跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 17:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張良漢
研究生(外文):Lian-han Chang
論文名稱:應用田口法於精細覆晶構裝之最佳化設計
論文名稱(外文):Optimal Design of Fine Pitch Flip Chip Package by Using Taguchi Method
指導教授:陳榮盛陳榮盛引用關係
指導教授(外文):Rong-sheng Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:138
中文關鍵詞:精細間距無鉛錫球熱超音波田口法品質工程
外文關鍵詞:Lead-free solderthermosonicfine pitchTaguchi Method
相關次數:
  • 被引用被引用:10
  • 點閱點閱:747
  • 評分評分:
  • 下載下載:321
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於通訊、網路、消費性電子及可攜式產品大幅成長,對IC的輕薄短小、高頻、高速與高散熱率需求日增,採用系統化晶片的比率將會日漸提高,使得覆晶構裝等可縮小IC面積的封裝產品成為產品主流。然隨著腳距的密集化發展,覆晶構裝對錫球間距的控制將面臨挑戰,即鑑於成本與製程時間考量及利用電鍍銅柱、熱超音波等方式,不但可以做到精細間距(<100μm)以下的尺寸,亦省去下覆晶構裝必須建構錫球下的金屬合金,使得成本與製程時間有效降低。
本研究將使用ANSYS 10.0套裝分析軟體,施予精細覆晶構裝攝氏溫度從125度降至-25度的溫度負載,並藉由A.Syed提出的能量觀點,計算出精細覆晶構裝之疲勞壽命,其中錫球考慮為彈塑性變形,其他材料皆視為彈性。在分析時採用全域粗糙模型、局部粗糙/精細模型有限元素分析法,使其達到精準性與收斂性。
本文中針對錫球之體積,銅柱之半徑、高度、溼潤深度,晶片之熱膨脹係數與楊氏模數,底填膠之熱膨脹係數與楊氏模數,印刷電路板之熱膨脹係數與楊氏模數等因子進行單一因子分析,以評估各因子對構裝結構可靠度的影響,然後將上述各因子利用田口品質設計,建立直交表進行實驗,並經誤差統合,找出最佳化的參數組合,以提升精細覆晶構裝體之可靠度。
由單一因子分析結果顯示,藉由減少底填膠熱膨脹係數、減少印刷電路板熱膨脹係數、減少印刷電路板楊氏模數、減少銅柱半徑、增加錫球體積、增加銅柱高度、增加底填膠楊氏模數,皆能有效提高 精細覆晶構裝體可靠度。最後,利用田口品質工程所得最佳製程參數之構裝疲勞壽命為1533次,而原始製程參數設計為 790,疲勞壽命約提昇94%,可有效改善精細覆晶構裝之可靠度。
In accordance with the significant growth of communication, network, consumption electron and portable products in recent years, the requirement for the IC chip in the frivolous short, high frequency, high speed and the high heat emission has increased. As a result, the rate for the system on chip for IC enhances day after day. The flip chip and some similar packages which are facilitated to reduce the IC area become the mainstream product in the market. However, as the fine pitch is developed, the flip chip has been challenged on the control of the solder pitch. Furthermore, the cost and the fabricating time are reduced since both the electroplated copper column and the thermosonic are not only efficient to make fine pitch, but also save the UBM.
  In this paper, the ANSYS 10.0 analysis software is applied as well as the Fine Pitch Flip Chip Package is subjected by a thermal cycle of -25℃~125℃. Based on the energy viewpoint proposed by A. Syed, the fatigue life of the Fine Pitch Flip Chip Package is calculated in which and the solder ball is considered as elastoplasticity and other materials are treated as elasticities. In analysis, the global cursory model,the submodel cursory/fine analytic method are adopted to achieve certain accuracy and the convergence.
The one factor at a time analysis is conducted to investigate the effect of the volume of solder, radius and height of copper ,wetting height of copper, CTE and Young’s Modulus of chip, CTE and Young’s Modulus of underfill, CTE and Young’s Modulus of PCB on the reliability of the package. Moreover, the Taguchi Method is applied to establish an orthogonal chart for the experiment and to minimize the deviations so as to obtain an optimal parameter combination to upgrade the reliability of the Fine Pitch Flip Chip Package.
The result of one factor at a time analysis shows that the reliability of the Fine Pitch Flip Chip Package improves with the reduction of CTE of underfill, CTE of PCB, Young’s Modulus of PCB, and radius of copper and with the increase of the volume of solder, height of copper and Young’s Modulus of underfill, Finally, an optimal parameter obtained by the Taguchi Method shows the fatigue life of 1533 cycles which is 94% increasing compared to 790 cycles of the original design so that the reliability of the Fine Pitch Flip Chip Package has been significantly improved.
