跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/24 00:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃郁維
研究生(外文):Yu-Wei Huang
論文名稱:鈀銀雙金屬奈米粒子合成及應用研究
論文名稱(外文):Synthesis and Application of Palladium-Silver Bimetallic Nanoparticles
指導教授:陳慧英陳慧英引用關係
指導教授(外文):Huey-Ing Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:127
中文關鍵詞:奈米粒子雙金屬依序還原共還原
外文關鍵詞:palladiumsilverbimetallicnanoparticleco-reductionsuccessive reduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:0
本研究係在water/AOT/isooctane逆微胞系統中分別以共還原法及依序還原法製備鈀銀雙金屬奈米粒子。研究中以硝酸鈀與硝酸銀為前驅鹽,聯胺為還原劑,探討反應時間、ω0值、前驅鹽濃度及鈀銀組成等變因對生成粒子粒徑大小、結構及組成之影響,並以TEM,UV/Vis,XRD及AA等方法進行特性分析,推論鈀銀雙金屬奈米粒子之形成機制。此外,將所得之金屬微粉摻入非導電性PVA中製備導電性薄膜,由導電性分析來探討鈀銀奈米粒子、粒徑大小、結構及添加量對Pd-Ag/PVA複合膜導電性之影響。
以共還原法製備之奈米粒子可藉由調變ω0值、前驅鹽濃度及鈀銀比例,而使粒徑於2~13 nm間作改變。實驗結果顯示,鈀銀雙金屬奈米粒子之UV/Vis光譜在340 nm處有一特性吸收峰,此現象與各別金屬奈米粒子之物理混合有顯著不同,顯示雙金屬奈米粒子的形成。當鈀含量高於75 mole%時,所得粒子呈現單佈性,與以鈀為核、銀依序還原析出相互比較,推論粒子為核殼型Pdcore-Agshell結構。當鈀含量小於75 mole%時,產物呈現雙佈性粒子。至於以銀為核、鈀依序還原析出所得產物與鈀、銀粒子物理混合之產物相近,並非核殼型Agcore-Pdshell結構。
在鈀銀雙金屬粒子之形成由極化曲線分析可知,鈀、銀之還原能力依序為:Pd/Pd > Ag/Pd > Ag/Ag > Pd/Ag。以共還原法製備鈀含量高於75 mole%之鈀銀粒子,由於鈀之還原電位高於銀,故鈀優先成核析出成為核種,隨後鈀核表面沉積一層銀,而形成核殼型之鈀銀雙金屬粒子。當鈀含量小於75 mole%時,結果為小顆鈀銀雙金屬粒子與大顆銀粒子所組成之雙佈分佈。
由導電性量測結果顯示,以粒徑4.2 nm之鈀銀粉混摻PVA複合膜,當鈀銀微粉添加量增加至0.35 wt.%時,其導電度呈巨幅躍升,且隨粒徑之減小,其導電度愈高。
In this study, Pd-Ag bimetallic nanoparticles have been prepared in water/AOT/isooctane reverse micelles solution by the co-reduction and successive reduction methods, respectively, starting from palladium nitrate and silver nitrate with hydrazine. The effects of reaction time, ω0 value, precursor concentration, and Pd-Ag composition on particle size, structure, and composition of resultant Pd-Ag nanoparticles were investigated. Furthermore, the formation mechanism of Pd-Ag nanoparticles was elucidated by means of TEM, UV/Vis, XRD, and AA techniques.
From the result of UV/Vis absorption spectra for Pd-Ag bimetallic nanoparticles, it revealed that a new absorption peak occurred at about 340 nm, which was different from characteristic peaks of Pd and Ag nanoparticles. This new characteristic peak was attributed from the surface plasmon of bimetallic nanoparticles. Moreover, the particle size of Pd-Ag nanoparticles prepared by the co-reduction method could be modulated ranging from 2 to 13 nm by adjusting the ω0 value, precursor concentration, and Pd-Ag composition. As the Pd content was larger than 75 mole%, it was found that the resultant nanoparticles were monodispersive and, as compared with those prepared by the Pd core successive reduction method, were inferred to be Pdcore-Agshell structure. As the Pd content was less than 75 mole%, the particle size distribution of resultant nanoparticles showed bimodal. However, the product obtained by the Ag core successive reduction method was found to be similar to the mixture of Pd and Ag nanoparticles, which did not form as the Agcore-Pdshell structure.
