跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 04:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊信祥
研究生(外文):Shin-Shiang Yang
論文名稱:以分子動力學研究錫/銅系統之反應性潤濕機制
論文名稱(外文):Reactive Wetting Behavior of Sn/Cu System : A molecular Dynamics Study
指導教授:黃吉川黃吉川引用關係
指導教授(外文):Chi-Chuan Hwang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:85
中文關鍵詞:分子動力學無鉛銲錫反應性潤濕
外文關鍵詞:Molecular dynamicsLead-Free soldersreactive wetting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本文以分子動力學模擬不同重量百分比之液滴潤濕(wetting)於(100)、(110)、(111)銅表面上,探討反應性潤濕的機制。結果顯示,液滴在銅(110)基材的擴散速度快而銅(100)擴散速度最慢;溫度越高時,液滴在基材上的接觸半徑大,相反地,銅含量越多,造成接觸半徑小,而接觸角的大小和液滴在基板上的擴張量有直接影響關係。本研究中,基板和液滴間產生反應性潤濕,主要是基板上的銅原子熔於液滴內並擴散,造成基板表層上有固化區域,產生固/液態的交界面,而此高度主要決定於溫度和重量百分比例(銅)之關係,本研究成功地以連續體質傳方程理論觀點找出各系統下的固/液交界面高度。
Reactive wettings of Cu (100), Cu (110), and Cu (111) surfaces by pure Sn and Sn-10Cu, Sn-20Cu, and Sn-30Cu (wt%) alloy droplets at a various temperatures were observed, respectively, by performing molecular dynamics (MD) calculations. The simulation results show that the spreading on Cu (110) (Cu (100)) has the fastest (slowest) wetting kinetics among the various surfaces considered herein. Wettings performed at a higher temperature also have faster kinetics. Meanwhile, the influence of the alloy composition is that a richer Cu content in the Sn-Cu alloy causes the alloy to wet the substrates with a slower kinetics. The wetting with a faster kinetics results in a final film of larger radius, which in turn implies a smaller final contact angle between the film and substrate. In this study, a hypothesis is confirmed that the reactive wetting, in regimes that the dissolution of the substrate Cu into the liquid dominates the spreading, will come to the end as a theoretical surface alloy interface separating the liquidus and solidus alloys in the spreading film saturates with the temperature-dependent solidus weight fraction of Cu and stops moving into the droplet. This work has successfully presented a theory for locating the surface alloy interface in the spreading film.
中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 XI
符號 XII
希臘字母 XIII
第一章 前言 1
1-1 研究背景介紹 1
1-1-1 微電子構裝 2
1-1-2 構裝之演進 3
1-1-3 無鉛銲錫 7
1-2 文獻回顧 10
1-3 研究動機與目的 13
1-4本論文架構 14
第二章 研究方法 15
2-1 分子動力學介紹 15
2-1-1 分子動力學的歷史 15
2-1-2 分子動力學原理和演算法介紹 16
2-1-3 勢能函數 24
2-2 物理模型建構 31
第三章 結果與討論 36
3-1 不同重量百分濃度比例(錫/銅)的熔點 36
3-2液滴在不同晶格排列之基材輪廓圖 40
3-3、接觸半徑 42
3-4液滴在不同晶格排列之密度分析法和凝固曲面分佈圖 44
3-5接觸角 52
結論 50
參考文獻 53
附錄A 61
附錄B 69
[1]G.G. Harman and J. Albers, “The ultrasonic welding mechanism as applied to aluminum and gold wire bonding in microelectronics”, IEEE XPLORE, vol. 13, pp. 406-412, 1977.
[2]D.R. Frear, J.W. Jang, J.K. Lin and C. Zhang “Pb-free solders for flip-chip interconnects”, Journal of The Minerals Metals and Materials Society, vol. 53, pp. 28-33, 2001.
[3]K. Kurzweil, “Tape automated bonding for high density packing electro-component science and technology”, Electrocomponen Science and Technology, vol. 8, pp. 15-19, 1981.
[4]邱碧秀(2004)。《微系統封裝原理與技術》。滄海書局出版社。ISBN:986-7777-72-7。
[5]田波民(2005)。《半導體電子元件構裝技術》。五南圖書出版社。ISBN:957-11-4124-0。
[6]K. Kokko, H. Harjunpaa and P. Heino, “Influence of medical sterilization on ACA flip chip joints using conformal coating”, Microelectronics Relibility, vol. 49, pp. 92-98, 2004.
