(3.237.97.64) 您好!臺灣時間:2021/03/03 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝栢源
研究生(外文):Bar-Yuan Hsieh
論文名稱:主鏈含不同發光基團之共聚芴的合成、光電性質與其在白光元件的應用
論文名稱(外文):Copolyfluorenes Slightly Doped with Chromophores: Synthesis, Optoelectronic Properties and Applications in White-Light-Emitting Diodes
指導教授:陳雲陳雲引用關係
指導教授(外文):Yun Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:186
中文關鍵詞:有機發光二極體共軛高分子
外文關鍵詞:copolyfluorenepolymerlight-emitting diodes (PLED)conjugated polymer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
White organic light-emitting diodes (WOLEDs) have received considerable attention due to their potential application in solid-state lighting and in backlight for liquid crystal displays. Among these devices, white-light OLEDs based on semiconducting polymers (PLEDs) are of particular interest for their facile solution processability that allows spin-coating and printing methods to be utilized for the fabrication of large-area-display devices. Through color mixing method, white-light-emitting devices could be readily obtained. In this dissertation, we devoted to design and prepare new copolyfluorenes to be applied in white-light-emitting devices. The copolyfluorenes were chemically doped (0.0025~50 mol%) with chromophores that emitted green or reddish orange light. The dominant parts of the copolyfluorenes were fluorene segments which acted as blue-emitting host. The guests (chromophores) were derived from seven new dibromo monomers, respectively, which are based on DCM, distyrylbenzene, phenothiazine, thiophene, and triphenylamine moieties. These monomers were incorporated into polyfluorene backbone through the palladium-catalyzed Suzuki coupling reaction. All new synthesized monomers and polymers were identified by 1H NMR, FT-IR, and elemental analysis (EA). Thermal properties of the polymers were determined using TGA and DSC. The optical (UV and PL), electrochemical (CV), and electroluminescent properties of these polymers were investigated in detail.
In chapter 4, 5 and 7, four chromophores (DCM, R, PhT and ThT) were designed and their corresponding dibromo monomer synthesized. Their PL emissions located at 522~586 nm region. They were incorporated into polyfluorene to prepare copolyfluorenes with various contents of chromophores. The PLED devices exhibiting dichromatic white-light- emission were realized by using the copolyfluorenes as emitting layer. The EL devices of blends from PF and PFD0.5 (w/w = 4/1 or 9/1) exhibited near white light emission with the CIE coordinates being (0.33, 0.35) and (0.32, 0.34). The PFR devices showed a broad emission band, covering the entire visible region, with chromaticity coordinates being (0.36, 0.35) and (0.32, 0.30) for PFR1 and PFR2 devices, respectively. The maximum brightness and current efficiency of the PFR2 device were 3011 cd/m2 and 1.98 cd/A, respectively. Blending PFPhT2 with PF (w/w = 10/1), the dichromatic white-light emission was realized with the maximum brightness, maximum current efficiency, and CIE coordinates being 10600 cd/m2, 1.85 cd/A, and (0.31, 0.33), respectively.
In chapter 6 and 8, three chromophores (MG, TP and TT) were designed and their corresponding dibromo monomers synthesized. Their PL emissions located at 492~536 nm. Copolyfluorenes with varied chromophore contents were prepared from the dibromo monomers. The PLED devices using the copolyfluorenes as emitting layer displayed both blue and green colors. When doping with red-emitting iridium complex, Ir(piq)2(acac), the trichromatic white-light emission was obtained. The trichromatic white EL device was fabricated by using the PFG2 as the host to blend with the iridium complex; the maximum brightness and CIE coordinate was 4120 cd/m2 and (0.31, 0.28), respectively. The other trichromatic white-light emission was realized through blending PFTT1 with polyfluorene and a red-emitting iridium complex, in which the maximum brightness and CIE coordinates were 6880 cd/m2 and (0.31, 0.33), respectively.
Abstract I
Acknowledgments III
Contents V
List of Schemes VIII
List of Tables IX
List of Figures X


Chapter 1 General Introduction 1
Chapter 2 Review and Theoretical Background 5
2-1 Development Background of Electroluminescence 5
2-2 Electroluminescent Materials 10
2-2-1 Polymeric EL Materials 10
2-2-2 Conjugated polymers 11
2-2-3 Common Polymerization for Electroluminescent Polymers 13
2-3 The basic principle 18
2-3-1 Theory of fluorescence and phosphorescence 18
2-3-2 The Quantum Yield 21
2-3-3 The Emission of Intermolecular Interaction 21
2-3-4 Förster and Dexter Energy Transfer 25
2-4 The Electroluminescent Device 28
2-4-1 Single-layer devices 32
2-4-2 Multi-layer PLED devices 34
2-5 Human vision 35
2-5-1 Light receptors of the human eye 35
2-5-2 Color matching functions and chromaticity diagram 35
2-5-3 Additive color mixing 38
2-6 White-light-emitting devices 40
2-6-1 Multiple emissive layers 40
2-6-2 Multiple dopants emissive layer 42
2-7 Research motivation 48
Chapter 3 Experimental Section 51
3-1 Instruments for Chemical Synthesis 51
3-2 Measurements 51
3-3 Materials 55
3-4 Schemes of Monomers and Polymers 57
3-4-1 Synthesis of Monomers 57
3-4-2 Synthesis of Copolymers 64
Chapter 4 Synthesis, Photophysics and Electroluminescence of Copolyfluorenes Containing DCM Derivatives 87
4-1 Introduction 87
4-2 Experimental Section 89
4-3 Result and Discussion 90
4-3-1 Synthesis and Characterization 90
4-3-2 Photophysical Properties 92
4-3-3 Electrochemical Properties 97
4-3-4 Electroluminescent Properties 98
4-4 Conclusion 101
Chapter 5 Polyfluorenes Minimally Doped with 1,4-Bis(2-thienyl-2-cyanovinyl) benzene Chromophore: Their Synthesis, Characterization, and Application to White-Light-Emitting Materials 103
5-1 Introduction 103
5-2 Experimental Section 105
5-3 Results and Discussion 106
5-3-1 Synthesis and Characterization 106
5-3-2 Photophysical Properties 107
5-3-4 Electrochemical Properties 109
5-3-4 Electroluminescence Properties 111
5-4 Conclusion 115
Chapter 6 Synthesis, Characterization and Application of Light-Emitting Copolyfluorenes Slightly Doped with Distyrylbenzene Derivatives 117
