片之結構設計.............22
2-1-2 微膠囊製備型微流體晶片之結構設計...................28
2-2 微流體晶片之製作.....................................34
2-3 晶片之接合與組裝技術.................................42
2-4 震盪晶片包埋技術.....................................44
2-5 微流體晶片製作結果...................................46
2-5-1 光交聯微小球製備型微流體晶片製作結果...............46
2-5-2 微膠囊製備型微流體晶片製作結果.....................47
第三章 實驗與研究方法....................................48
3-1 實驗儀器與設備.......................................48
3-1-1 真空抽氣系統.......................................48
3-1-2 微量注射幫浦.......................................49
3-1-3 電磁加熱攪拌器.....................................50
3-1-4 超音波生成系統.....................................51
3-1-5 紫外燈照射儀器.....................................52
3-1-6 即時影像觀測系統...................................53
3-1-7 微膠囊生成平台.....................................54
3-2 實驗材料與調配方法...................................55
3-2-1 光交聯微小球實驗...................................55
3-2-2 微膠囊實驗.........................................55
3-3 實驗方法.............................................56
3-3-1 光交聯微小球生成實驗...............................57
3-3-2 微膠囊生成實驗.....................................58
第四章 結果與討論........................................60
4-1 光交聯微小球生成探討.................................61
4-1-1 超音波震盪距離與光交聯微小球生成之關係.............61
4-1-2 電壓與光交聯微小球生成之關係.......................65
4-2 微膠囊生成探討.......................................71
4-2-1 微膠囊粒徑分佈與實驗變因之關係.....................71
4-2-2 微膠囊包覆能力之證明...............................78
第五章 結論與建議........................................80
5-1 結論.................................................80
5-2 建議.................................................82
參考文獻 ................................................83
自述 ....................................................94
[1] L. G. Griffith, “Polymeric biomaterials,” Acta
Materialia, 48, pp. 263-277, 2000.
[2] R. Langer, “Drug delivery and targeting,” Nature,
392, pp. 5-10, 1998.
[3] X. Z. Shu, K. J. Zhu amd W. Song, “Novel pH-
sensitive citrate cross-linked chitosan film for
drug controlled release,” International Journal of
Pharmaceutics, 212, pp. 19-28, 2001.
[4] A. Lamprecht, H. R. Torres, U. Schafer and C. M.
Lehr, “Biodegradable microparticles as a two-drug
controlled release formulation: a potential
treatment of inflammatory bowel disease,” Journal
of Controlled Release, 69, pp. 445-454, 2000.
[5] R. J. Tamargo, J. S. Myseros, J. I. Epstein, M. B.
Yang, M. Chasin and M. Brem, “Interstitial
chemotherapy of the 9L gliosarcoma: controlled
release polymers for drug delivery in the brain,”
Cancer Research, 53, pp. 329-333, 1993.
[6] L. Mua and S. S. Feng, “A novel controlled release
formulation for the anticancer drug paclitaxel
(Taxol®): PLGA nanoparticles containing vitamin
ETPGS ,” Journal of Controlled Release, 86, pp. 33-
48, 2003.
[7] I. C. Kwon, Y. H. Bae and S. W. Kim, “Electrically
credible polymer gel for controlled release of
drugs,” Nature, 354, pp. 291-293, 1991.
[8] http://www.whbl.com.tw/index.php?mainpage=1
[9] http://img.diytrade.com/cdimg/336618/1566663/0/112848
4409.jpg
[10] http://originimages.ttnet.net/pi/cto/40/08/44/73/400
84473-1.jpg
[11] J. L. Hill-West, S. M. Chowdhury, R. C. Dunn and J.
A. Hubbell, “Efficacy of a resorbable hydrogel
barrier, oxidized regenerated cellulose, and
hyaluronic acid in the prevention of ovarian
adhesions in a rabbit model,” Fertility and
Sterility , 62, pp. 630-634, 1994.