[7]J.J. Stephens and D.R. Frear, “Time-dependent deformation behavior of near-eutectic 60Sn-40Pb solder”, Metallurgical and Materials Transactions A, vol. 30, pp. 1301-1313, 1999.
[8]Y. Wei, C.L. Chow, H.E. Fang and M.K. Neilsen, “Characteristics of creep damage for 60 Sn-40 Pb solder material”, Journal of Electronic Packaging, vol. 123, pp. 278-283, 2001.
[9]R.R. Tummala(2002) ,譯者 陳信文, 陳立軒, 林永森, 陳志銘, 《微系統構裝基礎原理》。希爾國際出版公司。ISBN:957-4937119。
[10]S. Jin, “Developing lead-free solder : a challenge and opportunity”, JOM, Vol. 45, pp.13, 1993.
[11]曾信傑(2003)。電子構裝用無鉛銲錫之低週疲勞行為研究。(碩士論文,國立中央大學機械工程研究所,91學年度),。全國博碩士論文資訊網,系統編號:091NCU05489044。
[12]C.F. Routron, U. Gorlach, J.P. Candelon, M. Bolshov and R. Delmas, “Decrease in anthropogenic lead, cadmium and zinc in Greenland snows since the late 1960s”, Nature, vol. 353, pp. 153-156, 1991.
[13]M.D. Settle and C.C. Patterson, “Lead in albacore: guide to lead pollution in americans” Science, vol. 207, pp. 1167-1176, 1980.
[14]H.K. Kim and K.N. Tu, “Kinetic analysis of the soldering reaction between eutectic Sn-Pb alloy and Cu accompanied by ripening”, Physical Review B, vol. 53, pp. 16027-16034, 1996.
[15]C.Y. Liu and K.N. Tu, “Reactive flow of molten Pb-Sn alloys in Si grooves coated with Cu film”, Physical Review E , vol. 58, pp. 6308-6311, 1998.
[16]Takeshi Shoutoku and Yoshikazu Nakamura, “Wetting and interface microstructure between Sn-Ag binary alloys and Cu”, Journal Materials Research, vol. 13, pp. 2859-2816, 1998.
[17]J.W. Jang, P.G. Kim and K.N. Tu, “High temperature lead free Sn-Sb solders wetting reactions on Cu foils and phaseed in Cu-Cr thin films”, Journal Materials Research ,vol. 14, pp. 3895-3900, 1999.
[18]C.B. Lee, B. Jung, Y.E. Shin and C.C. Shur, ”The effect of Bi concentration on wettability of Cu substrate by Bi-Sn solders”, Materials Transactions, vol.42, pp. 751-755, 2001.
[19]T. Takemoto and M. Miyazaki, “Effect of excess temperature above liquids of lead free solders on wetting time in a wetting balance test”, Materials Transactions, vol. 42, pp. 745-750, 2001.
[20]S.M. Hong, J.Y. Park, C.S. Kang and J.P. Jung, “Fluxless wetting properties of the UBM coated Si wafer to Pb free solders under different atmosphere”, Materials Transactions, vol. 42, pp. 520-527, 2001.
[21]C.B. Lee, S.B. Jung, Y.E. Shin and C.C. Shur, “The effect of bi concentration on wettability of Cu substrate by Bi-Sn solders”, Materials Transcations, vol. 42, pp. 751-755, 2001.
[22]M.F. Arenas, M. He and V.L. Acoff, “Effect of flux on the wetting characteristics of Sn-Ag Sn-Cu Sn-Ag-Bi and Sn-Ag-Cu lead free solders on coppers substrate”, Journal of Electronic Materials”, vol. 35, pp. 1530-1536, 2006.
[23]M.F. Arenas and V.L. Acoff, “Contact angle measurement of Sn-Ag and Sn-Cu lead free solders on copper substrate”, Journal of Electronic Materials, vol. 33, pp. 1452-1456, 2004.
[24]S. Xiaogang, C.M. Lauricella and S.D. Brandi, “Spreading dynamics of tin bismuth and some lead free solders over copper substrate”, Materials Science forum, vol. 475, pp. 3879-3882, 2005.
[25]M.J. Rizvi, C. Bailey, Y.C. Chan and H. Lu, “Effect of adding 0.3%Ni into Sn-0.7Cu solder partI wetting behavior on Cu and Ni substrate”, Journal of Alloys and Compounds, vol. 438, pp. 116-121, 2001.