6-1 Introduction 117
6-2 Experimental Section 119
6-3 Results and Discussion 120
6-3-1 Synthesis and Characterization 120
6-3-2 Photophysical Properties 121
6-3-3 Electrochemical Properties 123
6-3-4 Electroluminescent Properties 126
6-4 Conclusion 130
Chapter 7 Copolyfluorenes Containing Phenothiazine or Thiophene Derivatives: Synthesis, Characterization, and Application in White-Light-Emitting Diodes 131
7-1 Introduction 131
7-2 Experimental Section 133
7-3 Results and Discussion 135
7-3-1 Synthesis and Characterization 135
7-3-2 Photophysical Properties 136
7-3-3 Electrochemical Properties 139
7-3-4 Electroluminescent Properties 141
7-4 Conclusion 145
Chapter 8 Synthesis of Copolyfluorenes Containing Green Chromophores Based on Triphenylamine Unit and Their Application in Light-Emitting Diodes 147
8-1 Introduction 147
8-2 Experimental Section 149
8-3 Results and Discussion 151
8-3-1 Synthesis and Characterization 151
8-3-2 Photophysical Properties 153
8-3-3 Electrochemical Properties 157
8-3-4 Electroluminescent Properties 159
8-4 Conclusion 164
Chapter 9 Conclusion 165
References and Notes 169
Appendix
Currculum Vitae 183
List of Publication 185
List of Schemes
Scheme 2-1 Chemical structures of PMOT, PCHT, PTOPT and POPPPVC 42
Scheme 3-1 The synthetic procedures of monomer DCM-Br 57
Scheme 3-2 The synthesized procedures of monomer G-Br and R-Br 60
Scheme 3-3 The synthetic procedures of monomers PhT-Br and ThT-Br 61
Scheme 3-4 The synthetic procedures of monomers TP-Br and TT-Br 63
Scheme 3-5 The synthetic procedures of copolyfluorenes PFD 64
Scheme 3-6 The synthetic procedures of copolyfluorenes PFG and PFR 65
Scheme 3-7 The synthetic procedures of copolyfluorenes PFPhT and PFThT 65
Scheme 3-8 The synthetic procedures of copolyfluorenes PFTP and PFTT 66
Scheme 4-1 The structure of the dibromo monomer DCM-Br 88
Scheme 4-2 The synthetic procedure of the copolymer PFD 89
Scheme 5-1 The synthetic procedure of model compound (MR) and dibromo monomer (R-Br) 105
Scheme 5-2 The synthetic procedure of copolyfluorene PFR 106
Scheme 6-1 The synthetic procedure of model compound (MG), dibromo monomer (G-Br) and the copolymers (PFG) 119
Scheme 7-1 The structures of the dibromo monomers (TP-Br and TT-Br) 133
Scheme 7-2 The synthetic procedures of dibromo monomers (PhT-Br and ThT-Br) and copolymers (PFPhT and PFThT) 134
Scheme 8-1 The structures of the dibromo monomers TP-Br and TT-Br 149
Scheme 8-2 The synthetic procedures of dibromo monomers (PT-Br and TT-Br) and copolymers (PFTP and PFTT) 150
Scheme 9-1 Chemical structures of dibromo monomers (chromophore precursors) 165


List of Tables
Table 1-1 The comparisons of all kinds of displays. 1
Table 1-2 The characterization of all kinds of displays. 1
Table 1-3 Comparison of OLEDs and LCDs. 3
Table 2-1 The comparison of EL polymers and small molecules. 9
Table 2-2 Colors and associated typical wavelength ranges. 36
Table 4-1 Polymerization Results and Characterization of the Copolymers. 91
Table 4-2 Photophysical Properties of the PFD. 93
Table 4-3 Electrochemical Potentials of the PFD. 97
Table 4-4 Electroluminescent Properties of the PFD and Blend Devices. 99
Table 5-1 Characterization Properties of the Copolymers. 107
Table 5-2 Photophysical Properties of the Copolymers. 109
Table 5-3 Electrochemical Potentials of the MR and Polymers. 110
Table 5-4 Electroluminescent Properties of the Devices. 113
Table 6-1 Characterization Properties of PF and PFG. 121
Table 6-2 Optical Properties of MG, PF and PFG. 122
Table 6-3 Electrochemical Potentials of the MG, PF and PFG. 124
Table 6-4 Electroluminescent Properties of the Devices. 127
Table 6-5 Electroluminescent Properties of the Blend Devices. 129
Table 7-1 Polymerization Results and Characterization of the Copolymers. 135
Table 7-2 Photophysical Properties of Monomers, PF, and Copolyfluorenes. 138
Table 7-3 Electrochemical Potentials of Monomers and Copolymers. 141
Table 7-4 Electroluminescent Properties of the Devices. 142
Table 7-5 Electroluminescent Properties of the Blend Devices. 144
Table 8-1 Polymerization Results and Characterization of the Polymers. 152
Table 8-2 Photophysical Properties of the Polymers. 152
Table 8-3 Electrochemical Potentials of the Polymers. 158
Table 8-4 Electroluminescent Properties of the LED Devices. 161
Table 8-5 Electroluminescent Properties of the Blend Devices. 163
Table 9-1 The Photophysical and Chemical Properties of the chromophores. 166
Table 9-2 The Electroluminescent Properties of the White-Light-Emitting Devices. 168

List of Figures
Figure 1-1-1 The configuration of the OLEDs and LCDs 2
Figure 2-1-1 The relationship between the brightness and the current density in an OLED made of an anthracene single crystal 5
Figure 2-1-2 The structures of Alq3 and aromatic diamine 5
Figure 2-1-3 (a) The bilayer device of Alq3 (Kodak); (b) the single layer device of PPV (CDT) 6
Figure 2-1-4 The electroluminescent mechanism 7
Figure 2-1-5 Configurations of typical EL devices 8
Figure 2-2-1 Type of EL materials 10
Figure 2-2-2 Core structures of widely used emissive conjugated polymers 11
Figure 2-2-3 PPV derivatives with alkyl and alkoxy substituents 11
Figure 2-2-4 Examples of the PPP derivatives 12
Figure 2-2-5 Examples of PF homopolymer and its derivatives 12
Figure 2-2-6 PT homopolymer and regiochemistry of poly(alkylthiophene)s 13
Figure 2-2-7 The Friedel-Craft polymerization 13
Figure 2-2-8 The McCullough Methode of PTs 14
Figure 2-2-9 Heck reaction for the synthesis of PPVs 14
Figure 2-2-10 Suzuki coupling for the polymerization 15
Figure 2-2-11 Stille coupling reaction for the synthesis of copolymers 15
Figure 2-2-12 Synthesis of PPVs polymers through the Wittig reaction 15
Figure 2-2-13 Synthesis of PPV polymers through the Wittig-Horner condensation 16
Figure 2-2-14 Synthesis of CN-PPV via Knoevenagel condensation reaction 16
Figure 2-2-15 Synthesis of MEH-PPV through the Gilch route 16
Figure 2-2-16 Synthesis of PFs using Yamamoto coupling 17
Figure 2-3-1 The electron spins of the ground state and excited states 18
