跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/27 00:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:辛西亞
研究生(外文):Cynthia Dewi
論文名稱:合成二氧化鈦奈米管陣列做為光伏反應的電子輸材料
論文名稱(外文):The Synthesis of TiO2 Nanotube Arrays as Electron Conductor for Photovoltaic Reactions
指導教授:鄧熙聖
指導教授(外文):Hsi-sheng Teng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:77
外文關鍵詞:TiO2nanotubesanodic oxidationphotovoltaic reactions
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
Nanotubes structures have drawn interests for its high degree of crystallinity and high surface area to volume ratio which provides better electron transport when it is used as the electron conductor. Anatase TiO2 has been known as a good material for photocatalytic applications since it has wide band gap (3.1 eV) which relates to the UV light absorption. This research is focused on synthesizing the TiO2 nanotubes as the electron conductor for photovoltaic reactions; by anodizing Ti foil (vs Pt foil as the counter electrode) in F- ions containing electrolyte solution. The electrolyte solutions used for the anodic oxidation are 0.5 wt% NH4F in ethylene glycol or glycerol, modified by adding 10 wt% dimethyl sulfoxide (DMSO) to enhance the nanotube formation. TiO2 nanotubes obtained were then used as the substrate for CdS deposition using chemical bath deposition (CBD) method, and then were tested for the photoresponse under visible light illumination.
It is found that the TiO2 samples obtained from the anodization of Ti foil for 24 hours gave the highest photocurrent under UV light illumination. It is also found that the samples anodized in glycerol electrolytes are more organized and the nanotubes wall is smoother than those anodized in ethylene glycol electrolytes. The addition of DMSO has been proven to enhance the nanotubes structure uniformity and hence performed higher photoresponse. The CdS deposited TiO2 nanotubes exhibit high photocurrent, showing that the TiO2 nanotubes synthesized in this research can be used as the electron conductor for the photovoltaic reactions.
ABSTRACT i
ACKNOWLEDGEMENTS ii
Contents…. iii
List of Tables v
List of Figures vi
Chapter 1 Introduction 1
1.1 Photocatalysts for Water Splitting 1
1.2 Motivation 1
Chapter 2 Literature Review 4
2.1 Energy Bands and Charge Carriers in Semiconductors [26] 4
2.1.1 Bonding Forces in Solids 4
2.1.2 Energy Bands in Solids 5
2.1.3 Energy Levels in Semiconductors 7
2.2 Water Photoelectrolysis 8
2.2.1 Photoelectrochemical Cell 9
2.2.2 The Principles of Photoelectrolysis 10
2.3 Oxide Semiconducting Materials as Photoelectrolysis Catalysts 12
2.4 Titanium Dioxide (TiO2) Nanotubes 13
2.4.1 The Crystal Structure of Titanium Dioxide 13
2.4.2 The Electronic Band Structure of Titanium Dioxide 15
2.4.3 Fabrication of Titanium Dioxide Nanotube Arrays using Anodic Oxidation Method 16
2.5 Mechanistic Model of Nanotubes Arrays Formation 17
2.6 Cadmium Sulfide Nanoparticle as Visible Light Absorption Sensitizer 20
Chapter 3 Experimental Section 23
3.1 Materials 23
3.1.1 Materials for the Fabrication of Oxide Nanotubes Arrays 23
3.1.2 Materials for the Deposition of CdS Nanoparticles 23
3.1.3 Materials for Water Photoelectrolysis Experiment 23
3.2 Instruments 24
3.2.1 Instruments for Oxide Nanotubes Synthesis 24
3.2.2 Chemical Bath Deposition Instruments 24
3.2.3 Photoelectrolysis Instruments 24
3.3 Experiment 24
3.3.1 TiO2 Nanotube Synthesis 25
