跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 11:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊鴻
研究生(外文):Chun-hung Chen
論文名稱:應用普氏分析與遺傳演算法於形容詞語彙篩選
論文名稱(外文):The Application of Adjectives Selection Using Procrustes Analysis and Genetic Algorithm
指導教授:謝孟達謝孟達引用關係
指導教授(外文):Meng-dar Shieh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工業設計學系碩博士班
學門:設計學門
學類:產品設計學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:105
中文關鍵詞:感性工學系統變數篩選普氏分析遺傳演算法
外文關鍵詞:Genetic AlgorithmProcrustes Analysisvariables selectionKansei Engineering System
相關次數:
  • 被引用被引用:0
  • 點閱點閱:489
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的在於應用「普氏分析」(Procrustes Analysis,PA)與「遺傳演算法」(Genetic Algorithm,GA)來進行形容詞語彙挑選。研究中將是否挑選語彙視為基因編碼,被挑選者其基因編碼設為1,未被挑選者則設為0,參考普氏分析的評斷標準:普氏資料喪失度(Procrustes Loss,簡稱LOSS)做為適應函數,探討其語彙的挑選效果。最後,再與現有的形容詞語彙挑選方法:「逆向式篩選法」(Backward Elimination)進行挑選效果比較。
在進行感性工學研究時,研究者經常會使用「語意差異法」(Semantic Differential Method),藉以了解受測者對於產品的心理感受。在此過程中,研究者必頇採用適當的形容詞語彙(adjectives)對受測者進行問卷調查。而現今研究大部分仍使用主觀性較高的專家法對於形容詞語彙進行篩選。
本研究分為三個階段:首先,蒐集無線電話產品資料及相關形容詞語彙,進行問卷調查;接著,以GA進行遺傳演化,並以LOSS值做為適應函數基準來評估其演化結果,得到挑選後的形容詞語彙子集合;最後,將得到的結果與現有逆向式篩選法進行比較,再針對比較情形探討此方法的應用成效。
The purpose of this study is to apply Procrustes Analysis (PA) and Genetic Algorithm (GA) on selecting adjectives of products. In order to be evaluated with the criterion of PA, Procrustes Loss (LOSS), the results of adjectives selection are encoded into chromosomes. In the discussion of this study, the Backward Elimination method of PA is compared with the proposed method.
Most of the studies related to KES adopt the Expert Method as the first step of research, which means that the inappropriate adjectives are excluded by consulting the professionals. Accordingly, this method is relatively subjective since it relies on the authorities’ personal opinions. The result of selection may not be able to retain the objective adjectives that are more suitable for the subjects, and it would directly influence the final result and the effectiveness of the study.
This study is conducted with the following three steps: first, cordless telephone data and relative adjectives are collected to conduct a questionnaire survey; second, the proposed method is proceeded with a fitness function based on the Loss value to obtain the results of adjectives selection; third, the result obtained is compared with the present method, Backward Elimination, and the outperformance of the new method is discovered.
中文摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 IX
表目錄 XIV
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究範圍限制 3
1.4 論文架構說明 3
第二章 文獻探討 5
2.1 感性工學 5
2.1.1 感性工學定義 5
2.1.2 感性工學類型 6
2.1.3 感性工學近年相關文獻 8
2.1.4 感性工學未來研究方向 9
2.2 代表性形容詞語彙挑選 11
2.2.1 情感反應(Affective Response) 11
2.2.2 相關文獻探討 12
2.3 普氏分析應用於變數挑選的相關研究 13
2.4 遺傳演算法應用於變數挑選的相關研究 13
2.5 變數挑選方法與比較 14
2.6 文獻整理 15
2.7 小結 16
第三章 研究理論架構 17
3.1 親和圖法(KAWAKITA JIRO METHOD,簡稱KJ法) 17
3.2 語意差異法(SEMANTIC DIFFERENTIAL METHOD) 17
3.3 普氏分析(PROCRUSTES ANALYSIS,PA) 18
3.3.1 普羅克汝斯特斯(Procrustes)的故事 18
3.3.2 普氏資料喪失度(Procruste Loss,簡稱LOSS) 18
3.4 普氏分析應用於形容詞挑選 19
3.4.1 逆向式篩選法(Backward Elimination) 19
3.4.2 全變數子集合考量法(Selection of All Subsets of Variables) 20
3.5 普氏分析結合遺傳演算法 21
3.5.1 遺傳演算法(Genetic Algorithm,GA) 21
3.5.2 遺傳演算法(Genetic Algorithm,GA)的特性 22
3.5.3 遺傳演算法(Genetic Algorithm,GA)的架構 22
3.5.4 基因編碼(Encoding)與染色體(Chromosome) 23
3.5.5 適存函數(Fitness Function) 24