Figure 2-3-2 The energy-level diagram for a typical photoluminescent molecule 19
Figure 2-3-3 The spectral shift of TDBC (a) and rod-like arrangements (b) in aggregation 22
Figure 2-3-4 Exciton splitting in dimers for parallel and head-to-tail geometries of the constituent molecules 23
Figure 2-3-5 The mechanism of excimer (or exciplex) formation 24
Figure 2-3-6 Schematic of chain packing for the Monte Carlo global minimum in MEH-PPV and CN-PPV 24
Figure 2-3-7 Poly(fluorene) derivatives with large side groups (left) or spiro architecture (right) 25
Figure 2-3-8 An EL polymer was observed formation of electroplex 25
Figure 2-3-9 The reabsorption processes 26
Figure 2-3-10 The mechanism of Förster and Dexter energy transfer 26
Figure 2-3-11 The Förster type energy transfer 27
Figure 2-3-12 The excited energy of Alq3 transfer to DCM 28
Figure 2-3-13 The Dexter type energy transfer 28
Figure 2-4-1 Schematic illustration on the left depicting the general structure of a two-layer PLED device (left) and the energy band diagram (right). 29
Figure 2-4-2 Electronic properties of typical electrode metals 31
Figure 2-4-3 Energy level diagram of a two-layer PLED device under forward bias. 32
Figure 2-4-4 The EL device efficiency 33
Figure 2-4-5 Structure of multi-layer devices 34
Figure 2-5-1 (a) Cross section through human eyes. (b) Schematic view of retina including rod and cone light receptor. 35
Figure 2-5-2 Eye sensitivity function (left ordinate) and luminous efficacy, measured in lumens per Watt of optical power (right ordinate) 36
Figure 2-5-3 1931 CIE xyz color matching functions 37
Figure 2-5-4 The 1931 CIE chromaticity coordinates 38
Figure 2-5-5 Principle of color mixing illustrated with two or three light sources 39
Figure 2-6-1 The EL device with multiple emissive layers 40
Figure 2-6-2 EL spectrum and device structure of the trichromatic white light device (Kodak) 41
Figure 2-6-3 EL spectra of device III (n-hexane) and IV (toluene). Device configuration: ITO/PVK/C12O-PPP/Ca/Ag 41
Figure 2-6-4 WOLED devices with emissive layer containing multiple dopants 42
Figure 2-6-5 Chemical structures of the materials and the EL spectra of the white emitting devices 44
Figure 2-6-6 Molecular structures and the EL spectra of the device measured at various voltages 45
Figure 2-6-7 Chemical structure of PFO-DBTx-BTy and EL spectra of the PFO-R010-G018 device under different operating voltages 46
Figure 2-6-8 Chemical structure of PFIrRG and EL spectra of the PFIrR1G03 device under different operating voltages 47
Figure 2-7-1 Schematic the chemical structures of the copolyfluorenes 48
Figure 2-7-2 Illustrated the dichromatic or trichromatic white-light-emission 49
Figure 3-2-1 The DSC instrument 52
Figure 3-2-2 Four types of absorption transition 53
Figure 3-2-3 An overall view of CV experiment 54
Figure 3-2-4 Mechanism of tapping-mode AFM 55
Figure 3-4-1 The 1H NMR spectrum of compound 2 66
Figure 3-4-2 The 1H NMR spectrum of compound 4 67
Figure 3-4-3 The 1H NMR spectrum of compound 5 67
Figure 3-4-4 The 1H NMR spectrum of compound 6 68
Figure 3-4-5 The 1H NMR spectrum of compound 7 68
Figure 3-4-6 The 1H NMR spectrum of compound 8 69
Figure 3-4-7 The 1H NMR spectrum of compound 9 69
Figure 3-4-8 The 1H NMR spectrum of monomer DCM-Br 70
Figure 3-4-9 The 1H NMR spectrum of monomer G-Br 70
Figure 3-4-10 The 1H NMR spectrum of monomer R-Br 71
Figure 3-4-11 The 1H NMR spectrum of monomer 11 71
Figure 3-4-12 The 1H NMR spectrum of monomer PhT-Br 72
Figure 3-4-13 The 1H NMR spectrum of monomer ThT-Br 72
Figure 3-4-14 The 1H NMR spectrum of monomer 15 73
Figure 3-4-15 The 1H NMR spectrum of monomer TP-Br 73
Figure 3-4-16 The 1H NMR spectrum of monomer TT-Br 74
Figure 3-4-17 The 1H NMR spectrum of copolymer PFD0.5 74
Figure 3-4-18 The 1H NMR spectrum of copolymer PFD1 75
Figure 3-4-19 The 1H NMR spectrum of copolymer PFD5 75
Figure 3-4-20 The 1H NMR spectrum of copolymer PFD10 76
Figure 3-4-21 The 1H NMR spectrum of copolymer PFD25 76
Figure 3-4-22 The 1H NMR spectrum of copolymer PFD50 77
Figure 3-4-23 The 1H NMR spectrum of copolymer PFR1 77
Figure 3-4-24 The 1H NMR spectrum of copolymer PFR2 78
Figure 3-4-25 The 1H NMR spectrum of copolymer PFG1 78
Figure 3-4-26 The 1H NMR spectrum of copolymer PFG2 79
Figure 3-4-27 The 1H NMR spectrum of copolymer PFG3 79
Figure 3-4-28 The 1H NMR spectrum of copolymer PFG4 80
Figure 3-4-29 The 1H NMR spectrum of copolymer PFPhT1 80
Figure 3-4-30 The 1H NMR spectrum of copolymer PFPhT2 81
Figure 3-4-31 The 1H NMR spectrum of copolymer PFThT1 81
Figure 3-4-32 The 1H NMR spectrum of copolymer PFThT2 82
Figure 3-4-33 The 1H NMR spectrum of copolymer PFTP1 82
Figure 3-4-34 The 1H NMR spectrum of copolymer PFTP2 83
Figure 3-4-35 The 1H NMR spectrum of copolymer PFTP3 83
Figure 3-4-36 The 1H NMR spectrum of copolymer PFTT1 84
Figure 3-4-37 The 1H NMR spectrum of copolymer PFTT2 84
Figure 3-4-38 The 1H NMR spectrum of copolymer PFTT3 85
Figure 4-1 (a) absorption and (b) PL spectra of the PFD and the dibromo monomers in chloroform (1×10-5 M) 92
Figure 4-2 Photoluminescence of the PFD solutions (1×10-5 M in chloroform) under irradiation with 365 nm light 94
Figure 4-3 PL spectra of the polymers in the film state (excitation wavelength: 380 nm) 95
Figure 4-4 PL spectra of the blend film from PF and PFD25 (excited by 500 nm). The values are the molar percent of the chromophores in the blends 96
Figure 4-5 Cyclic voltammograms of DCM, PFD0.5, and PFD50 films coated on Pt electrode (scan rate: 100 mV/s) 96
Figure 4-6 EL spectra of the devices (ITO/PEDOT:PSS/polymer/Ca/Al) 98
Figure 4-7 Current density-voltage (●: PFD5, ○: Blend-20) and brightness-voltage (▲: PFD5, △: Blend-20) characteristics of the EL devices 99
Figure 4-8 Emission spectra of the EL devices from PFD0.5, Blend-20, Blend-10, and Blend-5. The values after the hyphen are the molar percent of PFD0.5 in the blends (PF + PFD0.5) 100
Figure 4-9 EL spectra of Blend-20 device under different operating voltages. The values in the parentheses are the 1931 CIE coordinates (x, y) of the emission light 101