[12] J. Elisseeff, W. McIntosh, K. Anseth, S. Riley, P.
Ragan and R. Langer, “Photoencapsulation of
chondrocytes in poly(ethylene oxide)-based semi-
interpenetrating networks,” Journal of Biomedical
Materials Research, 51, pp. 164-171, 2000.
[13] B. A. M. Venhoven, A. J. Gee and C. L. Davidson,
“Light initiation of dental resins: dynamics of the
polymerization,” Biomaterials, 17, pp. 2313-2318,
1996.
[14] K. T. Nguyen and J. L. West, “Photopolymerization
hydrogels for tissue engineering applications,”
Biomaterials, 23, pp. 4307-4314, 2002.
[15] A. B. Scranton, C. N. Bowman and R. W. Peiffer,
“Photopolymerization fundamentals and
applications,” New Orleans: ACS Publishers, 1996.
[16] C. Decker, “UV-curing chemistry: past, present, and
future,” Journal of Coatings Technology, 59, pp. 97-
106, 1987.
[17] J. P. Fisher, D. Dean, P. S. Engel and A. G. Mikos,
“Photoinitiated polymerization of biomaterials,”
Annual Review of Materials Research, 31, pp. 171-
181, 2000.
[18] S. J. Byrant, C. R. Nuttelman and K. S. Anseth,
“Cytocompatibility of UV and visible light
photoinitiating systems on cultured NIH/3T3
fibroblasts in vitro,” Journal of Biomaterials
Science, Polymer Edition, 11, pp. 439-457, 2000.
[19] J. L. West and J. A. Hubbell, “Separation of the
arterial wall from blood contact using hydrogel
barriers reduces intimal thickening after balloon
injuries in the rat: the roles of medial and luminal
factors in arterial healing,” Proceedings of the
National Academy of Sciences of the United States of
America, 93, pp. 13188-13193, 1996.
[20] A. S. Sawhney and C. P. Pathak, “Optimization of
photopolymerized bioerodible hydrogel properties for
adhesion prevention,” Journal of Biomedical
Materials Research, 28, pp. 831-838, 1994.
[21] J. Lee, C. W. Macosko and D. W. Urry, “Swelling
behavior of crosslinked elastomeric polypentapeptide-
based hydrogels,” Macromolecule, 34, pp. 4114-4123,
2001.
[22] B. K. Mann, A. S. Gobin, A. T. Tsai, R. H. Schmedlen
and J. L. West, “Smooth muscle cell growth in
photopolymerized hydrogels with cell adhesive and
proteolytically degradable domains: synthetic ECM
analogs for tissue engineering,” Biomaterials, 22,
pp. 3045-3051, 2001.
[23] J. Siepmann and A. Göpferich, “Mathematical
modeling of bioerodible, polymeric drug delivery
systems,” Advanced Drug Delivery Reviews, 48, pp.
229-247, 2001.
[24] R. N. Reusch and H. L. Sadoff, “Putative structure
and functions of a Poly-ß-hydroxybutyrate/calcium
polyphosphate channel in bacterial plasma
membranes,” Proceedings of the National Academy of
Sciences, 85, pp. 4176-4180, 1988.
[25] T. Yotsuyanagi, T. Ohkubo, T. Ohhashi and K. Ikeda,
“Calcium-induced gelation of alginic acid and pH-
sensitive reswelling of dried gels,” Chemical
Pharmaceutical Bulletin, 35, pp. 1555-1563, 1987.
[26] J. H. Cui, J. S. Goh, P. H. Kim, S. H. Choi and B.
J. Lee, “Survival and stability of bifidobacteria
loaded in alginate poly-l-lysine microparticles,”
International Journal of Pharmaceutics, 210, pp. 51-
59, 2000.