3.5.6 初始族群(Initial Population) 25
3.5.7 選擇(Selection) 26
3.5.8 交配(Crossover) 26
3.5.9 突變(Mutation) 30
3.5.10 停止條件(Termination) 30
3.5.11 普氏分析結合遺傳演算法流程 31
3.6 研究架構說明 32
第四章 研究步驟與分析 34
4.1 形容詞語彙蒐集 34
4.2 無線電話樣本蒐集 35
4.3 代表性樣本及形容詞語彙挑選 38
4.3.1 實施KJ法流程(形容詞語彙部分) 38
4.3.2 實施KJ法流程(無線電話樣本部分) 38
4.3.3 實施KJ法之過程及結果(大學部學生) 39
4.3.4 實施KJ法之過程及結果(研究所學生) 44
4.3.5 實施KJ法之結果歸納 49
4.4 無線電話造型與形容詞語彙意象感覺評分實驗 50
4.4.1 問卷內容與問卷介面 50
4.4.2 問卷資料統計 50
4.5 逆向式篩選法進行形容詞挑選 52
4.5.1 逆向式篩選法步驟 52
4.5.2 形容詞挑選結果 55
4.6 全變數子集合考量法進行形容詞挑選 58
4.6.1 全變數子集合考量法 59
4.6.2 形容詞挑選結果 62
4.7 普氏分析結合遺傳演算法進行形容詞挑選 64
4.7.1 停止條件設定 64
4.7.2 進行遺傳演算法(Genetic Algorithm,GA)演化 65
4.7.3 進行遺傳演算法(Genetic Algorithm,GA)效果測試 65
第五章 結論與未來展望 66
5.1 逆向式篩選法效果結論 66
5.1.1 形容詞挑選內容重複性檢視 66
5.1.2 形容詞挑選結果之LOSS值與排名檢視 68
5.2 普氏分析結合遺傳演算法效果結論 69
5.2.1 遺傳演算法(Genetic Algorithm,GA)測試結果 69
5.2.2 總運算量比較 84
5.2.3 測試結果總結 85
5.3 總結 86
5.4 研究貢獻 87
5.5 未來展望 88
參考文獻 89
附錄 93
1.Nagamachi, M., "Kansei Engineering: A new ergonomic consumer-oriented technology for product development." International Journal of Industrial Ergonomics, 1995. 15(1): p. 3-11.
2.Gower, J.C. and G.B. Dijksterhuis, "Procrustes Problems." 2004, London: Oxford University Press.
3.Mitchell, M., "An introduction to genetic algorithms." 1st ed. 1996, Cambrige, Massachusetts: The MIT Press.
4.Nagamachi, M., "Kansei Engineering." 1989, Tokyo: Kaibundo Publishing.
5.SCHUTTE, S.T.W., et al., "Concepts, methods and tools in Kansei Engineering." Theoretical Issues in Ergonomics Sciencs, 2004. 5(3): p. 214-231.
6.Matsubara, Y. and M. Nagamachi, "Hybrid Kansei Engineering System and design support." International Journal of Industrial Ergonomics, 1997. 19(2): p. 81-92.
7.Nagamachi, M., "Kansei engineering as a powerful consumer-oriented technology for product development." Applied Ergonomics, 2002. 33(3): p. 289-294.
8.Choi, K. and C. Jun, "A systematic approach to the Kansei factors of tactile sense regarding the surface roughness." Applied Ergonomics, 2007. 38(1): p. 53-63.
9.BARNES, C.J. and S.P. LILLFORD, "Affection design decision-making - issues and opportunities." CoDesign, 2007. 3: p. 135-146.
10.Llinares, C. and A. Page, "Application of product differential semantics to quantify purchaser perceptions in housing assessment." Building and Environment, 2007. 42(7): p. 2488-2497.
11.Lin, Y.-C., H.-H. Lai, and C.-H. Yeh, "Consumer-oriented product form design based on fuzzy logic: A case study of mobile phones." International Journal of Industrial Ergonomics, 2007. 37(6): p. 531-543.
12.Kim, G.J., et al., "Effects of Tactile Augmentation and Self-Body Visualization on Affective Property Evaluation of Virtual Mobile Phone Designs." Presence: Teleoperators & Virtual Environments, 2007. 16(1): p. 45-64.
13.Dahlgaard, J.J., S.S.a.E. Ayas, and S.M. Dahlgaard-Park, "Kansei/affective engineering design: A methodology for profound affection and attractive quality creation." The TQM Journal, 2008. 20(4): p. 299-311.
14.Lanzotti, A. and P. Tarantino, "Kansei engineering approach for total quality design and continuous innovation." The TQM Journal, 2008. 20(4): p. 324-337.
15.Barnes, C., et al., "Kansei engineering toolkit for the packaging industry." The TQM Journal, 2008. 20(4): p. 372-388.
16.Pearce, K.F. and S.Y. Coleman, "Modern-day perception of historic footwear and its links to preference." Journal of Applied Statistics, 2008. 35(2): p. 161-178.