Figure 5-1 Absorption and PL spectra of the polymers (excitation: 385 nm) and MR (excitation: 450 nm) in chloroform (1×10-5 M) 108
Figure 5-2 Absorption and PL spectra of the polymers (excitation: 385 nm) and MR (in PMMA and excitation: 450 nm) in the film state 109
Figure 5-3 Optimized geometries obtained from minimizing energy calculations for PFR 110
Figure 5-4 The EL spectra of the polymer devices [ITO/PEDOT:PSS/polymer/Ca(50 nm)/Al(100 nm)] 111
Figure 5-5 Current density-bias (●: PF, ▼: PFR1, ■: PFR2) and brightness-bias (○: PF, ▽: PFR1, □: PFR2) characteristics of the EL devices 112
Figure 5-6 The EL spectra of the blending devices [ITO/PEDOT:PSS/polymer/Ca(50 nm)/Al(100 nm)]. MR1: MR/PVK = 1/2; MR2: MR/PVK = 1/20; PFR: PFR/PVK = 1/1 114
Figure 6-1 Absorption and PL spectra of the PF (excitation: 385 nm) and MG dispersed in PMMA (blending ration: MG/PMMA = 1/14) in the film state; excitation: 350 nm 121
Figure 6-2 Absorption and PL spectra of PF and PFG (excitation: 385 nm): (a) in chloroform (1×10-5 M), (b) in the film state 122
Figure 6-3 Cyclic voltammograms of MG, PFG4, and PF films coated on glassy carbon working electrode (scan rate: 5 mV/s) 123
Figure 6-4 Energy band diagram of PF and green model MG 124
Figure 6-5 Optimized geometries and molecular orbital of linked fluorene and MG chromophore in PFG obtained from semi-empirical MNDO calculation 125
Figure 6-6 Emission spectra of the EL devices measured at ca. 1000 cd/m2; device structure: ITO/PEDOT:PSS/polymer/Ca(50 nm)/Al(100 nm) 126
Figure 6-7 (a) Brightness-voltage and (b) current density-voltage characteristics of the EL devices (●: PF, ▲: PFG1, ■: PFG2, ♦: PFG3, ▼:PFG4) 128
Figure 6-8 EL spectra of the WPLED devices measured at ca. 1000 cd/m2; device structure: ITO/PEDOT:PSS/emitting layer/Ca(50 nm)/Al(100 nm) 129
Figure 6-9 The CIE coordinates of the EL devices based on PFG doped with iridium complexes 130
Figure 7-1 TGA thermograms and DSC traces (inset) of the copolymers recorded at a heating rate of 20 oC /min 135
Figure 7-2 Absorption and PL spectra of (a) PF, PFPhT and PhT-Br; (b) PF, PFThT and ThT-Br in chloroform (1×10-5 M) 137
Figure 7-3 Normalized PL spectra of (a) PF, PFPhT and PhT-Br; (b) PF, PFThT and ThT-Br in the film state. The PhT-Br and ThT-Br were dispersed in PMMA (6.7 wt%) 139
Figure 7-4 Cyclic voltammograms of monomer (PhT-Br, ThT-Br) and copolymer films coated on glassy carbon electrode (scan rate: 20 mV/s) 140
Figure 7-5 Current density-bias (a) and brightness-voltage (b) characteristics of the EL devices 142
Figure 7-6 EL spectra of LED devices 143
Figure 7-7 EL spectra of the blend devices 143
Figure 8-1 Absorption (a) and PL spectra (b) of polymers (excitation: 385 nm) in chloroform (1×10-5 M) 153
Figure 8-2 PL spectra of (a) PFTP and (b) PFTT in film state (excitation: 385 nm) 154
Figure 8-3 PL spectra of PFTT3: (a) in chloroform; (b) in film state blending with PF (weight ratio = PFTT3/PF) 155
Figure 8-4 Cyclic voltammograms of the polymers (PF, PFTP3, PFTT3) films coated on glassy carbon electrode (scan rate: 20 mV/s) 157
Figure 8-5 EL spectra of the LED devices [ITO/PEDOT:PSS/polymer/Ca(50 nm)/Al(100 nm)]; obtained at maximum luminance for PFTP3 and PFTT3 devices or at ca. 1000 cd/m2 for other devices. 159
Figure 8-6 Current density-bias (a) and brightness-voltage (b) characteristics of the LED devices; device configuration: ITO/PEDOT:PSS/polymer/Ca(50 nm)/Al(100 nm). 160
Figure 8-7 EL spectra of the blend devices (at ca. 1000 cd/m2). Device configuration: ITO/PEDOT:PSS/emitting layer/Ca(50 nm)/Al(100 nm), compositions of the emitting layers are described in Table 8-5. 162
1.Destriau, G. J. Chem. Phys. 1936, 33, 587.
2.Ohnishi, H. Ann. Rev. Mater. Res. 1989, 19, 101.
3.In Electronic display devices, Matsumoto, S., Ed. Wiley: New York, 1990; Chapter 5, p 180.
4.Pope, M.; Kallmann, H.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
5.Tang, C. W.; Van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
6.Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539.
7.Friend, R.; Burroughes, J.; Bradley, D. WO Patent 90/13 148, 1990.
8.Friend, R.; Burroughes, J.; Bradley, D. US Patent 5 247 190, 1993.
9.Wessling, R.; Zimmerman, R. US Patent 3 401 152, 1968.
10.Wessling, R.; Zimmerman, R. US Patent 3 706 677, 1972.
11.Wessling, R. J. Polym. Sci. Polym. Symp. 1985, 72, 55.
12.Bradley, D. D. C. Synth. Met. 1993, 54, 401.
13.Crawford, M. G.; Steranka, F. M. Encycl. of Appl. Phys. 1994, 8, 485.
14.Hsieh, B. R.; Antoniades, H.; Abkowitz, M. A.; Stolka, M. Polymer Preprints 1993, 33, 128.
15.Rikken, G. L. J. A.; Kessener, Y. A. R. R.; Braun, D.; Starring, E. G. J.; Demandt, R. Synth. Met. 1994, 67, 115.
16.Ettedugi, E.; Razafitrimo, H.; Park, K. T.; Gao, Y.; Hsieh, B. R. Surface and Interface Analysis 1995, 23, 89.
17.Dini, D. Chem. Mater. 2005, 17, 1933.
18.Braun, D.; Heeger, A. Appl. Phys. Lett. 1991, 58, 1982.
19.Miyashita, K.; Kaneko, M. Synth. Met. 1995, 68, 161.
20.Gin, D. L.; Conticello, V. P. Trends Polym. Sci. 1996, 4, 217.
21.Hamaguchi, M.; Sawada, H.; Kyokane, J.; Yoshino, K. Chem. Lett. 1996, 527.
22.Bernius, M.; Inbasekaran, M.; Woo, E.; Wu, W. S.; Wujkowski, L. J. Mater. Sci. Mater. Electron. 2000, 11, 11.
23.Inbasekaran, M.; E.Woo; Wu, W. S.; Bernius, M.; Wujkowski, L. Synth. Met. 2000, 111, 397.
24.Bradley, D. D. C.; Greel, M.; Grice, A.; Tajbakhsh, A. R.; O'Brien, D. F.; Bleyer, A. Opt. Mater. 1998, 9, 1.
25.Liu, B.; Yu, W. L.; Lai, Y.; Huang, W. Chem. Mater. 2001, 13, 1984.
26.Grice, A. W.; Bradley, D. D. C.; Bernius, M. T.; Inbasekaran, M.; Wu, W. W. Appl. Phys. Lett. 1998, 73, 629.
27.Leclerc, M.; Diaz, F. M.; Wegner, G. Macromol. Chem. 1989, 190, 3105.
28.Mao, H.; Holdcroft, S. Macromolecules 1992, 25, 554.
29.Mao, H.; Xu, B.; Holdcroft, S. Macromolecules 1993, 26, 1163.
30.Andersson, M. R.; Selse, D.; Berggren, M.; Jarvinen, H.; Hjertberg, T.; Inganas, O.; Wennerstrom, O.; Osterholm, J. E. Macromolecules 1994, 27, 6503.
31.McCullough, R. D.; Lowe, R. D.; Jayaraman, M.; Anderson, D. L. J. Org. Chem. 1993, 58, 904.
32.McCullough, R. D.; Williams, S. P.; Tristram-Nagle, S.; Jayaraman, M.; Ewbank, P. C.; Miller, L. Synth. Met. 1995, 69, 279.
