[1]李建興,貨幣需求結構改變與金融變數轉折區間:變數模糊時間序列模型,國立政治大學中山人文社會科學研究所博士論文,2000。[2]林原宏、鄭舜仁、吳柏林,模糊眾數及其在教育與心理評量分析之應用,中國統計學報,第41卷,頁39-66,2003。[3]吳柏林、張鈿富、廖敏治,模糊時間數列與台灣地區中學教師人數需求之預測,國立政治大學學報,第73卷,頁287-312,1996。[4]吳柏林、許毓云,模糊統計分析在台灣地區失業率應用,中國統計學報,第37卷,頁37-52,1999。
[5]徐歷常,台灣地區國小教師數之短期預測模式分析,教育與心理研究,第25卷,頁485-506,2002。[6]曹勝雄、曾國雄、江勁毅,傳統計量迴歸、模糊迴歸、GMDH、類神經四種方法在預測運用之比較---以國人赴港旅客需求之預測為例,中國統計學報,第34卷,頁132-161,1996。[7]曾淑惠,多變量模糊時間數列模式之應用:以台灣地區國中教師人數之預測為例,教育學刊,第21卷,頁195-223,2003。[8]曾淑惠,多變量模糊時間數列模式之應用---以台灣地區國小教師人數之預測為例,新竹師院學報,第18卷,頁275-294,2004。[9]曾淑惠、王志成,時間數列ARIMA模式與多變量模糊時間數列模式在預測運用上之比較---以總體經濟資料之預測為例,中國統計學報,第41卷,頁175-210,2003。[10]曾能芳,模糊隨機變數在線性迴歸上的應用,國立政治大學統計系博士論文,2002。[11]廖敏治,非穩定性模糊時間數列的模式建構與預測,中國統計學報,第40卷,第4期,頁453-481,2002。[12]Bezdek, J.-C., Pattern recognition with fuzzy objective function algorithms, New York: Plenum, 1981.
[13]Bocklisch, S. F. and Pässler, M., “Fuzzy time series analysis,” In: Hampel R, Wagenknecht M, Chaker N, editors. Advances in soft computing –fuzzy control. Heidelberg: Physica-Verlag, pp. 331–45, 2000.
[14]Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A., Graphical methods for data analysis, Duxtury, pp. 21-24, 57-60, 1983.
[15] Chen, S.-M., “Forecasting enrollments based on fuzzy time series,” Fuzzy Sets and Systems, vol. 81, pp. 311-319, 1996.
[16] Chen, S.-M. and Hwang, J.-R., “Temperature prediction using fuzzy time series,” IEEE Trans. on Systems, Man, and Cybernetics—Part B: Cybernetics, vol. 30, no. 2, pp. 263-275, April 2000.
[17] Chen, S.-M., “Forecasting enrollments based on high-order fuzzy time series,” Cybernetics and Systems: An International Journal, vol. 33, pp. 1-16, 2002.
[18] Chen, S.-M. and Hsu, C.-C., “A new method to forecast enrollments using fuzzy time series,” International Journal of Applied Science and Engineering, vol. 2, no. 3, pp. 234-244, 2004.
[19] Chen, S.-M. and Chung, N.-Y., “Forecasting enrollments using high-order fuzzy time series and Genetic algorithms,” International Journal of Intelligent Systems, vol. 21, pp. 485-501, 2006.
[20] Chen, T.-L., Cheng, C.-H., and Teoh, H. J., “Fuzzy time-series based on Fibonacci sequence for stock price forecasting,” Physica A, vol. 380, pp. 377-390, 2007.
[21] Cheng, C.-H., Chang, J.-R., and Yeh, C.-A., “Entropy-based and trapezoid fuzzification-based fuzzy time series approaches for forecasting IT project cost,” Technological Forecasting and Social Change, vol. 73, pp. 524-542, 2006.
[22] Cheng, C.-H., Chen, T.-L., Teoh, H. J., and Chiang, C.-H., “Fuzzy time series based on adaptive expectation model for TAIEX forecasting,” Expert Systems with Applications, vol. 34, pp. 1126-1132, 2008.
[23] Cheng, C.-H., Wang, J.-W., and Li, C.-H., “Forecasting the number of outpatient visits using a new fuzzy time series based on weighted-transitional matrix,” Expert Systems with Applications, vol. 34, pp. 2568-2575, 2008.
[24] Dougherty, J., Kohavi, R., and Sahami, M., “Supervised and unsupervised discretization of continuous features,” The 12th International Conference on Machine Learning, pp. 194-202, 1995.
[25] Hareter, D., “Time series analysis with non-precise data–part I,” Proceedings of the 9th Specialty Conference on Probabilistic Mechanics and Structural Reliability, Sandia National Laboratories, Albuquerque, 2004.
[26] Huarng, K., “Heuristic models of fuzzy time series for forecasting,” Fuzzy Sets and Systems, vol. 123, pp. 369-386, 2001(a).