[26]H. Mal, H. Xie and L. Wang, “Effect of a trace of Bi and Ni on the microstructure and wetting properties of Sn-Zn-Cu lead free solders”, Journal of Materials Sciences, vol. 23, pp. 81-84, 2007.
[27]S. Amore, E. Ricci, T. Lanata and R. Novakovic,b “Surface tension and wetting behavior of molten Cu-Sn alloys”, Journal of Alloys and Compounds, vol.452, pp. 161–166, 2008.
[28]E.B. Webb III, G.S. Grest and D.R. Heine, “Precursor film controlled wetting of Pb on Cu”, Physical Review Letters, vol. 91, pp. 236102-1 - 236102-4, 2003.
[29]E.B. Webb III, G.S. Grest, D.R. Heine and J.J. Hoyt, “Dissolutive wetting of Ag on Cu: a molecular dynamics simulation study”, Acta Materialia, vol. 53, pp. 3163–3177, 2005.
[30]E.B. Webb III and G.S. Grest, “Molecular dynamics simulations of reactive wetting”, scripta materialia, vol. 47, pp. 393-398, 2002.
[31]E.B. Webb III, J.J. Hoyt, G.S. Grest, D.R. Heine, “Atomistic simulations of reactive wetting in metallic systems”, Journal of Materials Science, vol. 40, pp. 2281-2286, 2005.
[32]H. Dong, K.S. Moon, C.P. Wong, “Molecular dynamics study of nanosilver particles for low temperature lead free interconnect applications”, Journal of Electronic Materials, vol. 34, pp. 40-45, 2005.
[33]H. Dong, K.S. Moon and C.P. Wong, “Molecular dynamics study on the coalescence of cu nano-particles and their deposition on the cu substrate”, Journal of Electronic Materials, vol. 33, pp. 1326-1330, 2004.
[34]H. Dong, L. Fan1, K.S. Moon, C.P. Wong and M.I. Baskes, “MEAM molecular dynamics study of lead free solder for electronic packaging application”, Modelling Simulation of Materials Science Engineer , vol. 13, pp. 1279–1290, 2005.
[35]H. Dong, L. Fan, K.S. Moon, C.P. Wong, “Molecular dynamics simulation of lead free solder for low temperature reflow application”, Electronic Components and Technology Conference, 2005.
[36]H. Dong, Z. ZHANG and C.P. Wong, “Molecular dynamics study of a nano particle joint for potential lead free anisotropic conductive adhesive application”, Journal Adhesion Science Technology, vol. 19, pp. 87-94, 2005.
[37]D.N. Tafen and L. Lewis, “Structure and energetics of Ni and Au nanoclusters deposited on the (100),(110), and (111) surface of Au and Ni : A molecular dynamics study”, Physical Review B, vol. 77, pp.075429-1 – 075429-8, 2008.
[38]E.P. Lopez, P.T. Vianco and J.A. Rejent, “Solderability testing of Sn-Ag-XCu Pb-Free solders on copper and Au-Ni-Plated kovar substrates”, Journal of Electronic Materials, vol.34, pp. 299-310, 2005.
[39]F. Gnecco, E. Ricci, S. Amore, D. Giuranno, G. Borzone, G. Zanicchi and R. Novakovic, “Wetting behavior and reactivity of lead free Au–In–Sn and Bi–In–Sn alloys on copper substrates”, International Journal of Adhesion & Adhesives, vol. 27, pp. 409–416, 2007.
[40]E. Saiz, C.W. Hwang, K. Suganuma and A.P. Tomsia, “Spreading of Sn-Ag solders on FeNi alloys”, Acta Materialia, vol. 51, pp. 3185-3197, 2003.
[41]M.J. Rizvi, Y.C. Chan, C. Bailey, H. Lu, M.N. Islam and B.Y. Wu, “Wetting and reaction of Sn-2.8Ag-0.5Cu-1.0Bi solder with Cu and Ni substrates” Journal of Electronic Materials, vol. 34, pp. 1115-1122, 2005.
[42]H. Wang, F. Wang, F. Gao, X. Ma and Y. Qian, “Reactive wetting of Sn0.7Cu–xZn lead-free solders on Cu substrate”, Journal of Alloys and Compounds, vol. 433, pp. 302–305, 2007.
