跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:879a:e16d:38fe:36d8) 您好!臺灣時間:2024/12/13 08:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周明翰
研究生(外文):Ming-han Chow
論文名稱:水蒸氣在帶高電量SiO2奈米微粒上之非均勻相核凝現象
論文名稱(外文):Heterogeneous nucleation of water vapor on highly charged nanoparticles of SiO2
指導教授:陳進成陳進成引用關係
指導教授(外文):Chin-Cheng Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:126
中文關鍵詞:帶高電量微粒奈米微粒非均勻相核凝現象凝結電荷放大系統過飽和度流動型雲霧室二氧化矽
外文關鍵詞:aerosolcondensation charge magnification systemheterogeneous nucleationhighly charged nanoparticlessupersaturationflow cloud chamberSiO2
相關次數:
  • 被引用被引用:3
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
大氣中因自然輻射使微粒帶電,電荷影響微粒引起蒸氣凝結的能力。目前微粒大小、帶電荷量及電荷極性影響微粒核凝能力程度仍未充份了解。本研究以電噴霧法製備二氧化矽(SiO2)奈米微粒,配合凝結電荷放大系統,讓單一粒徑的15nm、20nm、25nm SiO2微粒,帶1~3個單位負電量,並以流動型雲霧室來探討帶高電量微粒在水蒸氣中所引起之非均勻相核凝機構。
在探討凝結電荷放大系統操作條件方面,帶高電量微粒的濃度,會隨著水蒸氣流速、電暈放電電壓大小、稀釋乾空氣流速、同軸噴射混合器內外軸距離等改變。
在電荷電量效應方面,單一粒徑的20nm、25nm SiO2微粒,沒有明顯的電荷效應。而單一粒徑的15nm SiO2微粒,隨著帶電量的提升,所需之臨界過飽和度降低,定性上與理論計算之趨勢相符合,定量上有一定差距。臨界過飽和度實驗值和理論值的差距,可能原因為負離子附著在微粒表面之上,成為核凝程序發生之中心位置(site),降低所需之臨界過飽和度。
In the atmosphere, there are ions generated as a result of cosmic ray and natural radiolysis, and aerosol particles become charged due to the attachment of these ions. Charge on particle can affect the condensation of vapor on particles. So far there are scant data on the effects of the amount of charge, charge polarity, and particle size on the condensation of vapor on nanoparticles, the phenomena are not well understood yet. In this study, an electrospray aerosol generator was used to generate SiO2 nanoparticles and preparing highly charged nanoparticles by condensation charge magnification system. A flow cloud chamber(FCC) was employed to examine the effects of amount of charges particles carried on the critical supersaturation for the condensation of a supersaturated water vapor on SiO2 nanoparticles with diameters ranging from 15 nm to 25 nm, and having up to -3 unit charges.
Highly charged nanoparticles were prepared by condensation charge magnification system. The concentration of highly charged nanoparticles depends on steam flow rate, corona discharge voltage, dry air flow rate and the distance between the coaxial jets.
For 20 and 25 nm SiO2 particles, the experiment results show that there is no charge effect. For 15 nm SiO2 particles, an obvious charged effect on Scr is observed, and the effect is much stronger than the prediction. This phenomenon may be caused by negative ion attached on particles surface to reduce the barrier of nucleation.
中文摘要…………………………………………………………Ⅰ
英文摘要……………………………………………………II
誌謝.......................................... III
目錄……………………………………………………………Ⅳ
表目錄…………………………………………VIII
圖目錄…………………………………………………………………Ⅹ
符號說明…………………………………………………………ⅩⅣ

第一章 緒言 1
1.1 簡介…………………………………………………………………1
1.2 非均勻相核凝文獻回顧………………………………………5
1.3 研究目標........................................8

第二章 理論分析 13
2.1 電噴霧法 …………………………………………………………13
2.2 電暈放電…………………………………………………………18

2.3 核凝理論………………………………………………………21
2.4 不可溶中性微粒ΔG之計算...........................23
2.4.1 不可溶帶電微粒ΔG之計算...........................28
2.5 可溶性微粒ΔG之計算.................................29
2.5.1 可溶性微粒尚未完全溶解..........................30
2.5.2 微粒已完全溶解.................................32
2.5.3 可溶性帶電微粒ΔG之計算........................33
2.5.3.1 可溶性帶電微粒尚未完全溶解......................33
2.5.3.2 可溶性帶電微粒已完全溶解........................34
2.6 雲霧室中溫度、密度與過飽和度分佈....................36