[27] Huarng, K., “Effective lengths of intervals to improve forecasting in fuzzy time series,” Fuzzy Sets and Systems, vol. 123, pp. 387-394, 2001(b).
[28] Huarng, K. and Yu, H.-K., “A type 2 fuzzy time series model for stock index forecasting,” Physica A, vol. 353, pp. 445-462, 2005.
[29] Huarng, K. and Yu, T. H.-K., “The application of neural networks to forecast fuzzy time series,” Physica A, vol. 363, pp. 481-491, 2006(a).
[30] Huarng, K. and Yu, T. H.-K., “Ratio-based lengths of intervals to improve fuzzy time series forecasting,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 36, no. 2, pp. 328-340, April 2006(b).
[31] Huarng, K.-H., Yu, T. H.-K., and Hsu, Y. W., “A multivariate heuristic model for fuzzy time-series forecasting,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 37, no. 4, pp. 836-846, August 2007.
[32] Hwang, J. R., Chen, S.-M., and Lee, C. H., “Handling forecasting problems using fuzzy time series,” Fuzzy Sets and Systems, vol. 100, pp. 217-228, 1998.
[33] Hsu, Y.-Y., Tse, S.-M., and Wu, B., “A new approach of bivariate fuzzy time series analysis to the forecasting of a stock index,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 11, no. 6, pp. 671-690, 2003.
[34] Lee, C.-H. L., Liu, A., and Chen, W.-S., “Pattern discovery of fuzzy time series for financial prediction,” IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 5, pp. 613-625, May 2006.
[35] Lee, L.-W., Wang, L.-H., Chen, S.-M., and Leu, Y.-H., “Handling forecasting problems based on two-factors high-order fuzzy time series,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 3, pp. 468-477, 2006.
[36] Lee, L.-W., Wang, L.-H., and Chen, S.-M., “Temperature prediction and TAIFEX forecasting based on fuzzy logical relationships and genetic algorithms,” Expert Systems with Applications: An International Journal, vol. 33, pp. 539-550, 2007.
[37] Li, S.-T. and Chen, Y.-P., “Natural partitioning-based forecasting model for fuzzy time-series,” IEEE International Conference on Fuzzy Systems, Budapest, Hungary, July 25-29, 2004.
[38] Liu, H., Hussain, F., Tan, C. L., and Dash, M., “Discretization: An enabling technique,” Data Mining and Knowledge Discovery, vol. 6, no. 4, pp. 393-423, 2002.
[39] Möller, B. and Reuter, U., Uncertainty forecasting in engineering, Verlag Berlin Heidelberg: Springer, 2007.
[40] Möller, B. and Reuter, U., “Prediction of uncertain structural responses using fuzzy time series,” Computers and Structures, vol. 86, pp. 1123-1139, 2008.
[41] Own, C.-M. and Yu, P.-T., “Forecasting fuzzy time series on a heuristic high-order model,” Cybernetics and Systems: An International Journal, vol. 36, pp. 705-717, 2005.
[42] Song, Q. and Chissom, B. S., “Forecasting enrollments with fuzzy time series-part I,” Fuzzy Sets and Systems, vol. 54, pp. 1-9, 1993(a).
[43] Song, Q. and Chissom, B. S., “Fuzzy time series and its models,” Fuzzy Sets and Systems, vol. 54, pp. 269-277, 1993(b).
[44] Song, Q. and Chissom, B. S., “Forecasting enrollments with fuzzy time series-part II,” Fuzzy Sets and Systems, vol. 62, pp. 1-8, 1994.
[45] Sullivan, J. and Woodall, W. H., “A comparison of fuzzy forecasting and Markov modeling,” Fuzzy Sets and Systems, vol. 64, no. 3, pp. 279-293, 1994.
[46] Tsaur, R.-C., Yang, J.-C., and Wang, H.-F., “Fuzzy relation analysis in fuzzy time series model,” Computers and Mathematics with Applications, vol. 49, pp. 539-548, 2005.
[47] Versaci, M. and Morabito, F. C., “Fuzzy time series approach for disruption prediction in Tokamak reactors,” IEEE Transactions on Magnetics, vol. 39, no. 3, pp. 1503- 1506, 2003.
[48] Williamson, D. F., Parker, R. A., and Kendrick, J. S., “The box plot: A simple visual method to interpret data,” Annals of Internal Medicine, vol. 110, pp. 916-921, 1989.
[49] Yu, H.-K., “Weighted fuzzy time series models for TAIEX forecasting,” Physica A, vol. 349, pp. 609-624, 2005.
[50] Yu, T. H.-K. and Huarng, K.-H., “A bivariate fuzzy time series model to forecast the TAIEX,” Expert Systems with Applications, vol. 34, pp. 2945-2952, 2008.
[51] Zadeh, L. A., “Fuzzy Sets,” Information and Control, vol. 8, pp. 338-53, 1965.