跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 15:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:杜柏佑
研究生(外文):Po-Yu Tu
論文名稱:利用微陣列晶片結合移動式電場於細胞遷移之研究
論文名稱(外文):Study of Cell Migration with Micro Arrayed-electrode Chip Based on Moving Electric Field
指導教授:林裕城林裕城引用關係
指導教授(外文):Yu-Cheng Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:96
中文關鍵詞:微機電系統移動式電場纖維母細胞微陣列電極
外文關鍵詞:MEMSmicroarray electrodemoving electric fieldfibroblast cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用微機電系統製程技術製作不同電極間距之微陣列電極晶片,以高頻交流訊號於電極上產生移動電場(Moving Electric Field)之電場效果,並應用於生物細胞之遷移上。研究策略為針對弦波、方波、三角波與鋸齒波四種不對稱波形訊號進行電場模擬,比較出適合進行實驗之波形訊號,並利用此訊號於三種不同電極間距10 μm、20 μm 與30 μm之微陣列電極產生移動電場,比較細胞受此三種電場效應影響產生之遷移現象與驅動頻率之探討。本研究以有限元素分析軟體來模擬微陣列電極中之電場強度分佈,分析不同高度位置電場對細胞的影響值,由模擬分析結果,鋸齒波形訊號之特性最適合本研究電驅動實驗之所需;另外,當最大電場強度固定時,電極間距越小所產生的電場不對稱性效果愈明顯。當輸入等相位差之鋸齒波形訊號於10 μm、20 μm與30 μm之電極間距上時,所產生之移動式電場,可電致驅動小鼠纖維母細胞(NIH Swiss Mouse’s Embryo Fibroblast Cell Line, NIH-3T3);實驗結果顯示,10 μm之遷移距離與方向性相對於20 μm與30 μm佳,且當設定10 μm電極間距之電驅動晶片之最大電場為0.6 V/mm時,其遷移速率可達最高值21.25 μm/hr,且可進行正反向之操控,以上量測之遷移結果可與模擬結果相互驗證之。
This study describes using the technology of Micro Electro Mechanical Systems (MEMS) to fabricate the biochips with different microarray electrode gaps, cell migration was observed when in moving electric field by applying AC signal in high frequency. Our strategy is based on the comparison of sine asymmetric waveform signal, square asymmetric waveform signal, triangle asymmetric waveform signal and ramp asymmetric waveform signal from the analysis and calculation of ANSYS. According to the result of analysis, the most suitable waveform characteristic was used to our experiment. Utilize this signal to generated moving electric field of the asymmetric type in the microarray electrode of three types of 10 μm, 20 μm and 30 μm electrode gaps to compare with the influence of cell migration under three types of moving electric field and different frequency circumstance. This study utilized finite element program to simulate the result of moving electric field in the microarray electrode. The impacts on cell of electric field for different heights were analyzed. According to the result of analysis, the ramp waveform was used to our experiment. And under the same electric field condition, the less of electrode gap makes the more obvious asymmetry for electric field. Function generator was used to produce the ramp waveform signal with several different phases on the electrode gaps of 10 μm, 20 μm and 30 μm to generated moving electric field. Because of the galvanotaxis of fibroblast cells, the moving electric field was utilized to directed cell migration. Moreover the effects of cell migration distance and direction in the electric field with different electrode gaps were discussed. The microarray electrode chip of 10 μm gap was optimizing than 20 μm and 30 μm gap for migration distance and directionality. When setting the maximum electric field valve on the microarray electrode chip of 10 μm gap to 0.6 V/mm, the migration velocity would be 21.25 μm/hr. Cells could be controlled by moving electric field for towards and backwards migration.