17.Warell, A., "Multi-modal visual experience of brand-specific automobile design." The TQM Journal, 2008. 20(4): p. 356-371.
18.Nagamachi, M., "Perspectives and the new trend of Kansei / affective engineering." The TQM Journal, 2008. 20(4): p. 290-298.
19.Hsiao, K.A. and L.L. Chen, "Fundamental dimensions of affective responses to product shapes." International Journal of Industrial Ergonomics, 2006. 36(6): p. 553-564.
20.DELIN, J., et al., "Linguistic support for concept selection decisions." Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2007. 21(2): p. 123-135.
21.MOSIER, C.I., "Determining a simple structure when loadings for certain tests are known." Psychometrika, 1939. 4(2): p. 149-162.
22.Dinpashoh, Y., et al., "Selection of variables for the purpose of regionalization of Iran's precipitation climate using multivariate methods." Journal of Hydrology, 2004. 297(1-4): p. 109-123.
23.Dijksterhuis, G., M.B. Frost, and D.V. Byrne, "Selection of a subset of variables: minimisation of Procrustes loss between a subset and the full set." Food Quality and Preference, 2002. 13(2): p. 89-97.
24.Li-ning, X., C. Ying-wu, and C. Huai-ping, "An intelligent genetic algorithm designed for global optimization of multi-minima functions." Applied Mathematics and Computation, 2006. 178(2): p. 355-371.
25.Guyon, I. and A. Elisseeff, "An Introduction to Variable and Feature Selection." Journal of Machine Learning Research, 2003. 3: p. 1157-1182.
26.Sahmer, K. and E.M. Qannari, "Procedures for the selection of a subset of attributes in sensory profiling." Food Quality and Preference, 2008. 19(2): p. 141-145.
27.Gomez-Carracedo, M.P., et al., "Chemically driven variable selection by focused multimodal genetic algorithms in mid-IR spectra." Analytical and Bioanalytical Chemistry, 2007. 389(7-8): p. 2331-2342.
28.Kawakita, J., "KJ Method." 1986, Tokyo: Chuokoron-Sha.
29.OHIWA, H., K. KAWAI, and M. KOYAMA, "Idea Processor and the KJ Method." Information Processing Society of Japan, 1990. 13(1): p. 44-48.
30.Osgood, C.E., G.J. Suci, and P.H. Tannenbaum, "The Measurement of Meaning." 1967, Urbana.
31.Hurley, J.R. and R.B. Cattell, "The Procrustes Program: Producing Direct Rotation to Test a Hypothesized Factor Structure." Computers In Behavioral Science, 1962. 7: p. 258-262.
32.KRZANOWSKI, W.J., "Selection of Variables to preserve Multivariate Data Structure, using Principal Components." Applied Statistics, 1987. 36(1): p. 22-33.
33.Eiben, A.E. and J.E. Smith, "Introduction to Evolutionary Computing." 1 ed, ed. G. Rozenberg. 2003, New York: Springer.
34.Artacho-Ramirez, M.A., J.A. Diego-Mas, and J. Alcaide-Marzal, "Influence of the mode of praphical representation on the perception of product aesthetic and emotional features--An exploratory study." International Journal of Industrial Ergonomics, 2008. 38(11): p. 942-952.
35.Nishina, K., M. Nagata, and N. Ishii, "Structural analysis of steering wheel grip comfort by the semantic differential method." Proceedings of the Institution of Mechanical Engineers -- Part I -- Journal of Systems & Control Engineering, 2006. 220(8): p. 675-681.
36.Mondragon, S., P. Company, and M. Vergara, "Semantic Differential applied to the evaluation of machine tool design." International Journal of Industrial Ergonomics, 2005. 35(11): p. 1021-1029.
37.Alcantara, E., et al., "Application of product semantics to footwear design. Part I:comparison of two clog designs using individual and compared semantic profiles." International Journal of Industrial Ergonomics, 2005. 35(8): p. 713-725.
38.Petiot, J.-F. and B. Yannou, "Measuring consumer perceptions for a better comprehension, specification and assessment of product semantics." International Journal of Industrial Ergonomics, 2004. 33(6): p. 507-525.
39.Chuang, M.C., C.C. Chang, and S.H. Hsu, "Perceptual factors underlying user preferences toward product form of mobile phones." International Journal of Industrial Ergonomics, 2001. 27(4): p. 247-258.
40.Chuang, M.-C. and Y.-C. Ma, "Expressing the expected product images in product design of micro-electronic products." International Journal of Industrial Ergonomics, 2001. 27(4): p. 233-245.
41.Hsu, S.H., M.C. Chuang, and C.C. Chang, "A semantic differential study of designers' and users' product form perception." International Journal of Industrial Ergonomics, 2000. 25(4): p. 375-391.
42.Ishihara, S., et al., "An analysis of Kansei structure on shoes using self-organizing neural networks." International Journal of Industrial Ergonomics, 1997. 19(2): p. 93-104.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top