3.3.2 CdS Nanoparticle Deposition by Chemical Bath Deposition (CBD) 27
3.4 Samples Characterizations 28
3.4.1 Scanning Electron Microscope (SEM) 28
3.4.2 X-Ray Diffractogram (XRD) 29
3.4.3 UV-Visible Spectrophotometer 30
3.4.4 Water Photoelectrolysis Experiment 31
Chapter 4 Results and Discussions 32
4.1 Physical Appearance 32
4.2 Crystal Structure and Surface Characterization of the TiO2 Nanotubes 34
4.2.1 Crystal Structure of TiO2 Nanotubes 34
4.2.2 Surface and Morphological Characterization of TiO2 Nanotubes 40
4.3 The Light Absorption Property of the TiO2 Nanotubes 49
4.3.1 UV-Visible Absorption Spectrum 49
4.3.2 The Photovoltaic Activity of TiO2 Nanotubes Arrays under UV Light 53
4.4 CdS-loaded TiO2 Nanotubes Arrays Photovoltaic Activity Under Visible Light 63
Chapter 5 Conclusions 66
Bibliography 67
Appendix: The Determination of CdS Deposition Chemical Bath Deposition Cycle 74
Autobiography 77
[1]Serpone N, Emeline AV, Suggested Terms and Definitions in Photocatalysis and Radiocatalysis, International Journal of Photoenergy, 4, 2002, 91-131
[2]Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA, A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications, Solar Energy Materials & Solar Cells 90, 2006, 2011-2075
[3]Ijima S, Helical microtubules of graphitic carbon, Nature 354, 1991, 56-57
[4]Serpone N, Pelizzetti E, Photocatalysis: Fundamentals and Applications, 1989, Wiley, New York
[5]Schiavello M, Dordrecht H, Photoelectrochemistry, Photocatalysis, and Photoreactors: Fundamentals and Developments, 1985, Kluwer Academic, Boston
[6]Linsebigler AL, Lu G, Yates JT, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 95, 1995, 735-758
[7]Grimes CA, Varghese OK, Ranjan S, Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis, Boston, MA: Springer Science+Business Media, LCC, 2008
[8]Chun WJ, Ishikawa A, Fujisawa H, et.al., Conduction and Valence Band Positions of Ta2O5, TaON, and Ta3N5 by UPS and Electrochemical Methods, J. Phys. Chem. B 107, 2003, 1798-1803
[9]Hoyer P, Formation of a titanium dioxide nanotube array, Langmuir 12, 1996, 1411-1413
[10]Lakshmi BB, Dorhout PK, Martin CR, Sol-gel template synthesis of semiconductor nanostructures, Chem. Mater. 9, 1997, 857-862
[11]Imai H, Takei Y, Shimizu K, Matsuda M, Hirashima H, Direct preparation of anatase TiO2 nanotubes in porous alumina membranes, J. Mater. Chem. 9, 1999, 2971-2972
[12]Michailowski A, Al Mawlawi D, Cheng GS, Moskovits M, Highly regular anatase nanotubule arrays fabricated in porous anodic templates, Chem. Phys. Lett. 349, 2001, 1-5
[13]Jung JH, Kobayashi H, van Bommel KJC, Shinkai S, Shimizu T, Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template, Chem. Mater. 14, 2002, 1445-1447
[14]Kobayashi S, Hamasaki N, Suzuki M, Kimura M, Shirai H, Hanabusa K, Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents, J. Am. Chem. Soc. 124, 2002, 6550-6551
[15]Tian ZR, Voigt JA, Liu J, McKenzie B, Xu H, Large oriented arrays and continuous films of TiO2-based nanotubes, J. Am. Chem. Soc. 125, 2003, 12384-12385
[16]Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K, Formation of titanium oxide nanotube, Langmuir 14, 1998, 3160-3163
[17]Chen Q, Zhou WZ, Du GH, Peng LM, Trititanate nanotubes made via a single alkali treatment, Adv. Mater. 14, 2002, 1208-1211
[18]Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N, Formation mechanism of TiO2 nanotubes, Appl. Phys. Lett. 82, 2003, 281-283