摘要 I
ABSTRACT II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 微機電系統製程發展與應用 3
1-3 文獻回顧 5
1-3-1 細胞遷移現象 5
1-3-2 細胞趨向性與遷移技術 9
1-3-3 細胞遷移技術結合移動式電場之應用 14
1-4 研究動機與目的 19
1-5 研究架構 21
第二章 材料與方法 23
2-1 實驗儀器 23
2-1-1 函數訊號產生器 23
2-1-2 光學螢光顯微鏡與影像擷取系統 24
2-2 小鼠纖維母細胞之培養 26
2-2-1 培養材料 26
2-2-2 繼代培養的操作步驟 28
2-3 晶片之結構設計與數值模擬分析 30
2-3-1 電驅動晶片之設計 30
2-3-2 晶片之數值模擬分析 32
2-3-3 建立晶片結構之數值模型 34
2-3-4 晶片結構之離散化 36
2-3-5 晶片之邊界條件的設定與運算 37
2-3-6 晶片結構之網格密度分析 38
2-3-7 模擬後處理 40
2-4 電極晶片製造 41
2-4-1 晶片之製程 41
2-5 晶片封裝與滅菌 46
2-5-1 PDMS反應槽製作 46
2-5-2 電驅動晶片模組化封裝 49
2-6 電驅動細胞遷移方法與流程 52
2-6-1 電驅動細胞遷移實驗 52
第三章 結果與討論 54
3-1 電場模擬分析 54
3-1-1 不對稱式波形設計 54
3-1-2 晶片電場強度與分佈之模擬結果分析 56
3-1-3 模擬結果統計分析 67
3-1-4 實驗波形強度與分佈之模擬結果 68
3-2 遷移結果與討論 72
3-2-1 細胞電驅動遷移結果與統計 72
3-2-2 細胞往返電驅動遷移 82
3-2-3 細胞遷移與驅動頻率之關係 84
第四章 結論與建議 85
4-1 結論 85
4-2 建議 87
參考文獻 88
自述 96
[1]R. Ananthakrishnan, and A. Ehrlicher, “The forces behind cell movement,” International Journal of Biological Sciences, 3, pp. 303-317, 2007.
[2]http://zh.wikipedia.org/wiki/%E7%B4%B0%E8%83%9E%E9%81%B7%E7%A7%BB
[3]C. Parent, and P. Devreotes, “A cell's sense of direction,” Science, 284, pp. 765-770, 1999.
[4]D. Humphrey, C. Duggan, D. Saha, D. Smith, and J. Kas, “Active fluidization of polymer networks through molecular motors,” Nature, 416, pp. 413-416, 2002.
[5]M. Heckmann, B. C. Adelmann-Grill, R. Hein, and T. Krieg, “Biphasic effects of interleukin-1 alpha on dermal fibroblasts: enhancement of chemotactic responsiveness at low concentrations and of mRNA expression for collagenase at high concentrations,” Journal of Investigative Dermatology, 100, pp. 780-784, 1993.
[6]O. Ohgoda, A. Sakai, H. Koga, K. Kanai, T. Miyazaki, and Y. Niwano, “Fibroblast-migration in a wound model of ascorbic acid-supplemented three-dimensional culture system: the effects of cytokines and malotilate, a new wound healing stimulant, on cell-migration,” Journal of Dermatological Science, 17, pp. 123-131, 1998.
[7]B. C. Adelmann-Grill, F. Wach, Z. Cully, R. Hein, and T. Krieg, “Chemotactic migration of normal dermal fibroblasts towards epidermal growth factor and its modulation by platelet-derived growth factor and transforming growth factor-beta,” European Journal of Cell Biology, 51, pp. 322-326, 1990.
[8]H. Shiraha, A. Glading, K. Gupta, and A. Wells, “IP-10 inhibits epidermal growth factor-induced motility by decreasing epidermal growth factor receptor-mediated calpain activity,” Journal of Cell Biology, 146, pp. 243-254, 1999.