[27] A. Martinsen, G. Skjåk-Bræk and O. Smidsrød,
“Alginate as immobilization material: I. Correlation
between chemical and physical properties of alginate
gel beads,” Biotechnology and bioengineering, 33,
pp. 79-89, 1989.
[28] W. Sabra, A. P. Zeng and W. D. Deckwer, “Bacterial
alginate: physiology, product quality and process
aspects,” Applied Microbiology and Biotechnology,
56, pp. 315-325, 2001.
[29] S. Takka and F. Acartürk, “Calcium alginate
microparticles for oral administration: I. Effect of
sodium alginate type on drug release and drug
entrapment efficiency,” Journal of
Microencapsulation, 16, pp. 275-290, 1999.
[30] P. D. Vos, B. D. Haan and R. V. Schilfgaar, “Effect
of the alginate composition on the biocompatibility
of alginate-polylysine microcapsules,”
Biomaterials, 18, pp. 273-278, 1997.
[31] H. Akiyama, T. Endo, R. Nakakita, K. Murata, Y.
Yonemoto and K. Okayama, “Effect of depolymerized
alginates on the growth of bifidobacteria,” Biosci
Biotechnol Biochem, 56, pp. 355-356, 1992.
[32] C. D. Scott, “Immobilized cells: A review of recent
literature,” Enzyme and Microbial Technology, 9,
pp. 66-73, 1987.
[33] N. Gerbsch and R. Buchholz, “New processes and
actual trends in Biotechnology,” FEMS Microbiology
Reviews, 16, pp. 259-269, 1995.
[34] G. Fundueanu, C. Nastruzzi, A. Carpov, J. Desbrieres
and M. Rinaudo, “Physico-chemical characterization
of Ca-alginate microparticles produced with
different methods,” Biomaterials, 20, pp. 1427-
1435, 1999.
[35] A. Kikuchi, M. Kawabuchi, M. Sugihara and Y.
Sakurai, “Pulsed dextran release from calcium-
alginate gel beads,” Journal of Controlled Release,
47, pp. 21-29, 1997.
[36] T. Østberg, E. M. Lund and C. Graffner, “Calcium
alginate matrices for oral multiple unit
administration: IV. Release characteristics in
different media,” International Journal of
Pharmaceutics, 112, pp. 241-248, 1994.
[37] P. S. J. Cheetham, K. W. Blunk and C. Bucke,
“Physical studies on cell immobilization using
calcium alginate gels,” Biotechnology and
Bioengineering, 21, pp. 2155-2168, 1979.
[38] D. Knorr and J. Berlin, “Effects of immobilization
and permeabilization procedures on growth of
Chenopodium rubrum cells and amaranthin
concentration,” Journal of Food Science, 52, pp.
1397-1400, 1987.
[39] K. Redenbaugh, B. D. Paasch, J. W. Nichol, M. E.
Kossler, P. R. Viss and K. A. Walker, “Somatic
seeds: Encapsulation of asexual plant embryos,” Bio-
Technology, 4, pp. 797-801, 1986.
[40] I. Constantinidis, I. Rask, R. C. Long and A.
Sambanis, “Effects of alginate composition on the
metabolic, secretory, and growth characteristics of
entrapped bTC3 mouse insulinoma cells,”
Biomaterials, 20, pp. 2019-2027, 1999.
[41] A. A. Hardikar, M. V. Risbud and R. R. Bhonde,
“Improved post-cryopreservation recovery following
encapsulation of islets in chitosan-alginate
microcapsules,” Transplantation Proceedings, 32,
pp. 824-825, 2000.
[42] S. S. Bang and M. Pazirandeh “Physical properties
and heavy metal uptake of encapsulated Escherichia
coli expressing a metal binding gene (NCP)” Journal
of Microencapsulation, 16, pp. 489-499, 1999.
[43] I. K. Yoo, G. H. Seong, H. N. Chang and J. K. Park,
“Encapsulation of lactobacillus casei cells in
liquid-core alginate capsules for lactic acid
production,” Enzyme and Microbial Technology, 19,
pp. 428-433, 1996.