The formation of Pd-Ag bimetallic particles was further analyzed by the polarization curves. It indicated that reducibilities of Pd and Ag were in the sequence as Pd/Pd > Ag/Pd > Ag/Ag > Pd/Ag. For the co-reduction of Pd-Ag particles at Pd content > 75 mole%, the Pd core was preferentially formed due to higher reduction potential of Pd, and the Ag layer was subsequently deposited in the surface of Pd core to form core-shell structured Pd-Ag nanoparticles. However, at Pd content < 75 mole%, the resultant bimodal product was composed of small Pd-Ag bimetallic particles and big Ag aggregates.
Pd-Ag bimetallic nanoparticles were further used in the preparation PVA-based composite films by doping technique. The result showed that for Pd-Ag/PVA, as the dosage of Pd-Ag nanoparticles (particle size: 4.17 nm) were increased up to 0.35 wt.%. The conductivity was raised dramatically. Besides, the conductivity was increased with decreasing the particle size.
誌謝……………………………….……………….……..…………I
摘要……………………………….……………….……..…………II
英文摘要……………………………….……………….……..……IV
總目錄……………………………….………………………...……VI
表目錄…………………………………………………………………IX
圖目錄……………………………….……………….…....………XI
第一章 緒論…………………………………………………………1
1.1 前言……………………….………………..……...…….1
1.2 奈米粒子簡介……...……………………………………..1
1.3 單/雙金屬奈米粒子之應用………………………………..2
1.4 金屬奈米粒子之製備……………………………………… 4
1.4.1 化學濕式法製備金屬奈米粒子……………………… 4
1.4.2 雙金屬奈米粒子之製備……………………………… 4
1.5 研究動機與目的…………………………………………… 7
第二章 理論…………………………………………………………14
2.1 化學還原法原理……………………….…………………..14
2.2 奈米粒子生成理論………………………………………… 15
2.3 微乳化系統之形成………………………………………… 16
2.4 逆微胞法…………………………………………..……….17
2.4.1 逆微胞之構造………………………………………… 18
2.4.2 逆微胞反應機制……………………………………… 18
2.4.3 影響逆微胞性質之主要因素………………………… 19
2.5表面電漿共振………………………………………………. 20
2.6 混合電位理論……………………...………………………21
2.7 導電原理…………………………………………………… 22
第三章 實驗方法……………………………………………………30
3.1 藥品與材料………………………………………………… 30
3.2 分析儀器與設備…………………………………………… 31
3.2.1 實驗設備……………………………………………… 31
3.2.2 分析儀器……………………………………………… 32
3.3 實驗方法及步驟…………………………………………… 33
3.3.1 以逆微胞法製備鈀銀奈米粒子……………………… 33
3.3.2 以依序還原法製備鈀核銀殼及銀殼鈀核之奈米粒子 33
3.3.3鈀銀微粉/高分子複合膜之導電度測定……...………34
3.3.4 極化曲線測定實驗…...…...………………....… 34
3.3.5 鈀銀奈米粒子特性分析……………………………… 35
第四章 鈀銀奈米粒子之製備與特性分析..………………………45
4.1 ω0值之影響………………………………………………… 45
4.1.1 TEM粒徑分析………………………………………… 45
4.1.2 UV/Vis吸收光譜分析………………………………… 46
4.1.3 組成分析……………………………………………… 48
4.2 前驅鹽濃度之影響………………………………………… 48
4.2.1 TEM粒徑分析………………………………………… 49
4.2.2 UV/Vis吸收光譜分析………………………………… 49
4.2.3 組成分析……………………………………………… 50
4.3 鈀銀比例之影響…………………………………………. 50
4.3.1 XRD晶態分析………………………………………… 50
4.3.2 TEM粒徑分析………………………………………… 51
4.3.3 UV/Vis吸收光譜分析………………………………… 51
4.3.4 組成分析……………………………………………… 52
4.4 核殼型鈀銀奈米粒子之製備探討………………………...53
4.4.1 以鈀為核種…………………………...………………53
4.4.2 以銀為核種……………………………...……………53
4.5 鈀銀形成機制之探討……………………...………………54
第五章 鈀銀/PVA複合膜之導電度探討……..……………………100
5.1 鈀銀粉添加量對導電度之影響…………………………… 100
5.2 鈀銀粉粒徑對導電度之影響……………………………… 101
5.3 鈀銀粉結構對導電度之影響……………………………… 102
第六章 結論與建議…………………………………………………110
6.1 結論………..……………………………………………….110
6.2 建議………………………………………………………… 112
參考文獻…………………………………………………………… 114
[1]. H. Jinman, “Polymer bulletin”, 36, 337 (1996).
[2]. R. B. Jason, “Chemistry of materials”, 10, 2027 (1998).
[3]. H. Gleiter, “Noanocrystalline materials”, Prog. Mater. Sci., 33, 223 (1989).