33.Chen, T. A.; Wu, X.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 233.
34.Kocacic, P.; Kyriakis, A. J. Am. Chem. Soc. 1963, 85, 454.
35.Mccullough, R. D. Adv. Mater. 1998, 10, 93.
36.Scherf, U. Top. Curr. Chem. 1999, 201, 164.
37.Hadziioannou, G.; Hutten, v. P. F., Semiconducting Polmers. Wiely: Germany, 2000; chapter 16.
38.Suzuki, A. Pure Appl. Chem. 1991, 63, 419.
39.Chen, S.-H.; Chen, Y. Macromolecules 2005, 38, 53.
40.Lögdlund, M.; Salaneck, W. R.; Meyers, F.; Brédas, J. L.; Arbuckle, G. A.; Friend, R. H.; Holmes, A. B.; Froyer, G. Macromolecules 1993, 26, 3815.
41.Stille, J. K. Amgew. Chem. Int. Ed. 1986, 25, 508.
42.Lawrence, N. J., The Wittig Reactions and Related Methods in Preparation of Alkenes: A Practical Approach. Oxford University: New York, 1996.
43.Laue, T.; Plagens, A., Named Organic Reactions. 2nd Ed.; John Wiley& Sons: New York, 1999.
44.Conticello, V. P.; Gin, D. L.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 9708.
45.Gilch, H. G.; Wheelwright, W. L. J. Polym. Sci. 1966 A-1, 1337.
46.Hsieh, B. R.; Yu, Y.; Lee, H. K.; Vanlaeken, A. C. Macromolecules 1997, 30, 8094.
47.Scherf, U.; List, E. J. W. Adv. Mater. 2002, 14, 477.
48.Yamamoto, T.; Morita, A.; Muyazaki, Y.; Maruyama, T.; Wakayama, H.; Zhou, Z.-H.; Nakamura, Y.; Kanbara, T.; Sasaki, S.; Kubota, K. Macromolecules 1992, 25, 1214.
49.Klaerner, G.; Miller, R. D. Macromolecules 1998, 31, 2007.
50.Kreyenschimdt, M.; Klaerner, G.; Fuhrer, T.; Ashenhurst, J.; Karg, S.; Chen, W.; Lee, V. Y.; Scott, J. C.; Miller, R. D. Macromolecules 1998, 31, 1099.
51.Strukelj, M.; Papadimitrakopoulos, F.; Miller, T. M.; Rothberg, L. J.; Chandross, E. A. Science 1995, 117, 11976.
52.Skoog, D. A.; Holler, F. J.; Nieman, T. A., Principles of Instrumental Analysis. In Saunders Golden Sunburst Series, 5th ed.; 1998; chapter 15.
53.Cornil, J.; Beljonne, D.; Santos, D. A.; Bredas, J. L. Synth. Met. 1996, 76, 101.
54.Woo, H. S.; Lhost, O.; Graham, S. C.; Bre´das, J. L.; Schenk, R.; Mullen, K. Synth. Met. 1993, 59, 13.
55.Tian, B.; Zerbi, G.; Schenk, R.; Mullen, K. J. Chem. Phys. 1991, 95, 3191.
56.Lee, Y. Z.; Chen, X.; Chen, M.-C.; Chen, S.-A.; Hsu, J.-H.; Fann, W. Appl. Phys. Lett. 2001, 79, 308.
57.May, V.; Kuhn, O., Charge and Energy Transfer Dynamics in Molecular Systems. Wiley-VCH: 2003.
58.Pope, M.; Swenberg, C. E., Electronic Processes in Organic Crystals. Clarendon Press: Oxford, 1982.
59.Knox, R. S. J. Phys. Chem. 1994, 98, 7270.
60.Yassar, A.; Horowitz, G.; Valat, P.; Wintgens, V.; Hymene, M.; Deloffre, F.; Srivastava, P.; Lang, P.; Garnier, F. J. Phys. Chem. 1995, 99, 9155.
61.Dresselhaus, M. S.; Dresselhaus, G. Adv. Phys 1981, 30, 139.
62.Conwell, E. M.; Perlstein, J.; Shaik, S. Phys. Rev. B 1996, 54, 2308.
63.Zeng, G.; Yu, W.-L.; Chua, S.-J.; Huang, W. Macromolecules 2002, 35, 6907.
64.Paik, K. L.; Baek, N. S.; Kim, H. K.; Lee, J.-H.; Lee, L. Macromolecules 2002, 35, 6782.
65.Kafafi, Z. H., Organic Electroluminescence. US Naval Research Lab: Washington, DC, USA, 2005.
66.May, V.; Kuhn, O., Charge and Energy Transfer Dynamics in Molecular Systems. 2nd Ed.; Wiley-VCH: 2003; chapter 8.
67.Chen, S.-H., The Synthesis and Optoelectronic Properties of Electroluminescent Polymers Consisting of Hole- and Electron-Transporting Segments. Doctoral Dissertation: National Cheng Kung University, 2006.
68.Closs, G. L.; Johnson, M. D.; Miller, J. R.; Piotrowiak, P. J. Am. Chem. Soc. 1989, 111, 3751.
69.Hamberg, I.; Granqvist, C. J. Appl. Phys. 1986, 60, R123.
70.Kobayashi, H.; Ishida, T.; Nakato, Y.; Tsubomura, H. J. Appl. Phys. 1991, 69, 1736.
71.Tahar, R.; Ban, T.; Ohya, Y.; Takahashi, Y. J. Appl. Phys. 1998, 83, 2631.
72.Osada, T.; Kugler, T.; Broms, P.; Salaneck, W. Synth. Met. 1998, 96, 77.
73.Kim, J.; Granstrom, M.; Friend, R.; Johansson, N.; Salaneck, W.; Daik, R.; Feast, W. J. Appl. Phys. 1998, 84, 6859.
74.Milliron, D.; I.Hill; Shen, C.; Kahn, A.; Schwartz, J. J. Appl. Phys. 2000, 87, 572.
75.Lyon, L. Mol. Cryst. Liq. Cryst. 1989, 171, 53.
76.Bradley, D. Synth. Met. 1993, 54, 401.
77.Yang, Y.; Heeger, A. Appl. Phys. Lett. 1994, 64, 1245.
78.Michaelson, H., Handbook of Chemistry and Physics. 58th Ed.; CRC Press: Boca Raton, FL 1977-1978.
79.Michaelson, H.; IBM. J. Res. Dev 1978, 22, 72.
80.Fowler, R.; Nordheim, L. Proc. R. Soc. London A 1928, 119, 173.
81.Parker, I. J. Appl. Phys. 1994, 75, 1656.
82.Rikken, G.; Braun, D.; Staring, E.; Demandt, R. Appl. Phys. Lett. 1994, 65, 219.
83.Halls, J.; Cornil, J.; Santos, D. D.; Silbey, R.; Hwang, D.; Holmes, A.; Bredas, J.; Friend, R. Phys. Rev. B 1999, 60, 5721.
84.Gruner, J.; Remmers, M.; Neher, D. Adv. Mater. 1997, 9, 964.
85.Soos, Z.; Galvao, D.; Etemad, S. Adv. Mater. 1994, 6, 280.
86.Lemmer, U.; Heun, S.; Mahrt, R.; Scherf, U.; Hopmeier, M.; Siegner, U.; Gobel, E.; Müllen, K.; Bässler, H. Chem. Phys. Lett. 1995, 240, 373.
