跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉俊成
研究生(外文):Chun-Chen Liu
論文名稱:QFP封裝體之散熱與信賴性能力提升
論文名稱(外文):Thermal and Reliable Capability Enhancement In QFP Package
指導教授:趙隆山
指導教授(外文):Long-Sun Chao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:96
中文關鍵詞:QFP分層熱阻散熱片TIM
外文關鍵詞:DelaminationThermal ResistanceHeat SpreaderTIMQFP
相關次數:
  • 被引用被引用:1
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著終端市場的需求,晶片的功能設計與輸出的功率日亦強大,這代表電子封裝的密度會不斷的升高,相對的單位體積內所產生的熱量會越來越大,當晶片的工作溫度超過所設計的溫度時會造成部分的功能失效,嚴重的會使整個晶片燒毀沒有辦法繼續工作;這樣的趨勢會為封裝結構的散熱與信賴性能力帶來嚴峻的考驗。
本文利用QFP (Quad Flat Package)封裝結構體搭配外露式散熱片在不改變現行封裝製程下修改封裝體內部散熱片的結構以達到封裝體散熱與信賴性能力的提升;本研究分成三個主題來做探討:(1) 降低封裝體內部材料間分層的問題,增加材料間的結合性;(2) 降低封裝結構對外部環境的熱阻值,利用TIM ( Thermal Interface Material ) 材料取代封裝結構體內空氣的介層;(3) 延伸TIM材料的應用,利用不同的TIM材料種類與TIM材料的厚度來做熱阻值能力的交叉比對。
本研究結果發現,降低內部材料間分層的問題為首要關鍵,分層即代表封裝體內部材料間有空氣存在,這是造成封裝體內部熱阻值升高的主要問題;TIM材料的應用可以降低封裝結構內部分層問題的產生增加結構信賴性能力,在材料厚度上的差異為越薄對於封裝體熱阻的降低有著正向的關係,在不同種類的TIM材料會有著介面熱阻的問題產生出來。
To follow the terminal market requirement, the function and efficiency demands of chips increase. This causes high density electronic packaging, which raises the heat dissipation. If the chip working temperature is over the design limit, it results in the function failure and the chip burnout. This trend will bring severe challenge to the packaging reliability and heat dissipation ability.
In this work, the assembly structure includes Quad Flat Package (QFP) and an exposed type heat slug. Only the heat slug structure is modified and no other change is made in the assembly process. This modification is expected to enhance the thermal and reliable capability. There are three subjects in this study: (1) reduce the delamination problem by increasing the adhesion between materials; (2) reduce the thermal resistance in the packaging structure by using the thermal interface material (TIM) to avoid the formation of air gap in the structure;(3) analyze the TIM effects on the thermal resistance for different TIM materials and thicknesses.
From the study results, it can be found that the delamination is the key problem, which means there exists air gap. This results in the increase of thermal resistance. Appropriate TIM applied to the heat slug structure can enhance material interface adhesion and reduce the delamination risk in the assembly process. This could decrease the thermal resistance and enhance the reliable capability. However, it should be noted that the application of TIM could induce extra interfacial thermal resistances.
摘要 ------------------------------------------ Ⅰ
Abstract -------------------------------------- Ⅱ
誌謝 ------------------------------------------ Ⅳ
目錄 ------------------------------------------ Ⅴ
表目錄 ---------------------------------------- Ⅸ
圖目錄 ---------------------------------------- Ⅹ
符號說明 -------------------------------------- ⅩⅦ

第一章 緒論1
1-1 前言 -------------------------------------- 1
1-2 文獻回顧 ---------------------------------- 3
1-2-1 QFP封裝體熱傳能力提升的研究 ------------- 3
1-2-2 QFP封裝體信賴性能力的研究 --------------- 5
1-2-3 QFP封裝體內部間隙對於熱的效應研究 ------- 6
1-3 研究動機 ---------------------------------- 8

第二章 原理與理論基礎 ------------------------- 10
2-1 QFP封裝體散熱原理 ------------------------- 10
2-2 實驗模型理論 ------------------------------ 11
2-2-1 可靠度分析之前處理測試的定義------------- 11
2-2-2 熱阻基本定義 ---------------------------- 12
2-2-2-1 熱阻θJA的基本定義 --------------------- 13
2-2-2-2 熱阻θJC的基本定義 --------------------- 13