[9]H. Shiraha, K. Gupta, K. Drabik, and A. Wells, “Aging fibroblasts present reduced epidermal growth factor (EGF) responsiveness due to preferential loss of EGF receptors,” Journal of Biological Chemistry , 275, pp. 19343-19351, 2000.
[10]M. Nakamura, T. Nagano, T. Chikama, and T. Nishida, “Role of the small GTP-binding protein rho in epithelial cell migration in the rabbit cornea,” Investigative Ophthalmology & Visual Science, 42, pp. 941-947, 2001.
[11]A. M. Rajnicek, L. E. Foubister, and C. D. McCaig, “Prioritising guidance cues: directional migration induced by substratum contours and electrical gradients is controlled by a rho/cdc42 switch,” Developmental Biology , 312, pp. 448-460, 2007.
[12]M.B.A. Djamgoz, M. Mycielska, Z. Madeja, S.P. Fraser, and W. Korohoda, “Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltage-gated Na+ channel activity,” Journal of Cell Science, 114, pp. 2697-2705, 2001.
[13]Z. Siwy, M. Mycielska, and M.B.A. Djamgoz, “Statistical and fractal analyses of rat prostate cancer cell motility in a direct current electric field: comparison of strongly and weakly metastatic cells,” European Biophysics Journal with Biophysics Letters, 32, pp. 12-21, 2003.
[14]I. Giaever, and C. R. Keese, “Monitoring fibroblast behavior in tissue culture with an applied electric field,” Journal of Cell Biology, 81, pp. 3761-3764, 1984.
[15]K. R. Robinson, “The responses of cells to electrical fields: a review, ” Journal of Cell Biology, 101, pp. 2023-2037, 1985.
[16]I. Giaever, and C. R. Keese, “A morphological biosensor for mammalian cells,” Nature, 366, pp. 591-592, 1993.
[17]I. Giaever, and C. R. Keese, “Micromotion of mammalian cells measured electrically,” Cell Biology, 88, pp. 7896-7900, 1991.
[18]I. Giaever, and C. R. Keese, “Use of electric fields to monitor the dynamical aspect of cell behavior in tissue culture,” IEEE Transactions on Biomedical Engineering, BME-33, pp. 242-247, 1986.
[19]E. Finkelstein, W. Chang, P. H. G. Chao, D. Gruber, A. Minden, C.T. Hung, and J. C. Bulinski, “Roles of microtubules, cell polarity and adhesion in electric-field-mediated motility of 3T3 fibroblasts,” Journal of Cell Biology, 117, pp. 1533-1545, 2004.
[20]C. E. Pullar, and R. R. Isseroff, “Cyclic AMP mediates keratinocyte directional migration in an electric field,” Journal of Cell Science, 118, pp. 2023-2034, 2005.
[21]A. L. Sillman, D. M. Quang, B. Farboud, K. S. Fang, R. Nuccitelli, and R. R. Isseroff, “Human dermal fibroblasts do not exhibit directional migration on collagen I in directcurrent electric fields of physiological strength,” Experimental Dermatology, 12, pp. 396-402, 2003.
[22]M. Heckmann, B. C. Adelmann-Grill, R. Hein, and T. Krieg, “Biphasic effects of interleukin-1α on dermal fibroblasts: enhancement of chemotactic responsiveness at low concentrations and of mRNA expression for collagenase at high concentrations,” J Invest Dermatol, 100, pp. 780-784, 1993.
[23]P. W. Luther, H. B. Peng, and J. J. C. Lin, “Changes in cell shape and actin distribution induced by constant electric fields,” Nature, 303, pp. 61-64, 1983.
[24]E. K. Onuma, and S. W. Hui, “Electric field-directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent,” Journal of Cell Biology, 106, pp. 2067-2075, 1988.
[25]C. D. McCaig, A. M. Rajnicek, B. Song, M. Zhao, “Controlling cell behavior electrically: current views and future potential,” Physiological Reviews , 85, pp. 943-978, 2005.