[43]H. Takao and H. Hasegawa, “Inuence of noble metal coating on wettability of copper substrate by Sn-Ag eutectic solder”, Materials Transactions, Vol. 45, pp. 747-753, 2004.
[44]C.K. Suk, C. Kim, J. Muncy and D.F. Baldwin, “ Experimental wetting dynamics study of eutectic and lead-free solders with various Fluxes, isothermal conditions, and bond pad metallizations”, IEEE Transactions on Advanced Packaging, vol. 28, pp. 465-474, 2005.
[45]T. Chellaih, G. Kumar and K.N. Prabhu, “Eect of thermal contact heat transfer on solidication of Pb–Sn and Pb-free solders”, Materials and Design, vol. 28, pp. 1006–1011, 2007.
[46]M.J. Rizvi, C. Bailey , Y.C. Chan and H. Lu, “Effect of adding 0.3 wt% Ni into the Sn–0.7 wt%Cu solder Part I: Wetting behavior on Cu and Ni substrates”, Journal of Alloys and Compounds vol. 438, pp. 116–121, 2007.
[47]D.C. Rapaport, ” The art of molecular dynamics simulation” Cambridge university press. ISBN: 978-0-511-19448-1, 1995.
[48]M.P. Allen and D. Tildesley, “Computer simulation of liquids”, Clarendon Press Oxford 1987.
[49]J.M. Haile, “Molecular dynamics simulation: elementary methods”, John Wiely & Sons. ISBN: 978-0-511-19448-1, 1992.
[50]H.R. Tabar, “Modelling the nano-scale phenomena in condensed matter physics via computer-based numerical simulation”, Physics Reports , Vol. 325, pp. 239, 2000.
[51]W. Eckstein, “Computer simulation of ion-solid interaction”, Springer-Verlag, Berlin, ISBN: 3540190570, 1991.
[52]M.P. Allen and D.J. Tildesley, Computer simulation in chemical physics, Series C : Mathematical and physical sciences, Kluwer academic, dordrecht, vol. 397, 1992.
[53]S. Erkoc, Annual reviews of computational IX, world science publishing , Singapore, ISBN: 1-103, 2001.
[54]G.C. Maitland, M. Rigby, E.B. Smith and W.A. Wakeham, Intermolecular Forces, Oxford University Press, London, ISBN: 019856611, 1987.
[55]T. Werder, J.H. Walther and R.L. Jaffe, “Molecular dynamics simulation of contact angles of water droplets in carbon nanotubes”, Nano Letter , vol. 12, pp. 697-702, 2001.
[56]J. H. Irving and J.G. Kirkwood, “The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics”, Journal of Chemistry Physical, Vol. 18, pp. 817-829, 1950.
[57]T. Ito, K. Nishidate and M. Baba, “Pressure-controlled tight-binding molecular dynamics simulation of carbon nanotubes”, Journal of the Physical Society of Japan, vol. 70, pp. 2593-2597, 2001.
[58]M. Mazor and B.M. Pettitt, “Convergence of the chemical potential in aqueous solution”, Molecular Structure, vol.6, pp.1-4, 1991.
[59]R. Ravelo and M. Baskes, “Equilibrium and thermodynamic properties of grey, white, and liquid tin”, Physical Review Letter, vol. 79, pp.2482-2485, 1997.
[60]R. Ravelo, J. Aguilar and M. Baskes, “Microscopic simulation of interfacial phenomena in solids and liquids”, Modelling and Simulation in Materials Science and Engineering, Vol. 492, pp. 43, 1998.
[61]R. Ravelo and M. Baskes, “Thermodynamics and kinetics of phase transformations”, Mater. Res. Soc. Symp. Proc. Vol. 398, pp. 287, 1996
[62]M.I. Baskes, “Modified embedded-atom potentials for cubic materials and impurities”, Physical Review B, vol.46, pp. 2727, 1992.
[63]M.I. Baskes and R.A. Johnson, “Modified embedded atom potentials for HCP metals”, Modelling of Simulation Science Engineer, vol.1, pp. 147, 1994.
[64]M.I. Baskes, J.E. Angelo and C.L. Bisson, “Atomistic calculations of composite interfaces”, Modelling and Simulation in Materials Science and Engineering, vol.2, pp. 505-518, 1994
[65]M.I. Baskes, “Determination of modified embedded atom method parameters for nickel”, Materials Chemistry and Physics, vol.50, pp. 152-158, 1997.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top