第三章 實驗系統及操作 39
3.1 實驗系統………………………………………………………39
3.1.1 微粒產生器……………………………………………………43
3.1.2 微粒電荷中和器……………………………47
3.1.3 電力篩選器………………………………………………49
3.1.4凝結電荷放大系統.………………………………………54
3.1.5 流動型雲霧室…………………………………………………57
3.1.6 超細微粒凝結核計數器…………………………………60
3.1.7 掃瞄式粒徑分析儀……………………………………………62
3.2 實驗藥品……………………………………………………64
3.3 實驗步驟………………………………………………………65
3.3.1 電噴霧系統操作……………………………………………65
3.3.2 去除效率實驗…………………………………………………66
3.4 理論模擬臨界過飽和度………………………………………71

第四章 實驗結果及討論 72
4.1 電噴霧法製備之微粒與微粒粒徑分析………………………73
4.1.1 製備SiO2微粒之最佳操作條件及粒徑分析……………73
4.1.2單一粒徑SiO2微粒之粒徑分析………………………………74
4.2凝結電荷放大系統實驗…………………………………………77
4.2.1單一粒徑SiO2微粒之帶電量分析…………………………78
4.2.2含水蒸氣之乾空氣氣流流速的影響………………………83
4.2.3電暈放電電壓的影響………………………………………85
4.2.4稀釋乾空氣流速的影響……………………………………89
4.2.5同軸噴射混合器內外軸距離的影響………………………91
4.2.6微粒粒徑的影響…………………………………………93

4.3 空白實驗……………………………………………………95
4.4 微粒去除效率實驗結果…………………………………97
4.5帶高負電量微粒實驗值與理論值比較………………………102
4.6帶高負電量微粒對臨界過飽和度之影響………………………106
第五章 結論與未來研究方向 114
5.1 結論…………………………………………………114
5.2 未來研究方向…………………………………116
參考文獻 117
自述 126


表目錄

1.1 本實驗室歷年探討水蒸氣在有機與無機微粒上之非均勻相核凝……………………………………………………………10
1.2 本實驗室歷年探討正丁醇蒸氣在有機與無機微粒上之非均勻相核凝……………………………………………………………11
1.3 本實驗室歷年探討正壬烷蒸氣在有機與無機微粒上之非均勻相核凝.....................................................11
1.4 本實驗對於水蒸氣在帶高電量奈米微粒上之非均勻相核凝之探討………………………………………………………12
3.1 微粒之電荷Boltzmann平衡分佈表………………………48
4.1 粒徑範圍5~25nm的微粒之slip correction以及帶一個、二個或三個單位電量之電移動度......................................................82
4.2 將粒徑分析的結果,針對各peak的面積(total concentration),加以計算整理.......................................................89
4.3 雲霧室上下板液膜溫度與產生之最大過飽和度及最大過飽和度處之溫度關係表......................................101
4.4 實驗所得帶高電量SiO2微粒臨界過飽和度…………………103
4.5 帶高負電量SiO2微粒在水蒸氣下之理論值與實驗值………104