[44] X. Li, K. Abdi and S. J. Mentzer, “Cloning
hybridomas in a reversible three-dimensional
alginate matrix,” Hybridoma, 11, pp. 645-652, 1992.
[45] P. J. Crosland-Taylor, “A device for counting small
particles suspended in a fluid through a tube,”
Nature, 171, pp. 37-38, 1953.
[46] D. A. Drew and R. T. Lahey, “Phase-distribution
mechanisms in turbulent low-quality 2-phase flow in
a circular pipe,” Journal of Fluid Mechanics, 117,
pp. 91-106, 1982.
[47] S. L. Anna, N. Bontoux and H. A. Stone, “Formation
of dispersions using "flow focusing" in
microchannels,” Applied Physics Letters, 82, pp.
364-366, 2003.
[48] I. Kobayashi, S. Mukataka and M. Nakajima, “Novel
asymmetric through-hole array microfabricated on a
silicon plate for formulating monodisperse
emulsions,” Langmuir, 21, pp. 7629-7632, 2005.
[49] K. Liu, H.J. Ding, J. Liu, Y. Chen and X.Z. Zhao,
“Shape-controlled production of biodegradable
calcium alginate gel microparticles using a novel
microfluidic device,” Langmuir, 22, pp. 9453-9457,
2006.
[50] H. Zhang, E. Tumarkin, R. Peerani, Z. Nie, R.M.A.
Sullan, G.C. Walker and E. Kumacheva, “Microfluidic
production of biopolymer microcapsules with
controlled morphology,” Journal of the American
Chemical Society, 128, pp. 12205-12210, 2006.
[51] N. Passerini, B. Perissutti, M. Moneghini, D.
Voinovich, B. Albertini, C. Cavallari and L.
Rodriguez, “Characterization of carbamazepine-
gelucire 50/13 microparticles prepared by a spray-
congealing process using ultrasounds,” Journal of
Pharmaceutical Sciences, 91, pp. 699-707, 2002.
[52] B. Albertini, N. Passerini, M. L. Gonza´lez-Rodrı´
guez, B. Perissutti and L. Rodriguez, “Effect of
Aerosil® on the properties of lipid controlled
release microparticles,” Journal of Controlled
Release, 100, pp. 233-246, 2004.
[53] N. Passerini, B. Albertini, B. Perissutti and L.
Rodriguez, “Evaluation of melt granulation and
ultrasonic spray congealing as techniques to enhance
the dissolution of praziquantel,” International
Journal of Pharmaceutics, 318, pp. 92-102, 2006.
[54] N. Yin, K. Chen and W. Kang, “Preparation of
BA/ST/AM nano particles by ultrasonic emulsifier-
free emulsion polymerization,” Ultrasonics
Sonochemistry, 13, pp. 345-351, 2006.
[55] P. P. Luz, A. M. Pires and O. A. Serra, “A low-cost
ultrasonic spraydrryer to prodyce spherical
miceoparticles fromipolymeric matrices,” Quim.
Nova, 30, pp. 1744-1746, 2007.
[56] F. Minoletti, M. Hermoso and V. Gressier,
“Separation of sedimentary micron-sized particles
for alaeoceanography and calcareous nannoplankton
biogeochemistry,” Nature Protocols, 4, pp. 14-24,
2009.
[57] T. Nisisako, S. Okushima and T. Torii, “Controlled
formulation of monodisperse double emulsions in a
multiple-phase microfluidic system,” Soft Matter,
1, pp. 23-27, 2005.
[58] Z. Nie, S. Xu, M. Seo, P. C. Lewis, and E.
Kumacheva, “Polymer particles with various shapes
and morphologies produced in continuous microfluidic
reactors,” Journal of The American Chemical
Society, 127, pp. 8058-8063, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top