[26]C. D. McCaig, A. M. Rajnicek, B. Song, M. Zhao, “Has electrical growth cone guidance found its potential?,” Trends in Neurosciences , 25, pp. 354-359, 2002.
[27]M. Zhao, A. Agius-Fernandez, J. V. Forrester, and C. McCaig, “Experiments on AC electrokinetic pumping of liquids using arrays of microelectrodes,” Journal of Cell Science, 109, pp. 1405-1414, 1996.
[28]Y. Huang, X. B. Wang, and R. Pethig, “Electrokinetic behaviour of colloidal particles in travelling electric fields: studies using yeast cells,” Journal of Physics D: Applied Physics, 26, pp. 1528-1535, 1993.
[29]X. B. Wang, M. P. Hughes, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “Electrokinetic behaviour of colloidal particles in travelling electric fields: studies using yeast cells,” Biochimica et Biophysica Acta, 1243, pp. 185-194, 1995.
[30]S. Masuda, M. Washizu, and T. Nanba, “Electrokinetic behaviour of colloidal particles in travelling electric fields: studies using yeast cells,” IEEE Transactions on Industry Applications, 25, pp. 732-737, 1989.
[31]K. L. Chan, N. G. Green, M. P. Hughes, and H. Morgan, “Cellular characterisation and separation: dielectrophoretically activated cell sorting (DACS),” IEEE Engineering in Medicine and Biology Society, 6, pp. 2953-2956, 1998.
[32]S. Masuda, M. Washizu, I. Kawabata, ”Movement of blood cells in liquid by nonuniform traveling field,” IEEE Transactions on Industry Applications, 24, pp. 217-223, 1988.
[33]G. Fuhr, R. Hagedorn, T. Muller, “Linear motion of dielectric particles and living cells in microfabricated structures induced by traveling electric fields,” Proceeding of IEEE MEMS, pp. 259-264, 1991.
[34]H. Morgan, N. G. Green, M. P. Hughes, W. Monaghan, T. C. Tan, “Large-area travelling-wave dielectrophoresis particle separator,” Journal of Micromechanics and Microengineering, 7, pp. 65-70, 1997.
[35]A. Ramos, H. Morgan, N. G. Green, A. Gonzalez, and A. Castellanos, “Pumping of liquids with traveling-wave electroosmosis,” Journal of Applied Physics, 97, pp. 084906-1-084906-8, 2005.
[36]G. Fuhr, T. Schnelle, and B. Wagner, “Travelling wave-driven microfabricated electrohydrodynamic pumps for liquids,” Journal of Micromechanics and Microengineering, 4, pp. 217-226, 1994.
[37]M. G. Pollack, R. B. Fair, A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Applied Physics Letters, 77, pp. 1725-1726, 2000.
[38]D. S. Lee, Y. Q. Fu, S. Maeng, X. Y. Du, S. C. Tan, J. K. Luo, A. J. Flewitt, S. H. Kim, N. M. Park, Y. J. Choi, H. C. Yoon, S. Y. Oh, and W. I. Milne, “Integrated ZnO surface acoustic wave microfluidic and biosensor system,” IEEE Transactions on Electron Devies, 1&2, pp. 851-854, 2007.
[39]J. P. Urbanski, T. Thorsen, J. A. Levitan, and M. Z. Bazant, “Fast ac electro-osmotic micropumps with nonplanar electrodes,” Applied Physics Letters, 89, pp. 143508-1-143508-3, 2006.
[40]A. B. D. Brown, C. G. Smith, and A. R. Rennie, “Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes,” Physical Review E, 63, pp. 016305-1-016305-8, 2000.
[41]P. Garcia-Sanchez, A. Ramos, N. G. Green, and H. Morgan, “Experiments on AC electrokinetic pumping of liquids using arrays of microelectrodes,” IEEE Transactions on Dielectrics and Electrical Insulation, 13, pp. 670-677, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top