中文摘要 ……………………………………………………………………………I
英文摘要 …………………………………………………………………………III
誌謝………………………………………………………………………………… V
目錄 ……………………………………………………………………………… VI
表目錄 …………………………………………………………………………… X
圖目錄……………………………………………………………………………XIII
符號說明 ………………………………………………………………………XVIII

第一章 緒論 ………………………………………………………………………1
1-1 前言 ………………………………………………………………………1
1-2 研究動機與目的 ………………………………………………………5
1-3 文獻回顧…………………………………………………………………6
1-4 研究方法 ………………………………………………………………10
1-5 章節提要 ………………………………………………………………11
第二章 理論基礎………………………………………………………………15
2-1研究主題…………………………………………………………………15
2-2 錫球外型之預測………………………………………………………16
2-3 非線性分析理論………………………………………………………19
2-3-1 塑性行為模式 …………………………………………………19
2-3-2多線性等向性硬化法則 ……………………………………21
2-3-3葛拉佛拉-阿瑞尼阿斯潛變模式……………………………23
2-4疲勞破壞理論 …………………………………………………………26
2-4-1疲勞機制 …………………………………………………………27
2-4-2疲勞壽命預測 …………………………………………………27
2-5有線元素分析 …………………………………………………………29
2-5-1有限元素分析軟體 ANSYS 10.0 …………………………29
2-5-2前處理、求解及後處理模組 ………………………………31
2-5-3局部模型技術 …………………………………………………32
2-5-4網格收斂之原則 ………………………………………………35
2-6田口品質設計法 ………………………………………………………36
2-6-1機能品質特性值 ………………………………………………37
2-6-2直交表……………………………………………………………38
2-6-3自由度……………………………………………………………38
2-6-4損失函數…………………………………………………………38
2-6-5信號雜訊比………………………………………………………39
2-6-6回應表和輔助回應圖 …………………………………………41
2-6-7變異數分析………………………………………………………42
2-6-8信賴區間…………………………………………………………44
第三章 分析模型之建立與評估……………………………………………52
3-1精細覆晶構裝之分析模型……………………………………………52
3-1-1精細覆晶構裝模型之結構與材料性質……………………52
3-1-2精細覆晶構裝之基本假設……………………………………54
3-2精細覆晶構裝模型之建構與分析方法 …………………………55
3-2-1建立錫球的外型曲線 ………………………………………56
3-2-2精細覆晶構裝之模型建構 …………………………………56
3-2-3全域(Global)模型之分析型態與邊界條件 ……………57
3-2-4全域(Global)模型之溫度循環負載 ………………………58
3-3全域粗糙模型之網格分析 …………………………………………58
3-4局部粗糙模型之建構與網格分析 ………………………………60
3-4-1局部(local)模型之分析型態與邊界條件 ……………60
3-4-2局部粗糙模型之建構與網格分析 ………………………61
3-4-3局部精細模型之範圍收斂分析 …………………………62
3-5局部精細模型之網格收斂分析 …………………………………62
3-6最外側錫球之遲滯曲線 ……………………………………………64
3-7精細覆晶構裝模型之評估 …………………………………………64
第四章 一次一因子設計法篩選因子 ……………………………………94
4-1一次一因子設計 ………………………………………………………94
4-2一次一因子之分析結果 ……………………………………………95
第五章 田口品質工程分析 …………………………………………………120
5-1目標函數選定 ………………………………………………………120
5-2控制因子與水準………………………………………………………120
5-3選定田口直角表………………………………………………………122
5-4實驗模擬結果…………………………………………………………122
5-5變異分析 ……………………………………………………………123
5-6最佳化預測與確認實驗 ……………………………………………124
第六章 結論與未來研究方向 ………………………………………………132
6-1結論………………………………………………………………………132
6-2未來研究方向 ………………………………………………………135
參考文獻 …………………………………………………………………………136
[1]Bradley, E., Handwerker, C., and Sohn, J. E., 2003, ”NEMI REPORT:A Single Lead-free Alloy Is Recommand,” Surface Mount Technology, January 2003, pp. 24-25.
[2]Patra, S. K., Lee, Y. C., 1991, “Quasi -Static Modeling of the Self-Alignment Mechanism in Flip-Chip Soldering-Part I:Single Solder Joint,” Journal of Electronic Packaging, 113, pp. 337-342.
[3]Subbarayan, G., Deshpande, A., 1997, “The Nature of Centroidal Locus in Misaligned Flip-Chip Solder Joints”, Journal of Electronic Packaging, 119, pp. 156-162.
[4]Brakke, K., 1992,“The Surface Evolver,” Experimental Mathematics, 1, no. 2, pp. 141-165.
[5]Lau, J.H. (editor) 1996, Flip Chip Technologies, McGraw-Hill,New York
[6]J. H. Lau and D. W. Rice,“Thermal Fatigue Life Predictionof Flip Chip Solder Joints by Fracture Mechanics Method”,Advances in Electronic Packaging ASME, pp.385-392, 1992.
[7]J. H. Lau, “ Flip Chip Technologies ” , McGraw-HillCompanies, Inc. New York, 1997.
[8]J. H. Lau and Yi-Hsin Pao,“Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies”, McGraw-Hill Companies, Inc. New York, 1997.