第三章 研究方法與步驟 ------------------------- 15
3-1 散熱片的設計 ------------------------------ 16
3-1-1 讓間隙縮小的散熱片設計 ------------------ 16
3-1-2 讓間隙消失的散熱片設計 ------------------ 17
3-2 模擬封裝體熱傳能力 ------------------------ 18
3-2-1 前處理 ---------------------------------- 18
3-2-2 求解 ------------------------------------ 19
3-3 散熱片製作 -------------------------------- 20
3-3-1 縮小間隙的散熱片製作 -------------------- 20
3-3-2 移除間隙的散熱片製作 -------------------- 21
3-3-2-1 使用TIM1樣品散熱片製作 ---------------- 21
3-3-2-2 使用TIM2樣品散熱片製作 ---------------- 22
3-4 QFP封裝 ----------------------------------- 23
3-4-1 黏晶片 ---------------------------------- 23
3-4-2 打線 ------------------------------------ 24
3-4-3 封模 ------------------------------------ 24
3-4-4 穩定烘烤 -------------------------------- 24
3-4-5 純錫電鍍 -------------------------------- 25
3-4-6 腳折彎與切單 ---------------------------- 25
3-5 前處理實驗(信賴性實驗) -------------------- 25
3-5-1 封裝體外觀檢 ---------------------------- 25
3-5-2 超音波測試 (一) ------------------------- 25
3-5-3 溫度循環測試 ---------------------------- 26
3-5-4 吸濕測試 -------------------------------- 26
3-5-5 迴銲爐測試 ------------------------------ 26
3-5-6 超音波測試 (二) ------------------------- 27
3-6 封裝體實際熱傳能力量測 -------------------- 27
3-6-1 SMT 上板 -------------------------------- 27
3-6-2 溫度校正 -------------------------------- 28
3-6-3 θja 在風速 0 m/s 狀況下量測 ------------ 29
3-6-4 θja在風速 1 & 2 m/s 狀況下量測 --------- 29
3-6-5 θjc的量測 ------------------------------ 30

第四章 結果與討論 ----------------------------- 31
4-1 封裝體內熱傳能力模擬比較結果 -------------- 31
4-2 實際封裝比較結果 -------------------------- 32
4-3 前處理實驗比較結果 ------------------------ 34
4-4 實際熱傳能力比較結果 ---------------------- 35

第五章 結論 ----------------------------------- 38
參考文獻 -------------------------------------- 41
表格附件 -------------------------------------- 43
圖片附件 -------------------------------------- 49
[1]陳信文、陳立軒、林永森與陳志銘譯, R. R. Tummala著 “微系統構裝基礎原理,” 高立圖書, 2002/12初版.
[2]Laurene Yip, “Moisture sensitivity and reliability of plastic thermally enhanced QFP packages,” IEEE Transactions on Components, Packaging, and Manufacturing Technology B, VOL. 18, NO. 3, AUGUST 1995
[3]Darvin R. Edwards, Ming Hwang, and Bill Steams, “Thermal enhancement of plastic IC packages ,” IEEE Transactions on Components, Packaging, and Manufacturing Technology A, VOL. 18, NO. 1. MARCH 1995
[4]Rick H.N. Chen, “Gap effect of package with heat spreader on the thermal,” Thermal Characterization Laboratory ASE, Dec. 1997 .
[5]S. Liu and Y. Mei, “Behavior of delaminated plastic IC packages subjected to encapsulation cooling, moisture absorption, and wave soldering,” IEEE Transactions on Components, Packaging, and Manufacturing Technology A, vol. 18, no. 3, pp. 634–645, Sep. 1995.
[6]Yi-Shao Lai, Yi-Hsien Lin, and Jenq-Dah Wu, “Prediction of gap in QFP with unattached heat spreader ,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, VOL. 28, NO. 1, MARCH 2005
[7]B.A. Zahn and R.P. Stout, “Evaluation of isothermal and isoflux natural convection coefficient correlations for utilization in electronic package level thermal analysis,” Proceedings of the 13th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, January 1997.
[8]ANSYS 10.0 Online Reference.
[9]EIA/JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Package.
[10]EIA/JESD51-2, Integrated circuit Thermal Test Method Environment Conditions – Natural Convection (Still Air).
[11]EIA/JESD51-6, Integrated circuit Thermal Test Method Environment Conditions – Forced Convection (Moving Air).
[12]EIA/JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Package
[13]EIA/JESD22-A113D, Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing.
[14]Thermal Enhancement Package Technology , Thermal Characterization Laboratory, ASE Jun. 2006 .
[15]許介維, “PBGA構裝體附加散熱器的熱傳分析,” 國立成功大學機械科學研究所碩士論文, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top