[19]Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC, Titanium oxide nanotubes array prepared by anodic oxidation, J. Mater. Res. 16, 2001, 3331−3334
[20]Mor GK, Varghese OK, Paulose M, Mukherjee N, Grimes CA, Fabrication of tapered, conical-shaped titania nanotubes, J. Mater. Res. 18, 2003, 2588-2593
[21]Cai Q, Paulose M, Varghese OK, Grimes CA, The effect of electrolyte composition on the fabrication of selforganized titanium oxide nanotube arrays by anodic oxidation, J. Mater. Res. 20, 2005, 230-236
[22]Ruan CM, Paulose M, Varghese OK, Mor GK, Grimes CA, Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte, J. Phys. Chem. B 109, 2005, 15754-15759
[23]Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TJ, Fitzgerald A, Grimes CA, Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in Length, J. Phys. Chem. B 110, 2006, 16179-16184
[24]Yoriya S, Prakasam HE, Varghese OK, Shankar K, Paulose M, Mor GK, Latempa TJ, Grimes CA, Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20 to 222 μm in length, Sens. Lett. 4, 2006, 334-339
[25]Vogel R, Hoyer P, Weller H, Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap semiconductors, J. Phys. Chem. 98, 1994, 3183-3188
[26]Streetman BG, Solid State Electronic Devices, 2nd ed., 1980, Prentice-Hall, New Jersey
[27]Shockley W, Electrons and Holes in Semiconductors, 1950, Litton Educational Publishing Co., Inc.
[28]Gerischer H, Solar photoelectrolysis with semiconductor electrodes. In: Solar energy conversion: Solid-state physics aspects, Seraphin BO (Ed)., 1979, p.115−172, Springer-Verlag New York
[29]Nozik AJ, Photoelectrochemical Cells, 1980, Phil Trans Royal Soc London Series 295, p. 453-470
[30]Heller A, Conversion of sunlight into electric power and photoassisted electrolysis of water in photoelectrochemical cells, Acc. Chem. Res. 14, 1991, 154-162
[31]Memming R, Photoelectrochemical solar energy conversion. Top Curr. Chem. 143, 1988, 79-112
[32]Nozik AJ, Memming R, Physical Chemistry of semiconductor-liquid interface, J. Phys. Chem. 100, 1996, 13061−13078
[33]Nozik AJ, Photoelectrolysis of water using semiconducting TiO2 crystals. Nature 257, 1975, 383−386
[34]Mavroides JG, Tchernev DI, Kafalas JA, Kolesar DF , Photoelectrolysis of water in cells with TiO2 anodes, Mater. Res. Bull. 10, 1975, 1023−1030
[35]Ohnishi T, Nakato Y, Tsubumura H, Quantum yield of photolysis of water on titanium oxide, Ber Bunsenges Phys. Chem. 79, 1975, 523−525
[36]Kung HH, Jarrett HS, Sleight AW, Ferretti A, Semiconducting oxide anodes in photoassisted electrolysis of water. J. Appl. Phys. 48, 1977, 2463−2469
[37]Giordano N, Antonucci V, Cavallaro S, Lembo R, Bart JCJ, Photoassisted decomposition of water over modified rutile electrodes, Int. J. Hydrogen Energy 7, 1982, 867−872
[38]Fujishima A, Kohayakawa K, Honda K, Hydrogen production under sunlight with an electrochemical photocell, J. Electrochem. Soc. 122, 1975, 1487−1489
[39]Akikusa J, Khan SUM, Photo response and AC impedance characterization of n-TiO2 during hydrogen and oxygen evolution in an electrochemical cell, Int. J. Hydrogen Energy 22, 1997, 875−882
[40]Bak T, Nowotny J, Rekas M, Sorrell CC, Photoelectrochemical properties of TiO2-Pt system in aqueous solutions, Int. J. Hydrogen Energy 27, 2002, 19−26
[41]Adachi M, Murata Y, Harada M, Yoshikawa S, Formation of titania nanotubes with high photocatalytic activity, Chem. Lett. 29, 2000, 942-943