[9]John H.L. Pang and Tze-Ing Tan, ”Thermal-Mechanical Analysis of Solder Joint Fatigue and Creep in a Flip Chip On Board Package Subjected to Temperature“, IEEE Electronic Components and Technology Conference, pp.878-883, 1998.
[10]Zhengfang Qian, Minfu Lu, Wei Ren and Sheng Liu,“Fatigue Life Prediction of Flip-Chip in Terms of Nonlinear Behaviors of solder and Underfill”, IEEE Electronic Components and Technology conference, pp.141-148, 1999.
[11]Wang, C.H., Holmes, A.S. and Gao, S., “Laser-assisted Bump Transfer for Flip Chip Assembly”, Proceedings of International Symposium on Electronic Materials and Packaging (EMAP2000), Hong Kong, 2000, pp86-90
[12]R.Darveaux,K.Banerji,A. Mawer and G. Dody,“Reliability of Plastic Ball Grid Array Assembly”,Ball Grid Array Technology, 1995,McGmw-Hill, pp379-442
[13]R.Darveaux,“Solder Joint Fatigue Life Model”,Design and Reliability of Solders and Solder Interconnections,1997, pp213-218.
[14]R. R. Tummala, “Fundamentals of Microsystem Packaging”, McGraw-Hill, 2001, ISBN 0-07-137169-9, pp. 401-402.
[15]Gao S, Holmes A.S. (2006) “Thermosonic flip chip interconnection using electroplated copper column arrays”IEEE TRANSACTIONS ON ADVANCED PACKAGING,Volume: 29,Pages 725-734,NOV 2006
[16]C. Bailey, S. Stoyanov(2004)“Reliability of Flip-Chip Interconnect for Fine Pitch Applications”,2004IEEE,School of Computing and Mathematical Sciences,University of Greenwich, Old Royal Naval College, London SE10 9LS
[17]Lu, H.Bailey, C.(2002)“Computer modelling of the reliability of flip chips with metal column bumping”2002 IEEE,page 967- 973
[18]Lu, H.Bailey, C.(2002)“Predicting Optimal Process for Flip-Chip Assembly Using Copper Column Bumped Dies”2002 IEEE, Electronics Packaging Technology Conference,page338- 343
[19]Syed, A. (2004) “Accumulated creep strain and energy density based thermal fatigue life prediction models for SnAgCu solder joints”, Proceedings of the 54th Electronic Components and Technology Conference, June 2004, Las Vegas, Nevada, USA, pp.737-746.
[20]廖文基“應用田口法於TFBGA掉落衝擊之最佳化設計” 成功大學工程科學系碩士畢業論文, 2008
[21]曾穗卿“利用有限元素與田口方法探討FCCSP構裝無鉛錫球之最佳化疲勞壽命” 功大學工程科學系博士畢業論文, 2006
[22]S. Wiese, “Constitutive Behavior of Lead-free Solders vs. Lead-containing Solders -Experiments on Bulk Specimens and Flip-Chip Joints” ,Electronic Components and Technology Conference, 2001.
[23]John H. Lau, “Modeling and Analysis of 96.5Sn-3.5Ag Lead-Free Solder Joints of Wafer Level Chip Scale package on Buildup Microvia Printed Circuit Board”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, No.1, pp. 51-58, January 2002.
[24]ANSYS Menu, “Structural Analysis User's Guide”
[25]萬政憲,“在熱循環作用下錫球結構與配置方式對 PBGA 構裝之可靠度探討”成功大學工程科學系碩士畢業論文, 1999.
[26]ANSYS Menu, “Modeling and Meshing Guide/ Nonlinear Structural Analysis, ” ANSYS 6.0, 8.3.1.1.1. Plastic Material Options.
[27]劉振中,“無鉛錫球含多層金屬薄膜之晶圓級封裝結構應力分析”, 成功大學工程科學系碩士畢業論文, 2003
[28]John H.Lau, C.P.Wong, John L.Prince, Wataru Nakayama“Electronic Packaging:Design,Materials,Process,andReliavility, ”1998,pag235-241
[29]W. W. Lee, L. T. Nguyen, and G. S. Selvaduray, “Solder Joint Fatigue Models: Review and Applicability to Chip Scale Packages,
[30]梁金條, “利用田口方法分析對WLCSP含UBM厚度與錫球形狀之最佳化分析, ” 成功大學工程科學系碩士畢業論文, 2005.
[31]李輝煌,“田口方法品質設計的原理與實務,”高立圖書有限公司, 2004
[32]張家豪,”以田口式品質工程分析QFN構裝體疲勞壽命之最佳化探討”成功大學工程科學系碩士畢業論文, 2007.
[33]Robert Kay, ”Advanced Microsystems Assembly using Screen Printing Technology”, IMAPS-UK MicroTech conference
[34]Bret A.Zahn”Solder Joint Fatigue Life Model Methodology For 63Sn37Pb and 95.5Sn4Ag0.5Cu Materials”, 2003 Electronic Components and Technology Conference
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