圖目錄

2.1 電噴霧示意圖........................................14
2.2 液體錐內之受力情況..................................14
2.3 毛細管末端流體在不同電壓操作下形成不同操作模式……15
2.4 cone-jet mode崩潰機制示意圖………………………………16
2.5 正電暈放電示意圖………………………………………………20
2.6 負電暈放電示意圖…………………………………………20
2.7 微粒表面上之液體胚核...............................24
2.8 過飽和蒸氣於可溶性微粒上發生非均勻相核凝……………29
3.1 奈米微粒之非均勻相核凝現象實驗裝置圖………………42
3.2 注射幫浦外觀圖…………………………………………43
3.3 電噴霧系統配置圖……………………………………………46
3.4 加裝電暈放電裝置後之電噴霧系統配置圖…………………46
3.5 微粒中和器之構造圖…………………………………………47
3.6 電力篩選器(3071)外觀圖…………………………………52
3.7 電力篩選器(3080)外觀圖…………………………………53
3.8 電力篩選儀之內部構造圖………………………………53
3.9 同軸噴射混合器外觀圖………………………………………55
3.10 同軸噴射混合器內軸外觀圖…………………………………55
3.11 同軸噴射混合器內部構造示意圖…………………………56
3.12 流動型雲霧室之構造圖……………………………………59
3.13 超細微粒凝結核計數器構造圖……………………………61
3.14 掃瞄式粒徑分析儀構造圖…………………………………63
3.15 以He-Ne雷射觀察雲霧室中核凝現象示意圖………………70
4.1 電噴霧法製備SiO2微粒粒徑分佈圖……………………………74
4.2 單一粒徑之15nm SiO2微粒的粒徑分佈圖……………………75
4.3 單一粒徑之20nm SiO2微粒的粒徑分佈圖………………75
4.4 單一粒徑之25nm SiO2微粒的粒徑分佈圖…………………76
4.5 帶高電量之單一粒徑20nm SiO2微粒的粒徑分佈圖………80
4.6 帶高電量之單一粒徑15nm SiO2微粒的粒徑分佈圖…………81
4.7 帶高電量之單一粒徑25nm SiO2微粒的粒徑分佈圖…………81
4.8 含水蒸氣之乾空氣氣流流速的影響......................84
4.9 以粒徑分析SMPS來確認電暈放電裝置有無產生粒子………86
4.10 電暈放電電壓-3.0 kv之粒徑分析的結果………………86
4.11 電暈放電電壓-3.5 kv之粒徑分析的結果………………87