[42]Chu SZ, Inoue S, Wada K, Li D, Haneda H, Awatsu S, Highly porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and sol-gel process, J. Phys. Chem. B, 107, 2003, 6586-6589
[43]Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Enhanced photocleavage of water using titania nanotube arrays, Nano Lett. 5, 2005, 191-195
[44]de Taconni NR, Chenthamarakshan CR, Yogeeswaran G, Watcharenwong A, de Zoysa RS, Basit NA, Rajeshwar K, Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: Influence of process variables on morphology and photoelectrochemical response, J. Phys. Chem. B 110, 2006, 25347-25355
[45]Varghese OK, Paulose M, Shankar K, Mor GK, Grimes CA, Water-photolysis properties of micron-length highlyordered titania nanotube-arrays, J. Nanosci. Nanotechnol. 5, 2005, 1158-1165
[46]Uchida S, Chiba R, Tomiha M, Masaki N, Shirai M, Application of titania nanotubes to a dye-sensitized solar cell, Electrochem. 70, 2002, 418-420
[47]Adachi M, Murata Y, Okada I, Yoshikawa Y, Formation of titania nanotubes and applications for dye-sensitized solar cells, J. Electrochem. Soc. 150, 2003, G488–G493
[48]Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Use of highly-ordered TiO2 nanotube arrays in dyesensitized solar cells, Nano Lett. 6, 2006, 215-218
[49]Paulose M, Shankar K, Varghese OK, Mor GK, Hardin B, Grimes CA, Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes, Nanotechnol. 17, 2006, 1446-1448
[50]http://ruby.colorado.edu/~smyth/min/tio2.html
[51]Daude N, Gout C, Jouanin C, Electronic band structure of titanium dioxide, Phys. Rev. B 15, 1977, 3229-3235
[52]Han GL, He HB, Shao JD, Effect of microstructure of TiO2 thin films on optical band gap energy, Chin. Phys. Lett. 22, 2005, 1787-1789
[53]Zwilling V, Aucouturier M, Darque-Ceretti E, Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach, Electrochim. Acta 45, 1999, 921-929
[54]Gong D, Grimes CA, Varghese OK, Hu WC, Singh RS, Chen Z, Dickey EC, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res. 16, 2001, 3331-3334
[55]Beranek R, Hildebrand H, Schmuki P, Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes, Electrochem. Solid-State Lett. 6, 2003, B12-B14
[56]Macak JM, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P, Smooth anodic TiO2 nanotubes, Angew. Chem. Int. Ed. 44, 2005, 7463-7465
[57]Macak JM, Tsuchiya H, Schmuki P, High-aspect-ratio TiO2 nanotubes by anodization of titanium, Angew. Chem. Int. Ed. 44, 2005, 2100-2102
[58]Raja KS, Misra M, Paramguru K, Formation of self-ordered nano-tubular structure of anodic oxide layer of titanium, Electrochim. Acta 51, 2005, 154-165
[59]Macak JM, Sirotna K, Schmuki P, Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes Electrochim. Acta 50, 2005, 3679-3684
[60]Macak JM, Schmuki P, Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolyte, Electrochim. Acta 52, 2006, 1258-1264
[61]Macak JM, Tsuchiya H, Ghicov A, Schmuki P, Formation and properties of anodic TiO2 nanotube layers, http://www.titaniananotubes.com/Review-webpage.pdf
[62]Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Enhanced photocleavage of water using titania nanotube arrays, Nano Lett. 5, 2005, 191-195
[63]Parkhutik VP, Shershulsky VI, Theoretical modelling of porous oxide growth on aluminium, J. Phys. D: Appl. Phys. 25, 1992, 1258-1263
[64]Macdonald DD, On the formation of voids in anodic oxide films on aluminum, J. Electrochem. Soc. 140, 1993, L27-L30