87.Romero, D.; Schaer, M.; Zuppiroli, L.; Cesar, B.; Francois, B. Appl. Phys. Lett. 1995, 67, 1659.
88.Scott, J.; Kaufman, J.; Brock, P.; Dipieto, R.; Salem, J.; Goitia, J. J. Appl. Phys. 1996, 79, 2745.
89.Schubert, E. F., Human Vision. In Light-Emitting Diodes, 1st ed.; Cambridge University Press: 2004; chapter 11.
90.Kido, J. Bulletin of Electrochemistry 1994, 10, 1.
91.Liu, Z. G.; Nazare, H. Synth. Met. 2000, 111, 47.
92.Jordan, R. H.; Dodabalapur, A.; Strukelj, M.; Miller, T. M. Appl. Phys. Lett. 1996, 68, 1192.
93.D'Andrade, B. W.; Thompson, M. E.; Forrest, S. R. Adv. Mater. 2002, 14, 147.
94.Winters, D.; Ricks, M.; Hatwar, T. Proceedings of SID'05, p.36, May 22-27, 2005, Bostom, USA.
95.Chao, C.-I.; Chen, S.-A. Appl. Phys. Lett. 1998, 73, 426.
96.Granstrom, M.; Inganas, O. Appl. Phys. Lett. 1996, 68, 147.
97.Lee, Y.-Z.; Chen, X.; Chen, M.-C.; Chen, S.-A.; Hsu, J.-H.; Fann, W. Appl. Phys. Lett. 2001, 79, 308.
98.Paik, K. L.; Baek, N. S.; Kim, H. K.; Lee, J.-H.; Lee, Y. Macromolecules 2002, 35, 6782.
99.Su, H.-J.; Wu, F.-I.; Shu, C.-F. Macromolecules 2004, 37, 7197.
100.Pai, D. M.; Yanus, J. F.; Stolka, M. J. Phys. Chem. 1984, 88, 4714.
101.Kido, J.; Hongawa, K.; Okuyama, K.; Nagai, K. Appl. Phys. Lett. 1994, 64, 815.
102.Hu, B.; Karasz, F. E. J. Appl. Phys. 2003, 93, 1995.
103.Tanaka, I.; Suzuki, M.; Tokito, S. Jpn. J. Appl. Phys. 2003, 42, 2737.
104.Kim, T. H.; Lee, H. K.; Park, O. O.; Chin, B. D.; Lee, S. H.; Kim, J. K. Adv. Funct. Mater. 2006, 16, 611.
105.Gong, X.; Moses, D.; Heeger, A. J.; Xiao, S. J. Phys. Chem. B 2004, 108, 8601.
106.Chen, S.-A.; Lu, H.-H.; Huang, C.-W. Adv. Polym. Sci. 2008, 212, 49.
107.Chi-Chung, H.; Chih-Yuan, K.; Show-An, C. Appl. Phys. Lett. 2008, 93, 123303.
108.Herguth, P.; Jiang, X.; Liu, M. S.; Jen, A. K. Y. Macromolecules 2002, 35, 6094.
109.Hou, Q.; Xu, Y.; Yang, W.; Yuan, M.; Peng, J.; Cao, Y. J. Mater. Chem. 2002, 12, 2887.
110.Tu, G.; Zhou, Q.; Cheng, Y.; Wang, L.; Ma, D.; Jing, X.; Wang, F. Appl. Phys. Lett. 2004, 85, 2172.
111.Lee, S. K.; Jung, B.-J.; Ahn, T.; Jung, Y. K.; Lee, J.-I.; Kang, I.-N.; Lee, J.; Park, J.-H.; Shim, H. K. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 3380.
112.Lee, S. K.; Hwang, D.-H.; Jung, B.-J.; Cho, N. S.; Lee, J.; Lee, J.-D. Adv. Funct. Mater. 2005, 15, 1647.
113.Luo, J.; Li, X. Z.; Hou, Q.; Peng, J. B.; Yang, W.; Cao, Y. Adv. Mater. 2007, 19, 1113.
114.Chuang, C. Y.; Shih, P. I.; Chien, C. H.; Wu, F. I.; Shu, C. F. Macromolecules 2007, 40, 247.
115.Liu, J.; Xie, Z. Y.; Cheng, Y. X.; Geng, Y. H.; Wang, L. X.; Jing, X. B.; Wang, F. S. Adv. Mater. 2007, 19, 531.
116.Chen, X.; Liao, J.-L.; Liang, Y.; Ahmed, M. O.; Tseng, H.-E.; Chen, S.-A. J. Am. Chem. Soc. 2003, 125, 636.
117.Jiang, J. X.; Xu, Y. H.; Yang, W.; Guan, R.; Liu, Z. Q.; Zhen, H. Y.; Cao, Y. Adv. Mater. 2006, 18, 1769.
118.Zhen, H.; Xu, W.; Yang, W.; Chen, Q.; Xu, Y.; Jiang, J.; Peng, J.; Cao, Y. Macromol. Rapid Commun. 2006, 27, 2095.
119.Lee, P. I.; Hsu, L. C.; Lee, J. F. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 464.
120.Xu, Y. H.; Guan, R.; Jiang, J. X.; Yang, W.; Zhen, H. Y.; Peng, J. B.; Cao, Y. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 453.
121.Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J Appl Phys 1989, 65, 3610.
122.Gosser, D. K., Cyclic Voltammetry Simulation and Analysis of Reaction Mechanism. 1st Ed.; VCH: New York, 1993.
123.Woods, L. L. J. Am. Chem. Soc. 1958, 80, 1440.
124.Cho, N. S.; Hwang, D. H.; Lee, J. I.; Jung, B. J.; Shim, H. K. Macromolecules 2002, 35, 1224.
125.Zhan, X.; Liu, Y.; Wu, X.; Wang, S.; Zhu, D. Macromolecules 2002, 35, 2529.
126.Cho, N. S.; Park, J.-H.; Shim, H.-K. Current Applied Physics 2006, 6, 686.
127.Peng, Q.; Lu, Z. Y.; Huang, Y.; Xie, M. G.; Han, S. H.; Peng, J. B.; Cao, Y. Macromolecules 2004, 37, 260.
128.Cho, N. S.; Park, J. H.; Lee, S. K.; Lee, J.; Shim, H. K.; Park, M. J.; Hwang, D. H.; Jung, B. J. Macromolecules 2006, 39, 177.
129.Fang, Q.; Yamamoto, T. Macromolecules 2004, 37, 5894.
130.Lee, H. J.; Sohn, J.; Hwang, J.; Park, S. Y.; Choi, H.; Cha, M. Chem. Mater. 2004, 16, 456.
131.Li, H.; Hu, Y.; Zhang, Y.; Ma, D.; Wang, L.; Jing, X.; Wang, F. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 3947.
132.Cho, H. J.; Hwang, D. H.; Lee, J. I.; Jung, Y. K.; Park, J. H.; Lee, J.; Lee, S. K.; Shim, H. K. Chem. Mater. 2006, 18, 3780.
133.Yang, Y.; Heeger, A. J. Nature 1994, 372, 344.
134.Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Santos, D. A. D.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R. Nature 1999, 397, 121.
135.Zhang, X.; Shetty, A. S.; Jenekhe, S. A. Macromolecules 1999, 32, 7422.
136.Zhang, X.; Jenekhe, S. A. Macromolecules 2000, 33, 2069.