4.12 電暈放電電壓-4.0 kv之粒徑分析的結果……………87
4.13 電暈放電電壓-4.5 kv之粒徑分析的結果……………88
4.14 電暈放電電壓-5.0 kv之粒徑分析的結果……………88
4.15 稀釋乾空氣和含水蒸氣之乾空氣氣流流速比的影響………90
4.16 同軸噴射混合器內外軸距離的影響…………………………92
4.17 微粒粒徑的影響…………………………………………94
4.18 在水蒸氣中帶高電量SiO2微粒空白實驗進出口比值與粒徑關係…………………………………………………………96
4.19 帶高電量SiO2微粒粒徑為25nm在過飽和水蒸氣中之去除效率與過飽和度關係圖........................................98
4.20 帶高電量SiO2微粒粒徑為20nm在過飽和水蒸氣中之去除效率與過飽和度關係圖........................................99
4.21 帶高電量SiO2微粒粒徑為15nm在過飽和水蒸氣中之去除效率與過飽和度關係圖........................................100
4.22 帶高負電量SiO2微粒在水蒸氣下之理論值與實驗值比較......................................................105
4.23 胚核及電荷在微粒上之分佈情形.....................109
4.24 水蒸氣之核凝臨界過飽和度理論值與帶高電量SiO2微粒之實驗值之比較.........................................110
4.25 負離子附著在微粒表面上之情形.....................111
4.26 負離子在微粒表面之核凝程序........................112
4.27 負離子在微粒表面之核凝程序.......................113
1.A.C. Zettlemoyer, “NUCLEATION”, Chap.4, p.151, (Marcel Dekker, Inc.)
2.Fletcher, N.H., “Physics of Rainclouds”, 1st Ed., Cambridge University Press, p.390(1962)
3.V. Abdelsayed and M. S. El-Shall, “Vapor phase nucleation on neutral and charged nanoparticles: Condensation of supersaturated trifluoroethanol on Mg nanoparticles”, J. Chem. Phys., v.126, p.265(2007)
4.M. Kulmala, H. Vehkam�驥i, T. Pet�驢��, M. Dal Maso, A. Lauri, V. -M. Kerminen, W. Birmili and P. H. McMurry, “Formation and growth rates of ultrafine atmospheric particles: a review of observations”, J. Aerosol Sci, v.35(2), p.143-176(2004)
5.V.V. Smirnov, A.F. Smirnov.V. V V., “Nature and evolution of ultrafine aerosol particles in the atmosphere,’’Atmospheric and Oceanic Physics, v.42 (6),p. 663- 687(2006)
6.V.Y. Smorodin and P.K. Hopke “Condensation activation and nucleation on heterogeneous aerosol nanoparticles’’ J. Chem. Phys.108(26), p. 9147- 9157 (1995)
7.M. Vana, E. Tamm, U. H�洿rak, A. Mirme, H. Tammet, L. Laakso, P.P. Aalto and M. Kulmala, “Charging state of atmospheric nanoparticles during the nucleation burst events,’’ Atmospheric Research, 82(3-4), p. 536- 546 (2006)
8.W.C. Hinds, “Aerosol Technology”, (Wiley, New York)(1982)
9.Sir J. J. Thomson, “Electricity study through gases,” 3rd. Ed., v.320-333 pp.
10.P. Wette and H. J. Sch�夗e, “Nucleation kinetics in deionized charged colloidal model systems: A quantitative studyby means of classical nucleation theory,” PhysRevE.75(2007)
11.Z. G. Kusaka, Wang and J. H. Senjeld, “Ion-induced nucleation II. polarizable multipolar molecules,” J. Chem. Phys.103(20), 899(1995)
12.C. T. R. Wilson, “Condensation of water vapor in the presence of dustfree air and other gases,” Phil. Trans. 189(A), 265 (1897)
13.陶君儒, “水蒸氣在SiO2、TiO2、葡萄糖與麩胺酸鈉次微米微粒上之非均勻相核凝” 博士論文, 國立成功大學化工系 (2000)
14.J. Suh, B. Han, K. Okuyama and M. Choi,“Highly charging of nanoparticles through electrospray of nanoparticle suspension,” Journal of Colloid and Interface Science, v.287(1), p.135-140(2005)
15.J. Suh, B. Han, K. Okuyama and M. Choi,“A method for enhanced charging of nanoparticles via condensation magnification,” J. Aerosol Sci, v.36(10), p.1183-1193(2005)
16.D.S. Kim, D.S. Lee, C.G. Woo, M. Choi and A.F. Kim, , “Control of nanoparticle charge via condensation magnificatio,” J. Aerosol Sci, v.37(12), p.1876-1882(2006)
17.V.K. LaMer and R. Gruen, “A direct test of Kelvin’s equation connecting vapour pressure and radius of curvature,” Trans. Faraday Soc. 48, p.410(1952)
18.M. Volmer and A. Weber, “Keimbildung in ubersattigten Gebilden,” Z. Physik. Chem. (Leipzig) 119, p.227, (1926)
19.S. Twomey, “Experiment test of the Volmer Theory of heterogeneous nucleation,” J. Chem. Phys. ,v.30, p.941(1959)