[65]Siejka J, Ortega C, An O18 study of field-assisted pore formation in compact anodic oxide films on aluminum, J. Electrochem. Soc.: Solid State Sci. Technol. 124, 1977, 883-891
[66]Thompson GE, Porous anodic alumina: fabrication, characterization and applications, Thin Solid Films 297, 1997, 192-201
[67] Pakes A, Thompson GE, Skeldon P, Morgan PC, Development of porous anodic films on 2014-T4 aluminium alloy in tetraborate electrolyte, Corros. Sci. 45, 2003, 1275
[68]Ma LL, Sun HZ, Zhang YG, et. al., Preparation, characterization, and photocatalytic properties of CdS nanoparticles dotted on the surface of carbon nanotubes, Nanotechnology 19, 2008, 115709-115718
[69]Darwent JR, Porter G, Photochemical hydrogen production using cadmium sulphide suspensions in aerated water, Chem. Commun. 4, 1981, 145–146
[70]Matsumura M, Sato Y, Tsubomura H, Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder, J. Phys. Chem. 87, 1983, 3807-3808
[71]Arora MK, Sinha ASK, Upadhyay SN, Active cadmium sulfide photocatalysts for hydrogen production from water, Ind. Eng. Chem. Res. 37, 1998, 3950-3955
[72]Shangguan FW, Yoshida A, Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlayer, J. Phys. Chem. B, 2002, 12227-12230
[73]Fujiwara H, Hosokawa H, Murakosi K, Wada Y, Yanagida S, Effect of surface structures on photocatalytic CO2 reduction using quantized CdS nanocrystallites, J. Phys. Chem. B 101, 1997, 8270-8278
[74]Yin H, Wada Y, Kitamura T, Yanagina S, Photoreductive dehalogenation of halogenated benzene derivatives using ZnS or CdS nanocrystallites as photocatalysts, Environ. Sci. Technol. 35, 2001, 227-231
[75]Korgel BA, Monbouquette HG, Quantum confinement effects enable photocatalyzed nitrate reduction at neutral pH using CdS nnocrystals, J. Phys. Chem. B 101, 1997, 5010-5017
[76]Sun WT, Yu Y, Pan HY, et. al., CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes, J. Am. Chem. Soc. 130, 2008, 1124-1125
[77]Chi CF, Lee YL, Weng HS, A CdS-modified TiO2 nanocrystalline photoanode for efficient hydrogen generation by visible light, Nanotechnology 19, 2008, 125704-125708
[78]Chang CH, Lee YL, Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells, App. Phys. Lett. 91, 2007, 053503-053506
[79]Patermarakis G, Moussoutzanis K, Mathematical models for the anodization conditions and structural features of porous anodic Al2O3 films on aluminum, J. Electrochem. Soc. 142, 1995, 737-743
[80]El-Sayed HA, Birss VI, Controlled interconversion of nanoarray of Ta dimples and high aspect ratio Ta oxide nanotubes, Nanolett. 9 (4), 2009, 1350-1355
[81]Lazzeri M, Vittadini A, Selloni A, Structure and energetics of stoichiometric TiO2 anatase surfaces, Phys. Rev. B 63, 2001, 155409
[82]Wang J, Zhao L, Lin VSY, Lin Z, Formation of various TiO2 nanostructures from electrochemically anodized titanium, J. Mat. Chem. 19, 2009, 3682-3687
[83]Wang D, Liu Y, Yu B, et. al., TiO2 nanotubes with tunable morphology, diameter, and length: synthesis and photo-electrical/catalytic performance, Chem. Mater. 21, 2009, 1198-1206
[84] Murphy AB, Barnes PRF, Randeniya LK, et.al., Efficiency of solar water splitting using semiconductor electrodes, Int. J. Hydrogen Energy 31, 2006, 1999-2017
[85]Chang CH, Lee YL, Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells, Appl. Phys. Lettl 91, 2007, 053503
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