137.Liao, L.; Pang, Y.; Ding, L.; Karasz, F. E. Macromolecules 2001, 34, 7300.
138.Jenekhe, S. A.; Lu, L.; Alam, M. M. Macromolecules 2001, 34, 7315.
139.Zhang, X.; Kale, D. M.; Jenekhe, S. A. Macromolecules 2002, 35, 382.
140.Zhu, Y.; Alam, M. M.; Jenekhe, S. A. Macromolecules 2003, 36, 8958.
141.Yang, J.; Jiang, C.; Zhang, Y.; Yang, R.; Yang, W.; Hou, Q.; Cao, Y. Macromolecules 2004, 37, 1211.
142.Lu, J.; Tao, Y.; D'Iorio, M.; Li, Y.; Ding, J.; Day, M. Macromolecules 2004, 37, 2442.
143.Tonzola, C. J.; Alam, M. M.; Bean, B. A.; Jenekhe, S. A. Macromolecules 2004, 37, 3554.
144.Wisnieff, R. Nature 1998, 394, 225.
145.Katz, H. E.; Bao, Z.; Gilat, S. L. Acc. Chem. Res. 2001, 34, 359.
146.Babel, A.; Jenekhe, S. A. J. Phys. Chem. B 2003, 107, 1749.
147.Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S. J. Am. Chem. Soc. 2004, 126, 3378.
148.Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Nature 1995, 376, 498.
149.Samson, A. J.; Shujian, Y. Appl. Phys. Lett. 2000, 77, 2635.
150.Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 15.
151.Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C. Appl. Phys. Lett. 2001, 78, 841.
152.Grem, G.; Leditzky, G.; Ullrich, B.; Leising, G. Adv. Mater. 1992, 4, 36.
153.Roncali, J. Chem. Rev. 1992, 92, 711.
154.Pei, Q.; Yang, Y. J. Am. Chem. Soc. 1996, 118, 7416.
155.Grell, M.; Knoll, W.; Lupo, D.; Meisel, A.; Miteva, T.; Neher, D.; Nothofer, H.-G.; Scherf, U.; Yasuda, A. Adv. Mater. 1999, 11, 671.
156.Babel, A.; Jenekhe, S. A. Macromolecules 2003, 36, 7759.
157.Zeng, G.; Yu, W. L.; Chua, S. J.; Huang, W. Macromolecules 2002, 35, 6907.
158.List, E. J. W.; Guentner, R.; Freitas, P. S. d.; Scherf, U. Adv. Mater. 2002, 14, 374.
159.Lupton, J. M.; Craig, M. R.; Meijer, E. W. Appl. Phys. Lett. 2002, 80, 4489.
160.Romaner, L.; Pogantsch, A.; Freitas, P. S. d.; Scherf, U.; Gaal, M.; Zojer, E.; List, E. J. W. Adv. Func. Mater. 2003, 13, 597.
161.Zhao, W.; Cao, T.; White, J. Adv. Funct. Mater. 2004, 14, 783.
162.Klärner, G.; Davey, M. H.; Chen, W.-D.; Scott, J. C.; Miller, R. D. Adv. Mater. 1998, 10, 993.
163.Xia, C.; Advincula, R. C. Macromolecules 2001, 34, 5854.
164.Cheon, C. H.; Joo, S. H.; Kim, K.; Jin, J. I.; Shin, H. W.; Kim, Y. R. Macromolecules 2005, 38, 6336.
165.Huang, B.; Li, J.; Jiang, Z.; Qin, J.; Yu, G.; Liu, Y. Macromolecules 2005, 38, 6915.
166.Vak, D.; Jo, J.; Ghim, J.; Chun, C.; Lim, B.; Heeger, A. J.; Kim, D. Y. Macromolecules 2006, 39, 6433.
167.Hung, M. C.; Liao, J. L.; Chen, S. A.; Chen, S. H.; Su, A. C. J. Am. Chem. Soc. 2005, 127, 14576.
168.Miteva, T.; Meisel, A.; Knoll, W.; Nothofer, H. G.; Scherf, U.; Müller, D. C.; Meerholz, K.; Yasuda, A.; Neher, D. Adv. Mater. 2001, 13, 565.
169.Oda, M.; Nothofer, H.-G.; Lieser, G.; Scherf, U.; Meskers, S. C. J.; Neher, D. Adv. Mater. 2000, 12, 362.
170.Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Mullen, K.; Meghdadi, F.; List, E. J. W.; Leising, G. J. Am. Chem. Soc. 2001, 123, 946.
171.Wu, F. I.; Reddy, D. S.; Shu, C. F.; Liu, M. S.; Jen, A. K. Y. Chem. Mater. 2003, 15, 269.
172.Redecker, M.; Bradley, D. D. C.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 1565.
173.Kong, X.; Kulkarni, A. P.; Jenekhe, S. A. Macromolecules 2003, 36, 8992.
174.Hou, Q.; Zhou, Q.; Zhang, Y.; Yang, W.; Yang, R.; Cao, Y. Macromolecules 2004, 37, 6299.
175.Wu, W.; Inbasekaran, M.; Hudack, M.; Welsh, D.; Yu, W.; Cheng, Y.; Wang, C.; Kram, S.; Tacey, M.; Bernius, M.; Fletcher, R.; Kiszka, K.; Munger, S.; O'Brien, J. Microelectron. J. 2004, 35, 343.
176.Rusling, J. F.; Suib, S. L. Adv. Mater. 1994, 6, 922.
177.Liu, Y.; Liu, M. S.; Jen, A. K.-Y. Acta Polym. 1999, 50, 105.
178.Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
179.Tokito, S.; Tanaka, H.; Noda, K.; Okada, A.; Taga, Y. Appl. Phys. Lett. 1997, 70, 1929.
180.Jung, B.-J.; Yoon, C. B.; Shim, H. K.; Do, L. M.; Zyung, T. Adv. Funct. Mater. 2001, 11, 430.
181.Kim, J. H.; Lee, H. Chem. Mater. 2002, 14, 2270.
182.Kulkarni, A. P.; Zhu, Y.; Jenekhe, S. A. Macromolecules 2005, 38, 1553.
183.Ding, L.; Bo, Z.; Chu, Q.; Li, J.; Dai, L.; Pang, Y.; Karasz, F. E.; Durstock, M. F. Macromol. Chem. Phys. 2006, 207, 870.
184.Kuo, C.-H.; Cheng, W.-K.; Lin, K.-R.; Leung, M.-K.; Hsieh, K.-H. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 4504.
185.Buchgraber, C.; Pogantsch, A.; Kappaun, S.; Spanring, J.; Kern, W. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 4317.
186.In Chapter 4 of this dissertation.
187.Liu, J.; Zhou, Q. G.; Cheng, Y. X.; Geng, Y. H.; Wang, L. X.; Ma, D. G.; Jing, X. B.; Wang, F. S. Adv. Mater. 2005, 17, 2974.
188.Tsami, A.; Yang, X.-H.; Galbrecht, F.; Farrell, T.; Li, H.; Adamczyk, S.; Heiderhoff, R.; Balk, L. J.; Neher, D.; Holder, E. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 4773.
189.Yuan, M.-C.; Shih, P.-I.; Chien, C.-H.; Shu, C.-F. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 2925.
190.Lee, J.; Lee, J.-I.; Park, M.-J.; Jung, Y. K.; Cho, N. S.; Cho, H. J.; Hwang, D.-H.; Lee, S.-K.; Park, J.-H.; Hye, J. H.; Chu, Y.; Shim, H.-K. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 1236.