20.J.A. Koutsky, A.G. Walton and E. Baer, “Heterogeneous nucleation of water vapor on high and low energy surface,” Surface Sci. ,v.3, p.165,(1965)
21.N.H. Fletcher, “Size Effect in Heterogeneous Nucleation,”, J. Chem. Phys., v.29, p.572-576(1958)
22.N.H. Fletcher, “The Physics of Rainclouds,’’, 1st Ed., Cambridge University Press, p.390(1969)
23.M. Lazaridis, “The effects of surface diffusion and line tension on the mechanism of heterogeneous nucleation,” , J. Colloid Interface Sci. 155, p.386(1993)
24.C. T. R. Wilson, Philos. Trans. R. Soc. London, Ser. A189, 265 (1897);193, 289 (1899)
25.L.B. Loeb, A.F. Kip and A.W. Einarsson, “On the nature of ion sign preference in C. T. R. Wilson cloud chamber condensation experimen,” J. Chem. Phys., v.6, p.265(1938)
26.K.C. Russell, “Nucleation on gaseous ions,”, J.Chem.Phys., v.50, p.1809(1969)
27.R.J. Good, “Surface entropy and surface orientation of polar liquids,” J. Phys. Chem., v.61,p.810(1957)
28.J.J. Thomson, “Conduction of Electricity Through Gases,” 3rd. Ed.,v.1 (Cambridge University, Cambridge),pp.320-333.(1928)
29.C.L. Briant and J.JJ. Burton, “Molecular dynamics study of the effects of ions on water microclusters,” J. Chem. Phys., v.64, p.2888(1946)
30.S.H. H. Suck, “Change of free energy in heteromolecular nucleation:Electrostatic energy contribution,” J. Chem. Phys., v.75, p.5090(1981)
31.I. Kusaka, Z.G. Wang and J.H. Seinfeld, “Ion-induced nucleation:A density function approach,” J. Chem. Phys., v.102, p.913(1995)
32.I. Kusaka, Z.G. Wang and J.H. Seinfeld, “Ion-induced nucleation nucleationⅡ:Polarizable multipolar molecul,” J. Chem. Phys., v.103, p.8993(1995)
33.陳泓旭, “正丁醇與水在帶電奈米微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2002)
34.鄭秀津, “水蒸氣在帶電與中性SiO2不可溶奈米微粒上之非均勻相核凝” , 碩士論文, 國立成功大學化工系(2002)
35.陳彥宇, “電噴霧法製備SiO2奈米微粒及正丁醇蒸氣在微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2003)
36.林佳德, “正丁醇蒸氣在無機TiO2與有機甘露糖奈米微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2004)
37.沈于安, “正丁醇蒸氣在SiO2(10nm-6nm)與鼠李糖(25nm-8nm)微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2005)
38.劉旂甫, “水及正丁醇蒸氣在TiO2與甘露糖帶電與中性微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2006)
39.李傳傑, “電噴霧法製備SiO2(6-10nm)、葡萄糖(8-30nm)、味精(8-30nm)奈米微粒及水蒸氣在帶電與中性微粒上非均勻相核凝之研究”, 碩士論文, 國立成功大學化工系(2007)
40.李先偉, “正壬烷蒸氣在帶電及中性SiO2(6nm~30nm)及甘露糖(8nm~30nm)奈米微粒上之非均勻相核凝現象”, 碩士論文, 國立成功大學化工系(2008)
41.黃崇銓, “正丁醇蒸氣在不溶性無機次微米微粒上之非均勻相核凝現象”, 碩士論文, 國立成功大學化工系(1997)
42.蔡聞庭, “正丁醇蒸氣在可溶性D-Mannose與L-Rhamnose次微米微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2000)
43.蔡宜哲, “水蒸氣在不溶性次微米微粒上之非均勻相核凝現象”, 碩士論文, 國立成功大學化工系(1996)
44.C. C. Chen and H. C. Cheng “Effects of charge and size on condensation of supersaturated water vapor on nanoparticles of SiO2,”, J. Chem. Phys. 126, 034701(2007)
45.C. C. Chen, M. S. Guo, Y. J. Tsai, and C. C. Huang, “Heterogeneous Nucleation ofWater Vapor on Submicrometer Particles of SiC, SiO2, and Naphthalene,” J. Colloid and Interface Sci., v.211, p.193-203(1999)
46.C. C. Chen, C. J. Tao and H. R. Hsu, “Condensation of Supersaturated Water Vapor on Charged/Neutral Nanoparticles of Glucose and Monosodium Glutama,” J. Colloid and Interface Sci., v.255, p.158-170(2002)
47.V. Ye. Smorodin and P. H. Hopke, “Relationship of heterogeneous nucleation and condensational growth on aerosol nanoparticles”, Atom. Res. 82, 591-604(2006)
48.L. Stanley, J. Kaufman, “Analytical Chemistry News and Features”, 4, 6, 386 A.
49.J. R. Llompart and J. Fernandez De La Mora, “Generation of Monodisperse droplets 0.3 to 4μm in Diameter from Electrified Cone-jets of Highly Conducting and Viscous Liquids”, J. Aerosol Sci. v.25, p.1093(1994)
50.M. Cloupeau and B. Prunet-Foch, “Electrohydrodynamic Spraying Functioning Modes: a Critical Review”, J. Aerosol Sci. v.25, p.1021(1994)
51.W. Franklin Smyth, “Trends in analytical chemistry”, 1999, V.18, n.5, p.335
52.A. Jaworek and A. Krupa, “Classification of the modes of EHD spraying”, J. Aerosol Sci., Vol.30, No7, pp873~893, (1999)
53.R. P. A. Hartman, D. J. Brunner, D. M. A. Camelot, J. C. M. Marijinissen and B. Scarlett, “Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet”, J. Aerosol Sci. , Vol.30 , No.7, pp. 823~849(1999)
54.W. F. Smyth, “Trends in analytical chemistry”, V.18, n.5, p.335(1999)
55.S. L. Kaufman, “Electrospray diagnostics performed by using sucrose and proteins in the gas-phase electrophoretic mobility molecular”, Special Issue on Ion Formation Mechanisms in Electrospray, ed. S. Rutan and J. Fenn(1999)
56.R. P. A. Hartman, D. J. Brunner, D. M. A. Camelot, J. C. M. Marijnissen and B. Scarlett, “Jet Break-up in Electrohydrodynamic Atomization in the Cone-jet Mode”, J. Aerosol Sci., 31, v.1, p.65-95(2000)
57.F. Hauksbee, “Physico – Mechnical Experiments On Various Subjects,”1sted.,London,pp.46-47(1719)
58.P. I. a, N. Tippayawong,“Progress in unipolar corona discharger designs for airborne particlecharging: A literature review ,” J. Eletro., p.1-11(2009)
59.黃政德, “以EHD技術增加LED散熱效率之研究”, 碩士論文, 國立清華大學動力機械工程學系(2005)
60.W. D. Marra Jr., M. V. Rodrigues, R. G.A. Miranda , M. A.S. Barrozo, J. R. Coury, “The effect of the generation and handling in the acquired electrostatic charge airborne particles,” Powder Technology.,v.191,p.299–308 (2009)
61.N. H. Fletcher, “The Physics of Rainclouds”, 1st Ed., (Cambridge University Press), p.390(1969)
62.W. J. Dunning, “Chemistry of the Solid State”, (Academic Press), NY.(2002)
63.J. J. Thomson, “Conductionof Electricity Through Gases”, 3rd Ed., v.1(Cambridge University, Cambridge), p.320(1928)
64.M. Volmer, “Kinetic der Phasenbildung”, Verlag Th. Steinkopff, Dresden(1939)
65.K. C. Russell, “Nucleation on gaseous ions”, J. Chem. Phys., v.50 p.1809(1969)
66.L. R. White, “Deviation from Young’s Equation”, J. Chem. Soc. Faraday Trans. I, v.73 p.390(1977)
67.C. C. Chen, L. C. Hung and H. K. Hsu, “Heterogeneous nucleation of water vapor on particles of SiO2, Al2O3, TiO2 and carbon black”, J. Colloid. Interface Sci., v.157 p.465(1993)
68.J. L. Katz and B. J. Ostermier, “Diffusion cloud chamber investigation of homogeneous nucleation”, J. Chem. Phys., v.47 p.478(1967)
69.許豪仁, “正丁醇蒸氣在味精與乳糖次微米上之非均勻核凝現象”, 碩士論文, 國立成功大學化工系(1997)
70.Model 3077 Aerosol Neutralizer, TSI company
71.Model 3080 Electrostatic Classifier Instruction Manual, TSI Inc.(2002)
72.Model 3071A Electrostatic Classifier, TSI company
73.C. C. Chen,’Han-Kuan Shu, and Yeun-Kwei Yang,“Nucleation-Assisted Process for the Removal of Fine Aerosol Particles,” Ind. Eng. Chem. Res. ,v.32,p. 1509-1519(1993)
74.J. L. Katz, “Condensation of a Supersaturated Vapor, I. The homogeneous Nucleation of the n-Alkanes”, J. Chem. Phys., v.52 p.4733(1970)
75.Model 3025A, Ultrafine Condensation particle Counter Instruction Manual, TSI Inc.(2002)
76.Model 3934 SMPS (Scanning Mobility Particle Sizer) Instrucion Manual, TSI Inc.
77.C. C. Chen, M. S. Guo, Y. J. Tsai and C. C. Huang, “Heterogeneous Nucleation of Water Vapor on Submicrometer Particles of SiC, SiO2 and Naphthalene”, J. Colloid Interface Sci., v198, p354(1998)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