191.Lee, J.; Cho, H.-J.; Cho, N. S.; Hwang, D.-H.; Kang, J.-M.; Lim, E.; Lee, J.-I.; Shim, H.-K. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 2943.
192.Cho, N. S.; Hwang, D. H.; Jung, B. J.; Lim, E.; Lee, J.; Shim, H. K. Macromolecules 2004, 37, 5265.
193.Wu, T.-Y.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 4570.
194.Ranger, M.; Rondeau, D.; Leclerc, M. Macromolecules 1997, 30, 7686.
195.Janietz, S.; Bradley, D. D. C.; Grell, M.; Giebeler, C.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 2453.
196.Tsai, L.-R.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 5541.
197.Kido, J.; Kimura, M.; Nagai, K. Science 1995, 267, 1332.
198.Wu, C.-C.; Sturm, J. C.; Register, R. A.; Tian, J.; Dana, E. P.; Thompson, M. E. IEEE Trans. Electron Devices 1997, 44, 1269.
199.Mori, T.; Tsuge, H.; Mizutani, T. J. Phys. D: Appl. Phys. 1999, 32, L65.
200.Lane, P. A.; Palilis, L. C.; O'Brien, D. F.; Giebeler, C.; Cadby, A. J.; Lidzey, D. G.; Campbell, A. J.; Blau, W.; Bradley, D. D. C. Phys. Rev. B 2001, 63, 235206.
201.Gong, X.; Ostrowski, J. C.; Moses, D.; Bazan, G. C.; Heeger, A. J. Adv. Funct. Mater. 2003, 13, 439.
202.Leclerc, M. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2869.
203.Sun, J.; Cheng, J.-G.; Zhu, W.-Q.; Ren, S.-J.; Zhong, H.-L.; Zeng, D.-L.; Du, J.-P.; Xu, E.-J.; Liu, Y.-C.; Fang, Q. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 5616.
204.Yang, R.; Tian, R.; Yan, J.; Zhang, Y.; Yang, J.; Hou, Q.; Yang, W.; Zhang, C.; Cao, Y. Macromolecules 2005, 38, 244.
205.Tsai, L.-R.; Li, C.-W.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 5945.
206.Jung, Y. K.; Kim, H.; Park, J.-H.; Lee, J.; Lee, S. K.; Lee, Y. S.; Shim, H.-K. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 3573.
207.Chen, X.; Liao, J. L.; Liang, Y.; Ahmed, M. O.; Tseng, H. E.; Chen, S. A. J. Am. Chem. Soc. 2003, 125, 636.
208.Sandee, A. J.; Williams, C. K.; Evans, N. R.; Davies, J. E.; Boothby, C. E.; Kohler, A.; Friend, R. H.; Holmes, A. B. J. Am. Chem. Soc. 2004, 126, 7041.
209.Takagi, K.; Kakiuchi, H.; Yuki, Y.; Suzuki, M. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 4786.
210.Bonifácio, V. D. B.; Morgado, J.; Scherf, U. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 2878.
211.Mei, C.; Tu, G.; Zhou, Q.; Cheng, Y.; Xie, Z.; Ma, D.; Geng, Y.; Wang, L. Polymer 2006, 47, 4976.
212.Liu, J.; Chen, L.; Shao, S.; Xie, Z.; Cheng, Y.; Geng, Y.; Wang, L.; Jing, X.; Wang, F. J. Mater. Chem. 2008, 18, 319.
213.Liu, J.; Shao, S. Y.; Chen, L.; Xie, Z. Y.; Cheng, Y. X.; Geng, Y. H.; Wang, L. X.; Jing, X. B.; Wang, F. S. Adv. Mater. 2007, 19, 1859.
214.Oelkrug, D.; Tompert, A.; Gierschner, J.; Egelhaaf, H. J.; Hanack, M.; Hohloch, M.; Steinhuber, E. J. Phys. Chem. B 1998, 102, 1902.
215.Tsai, C.-J.; Yeh, K.-M.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 211.
216.In Chapter 5 of this dissertation.
217.Chen, Y.; Hwang, S.-W.; Yu, Y.-H. Polymer 2003, 44, 3827.
218.Li, C. L.; Su, Y. J.; Tao, Y. T.; Chou, P. T.; Chien, C. H.; Cheng, C.-C.; Liu, R. S. Adv. Funct. Mater. 2005, 15, 387.
219.Prasad, P. N.; Williams, D. J., Introduction to Nonlinear Effects in Monomers and Polymers. John Wiley & Sons: New York, 1991.
220.Ego, C.; Marsitzky, D.; Becker, S.; Zhang, J.; Grimsdale, A. C.; Mullen, K.; MacKenzie, J. D.; Silva, C.; Friend, R. H. J. Am. Chem. Soc. 2003, 125, 437.
221.Hwang, D. H.; Kim, S. K.; Park, M. J.; Lee, J. H.; Koo, B. W.; Kang, I. N.; Kim, S. H.; Zyung, T. Chem. Mater. 2004, 16, 1298.
222.Tang, R.; Tan, Z.; Li, Y.; Xi, F. Chem. Mater. 2006, 18, 1053.
223.Chien, C.-H.; Shih, P.-I.; Shu, C.-F. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 2938.
224.Lee, S. K.; Ahn, T.; Cho, N. S.; Lee, J.-I.; Jung, Y. K.; Lee, J.; Shim, H. K. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 1199.
225.Lai, R. Y.; Kong, X.; Jenekhe, S. A.; Bard, A. J. J. Am. Chem. Soc. 2003, 125, 12631.
226.Higuchi, A.; Inada, H.; Kobata, T.; Shirota, Y. Adv. Mater. 1991, 3, 549.
227.In Chapter 6 of this dissertation.
228.Shirota, Y. J. Mater. Chem. 2000, 10, 1.
229.Li, X. C.; Liu, Y.; Liu, M. S.; Jen, A. K. Y. Chem. Mater. 1999, 11, 1568.
230.Donat-Bouillud, A.; Levesque, I.; Tao, Y.; D'Iorio, M.; Beaupre, S.; Blondin, P.; Ranger, M.; Bouchard, J.; Leclerc, M. Chem. Mater. 2000, 12, 1931.
231.Schulz, G. L.; Chen, X.; Chen, S. A.; Holdcroft, S. Macromolecules 2006, 39, 9157.
232.Morgado, J.; Cacialli, F.; Friend, R. H.; Iqbal, R.; Yahioglu, G.; Milgrom, L. R.; Moratti, S. C.; Holmes, A. B. Chem. Phys. Lett. 2000, 325, 552.
233.Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610.
234.Beljonne, D.; Cornil, J.; Friend, R. H.; Janssen, R. A. J.; Bredas, J. L. J. Am. Chem. Soc. 1996, 118, 6453.
235.Inganas, O.; Granlund, T.; Theander, M.; Berggren, M.; Andersson, M. R.; Ruseekas, A.; Sundstrom, V. Opt. Mater. 1998, 9, 104.
236.Pei, J.; Yu, W. L.; Huang, W.; Heeger, A. J. Macromolecules 2000, 33, 2462.
237.Berggren, M.; Gustafsson, G.; Inganas, O.; Andersson, M. R.; Wennerstrom, O.; Hjertberg, T. Adv. Mater. 1994, 6, 488.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