[4]. C. Hayashi, “Ultrafine particle”, Phys. Today, 40, 44 (1987).
[5]. J. H. Fendler, “Atomic and molecular clusters in membrane mimetic chemistry”, Chem. Rev., 87, 877 (1987).
[6]. O. Siiman, L. A. Bumm, R. Callaghan. C. G. Blatchford, and M. Kerker, “Surface-enhanced Raman scattering by citrate on colloidal silver”, J. Phys. Chem., 87, 1014 (1983).
[7]. 蘇品康,“超微粒子材料技術”,復漢出版社 (1989).
[8]. T. Linnert., P. Mulvaney, and A. Hengein, “Surface chemistry of colloidal silver: surface plasmon damping by chemisorbed iodide, hydrosulfide(SH-), and Phenylthiolate”, J. Phys. Chem., 97, 679 (1993).
[9]. G. Schimid, A. Lehnert, J.-O. Malm, and J.-O. Bovin, “Ligand stabilized bimetallic colloids identified by HREM and EDX”, Angew. Chem. Int. Ed. Engl., 30, 874 (1991).
[10]. R. E. Schaak, A. K. Sra, B. M. Leonard, R. E. Cable, J. C. Bauer, Y. F. Han, J. Means, W. Teizer, Y. Vasquez, and E. S. Funck, “Metallurgy in a Beaker: Nanoparticle toolkit for the rapid low-temperature solution synthesis of functional multimetallic solid-state materials”, J. Am. Chem. Soc., 127, 3506 (2005).
[11]. S. U. Son, Y. Jang, J. Park, H. B. Na, H. M. Park, H. J. Yun, J. Lee, and T. Hyeon, “Designed synthesis of atom-economical Pd/Ni bimetallic nanoparticle-based catalysts for sonogashira coupling reactions”, J. Am. Chem. Soc., 126, 5026 (2004).
[12]. R. Raja, V. B. Golovko, J. M. Thomas, A. Berenguer-Murcia, W. Z. Zhou, S. H. Xie, and B. F. G. Johnson, “Highly efficient catalysts for the hydrogenation of nitro-substituted aromatics”, Chem. Commun., 2026 (2005).
[13]. L. D. Pachon, M. B. Thathagar, F. Hartl, and G. Rothenberg, “Palladium-coated nickel nanoclusters: new Hiyama cross-coupling catalysts”, Phys. Chem. Chem. Phys., 8,151 (2006).
[14]. S. Sao-Joao, S. Giorgio, J. M. Penisson, C. Chapon, S. Bourgeois, and C. Henry, “Structure and deformations of Pd–Ni core-shell nanoparticles”, J. Phys. Chem. B, 109, 342 (2005).
[15]. U. A. Paulus, A. Wokaun, G. G. Scherer, T. J. Schmidt, V. Stamenkovic, V. Radmilovic, N. M. Markovic, and P. N. Ross, “Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts”, J. Phys. Chem. B, 106, 4181 (2002).
[16]. J. R. Chang, S. L. Chang, and T. B. Lin, “γ-Alumina-supported Pt catalysts for aromatics reduction: a structural investigation of sulfur poisoning catalyst deactivation”, J. Catal., 169, 338 (1997).
[17]. A. Stanislaus and B. H. Cooper, “Aromatic hydrogenation catalysis-a review”, Catal. Rev. Sci. Eng., 36, 75 (1994).
[18]. Y. C. Sui, W. Liu, X. Z. Li, J. Zhou, R. Skomski, and D. J. Sellmyer, “Template-mediated assembly of FePt L1 clusters under external magnetic field”, J, Appl. Phys., 97 10J304 (2005).
[19]. A. Renouprez, J. L. Rousset, A. M. Cadrot, Y. Soldo, and L. Stievano, “Structure and catalytic activity of palladium-platinum aggregates obtained by laser vaporization of bulk alloys”, J. Alloys Compd., 328, 50 (2001).
[20]. D. Bazin, D. Guillaume, Ch. Pichon, D. Uzio, and S. Lopez, “Structure and size of bimetallic palladium-platinum clusters in an hydrotreatment”, Oil Gas. Sci. Technol. Rev. IFP, 60, 801 (2005).
[21]. N. Toshima, M. Harada, T. Yonezawa, T. Kushihashi, K. Kushihashi, and K. Asakura, “Structural analysis of polymer-protected Pd/Pt bimetallic clusters as dispersed catalysts by using extended x-ray absorption fine structure spectroscopy”, J. Phys. Chem., 95, 7448 (1991).
[22]. A. M. Molenbroek, J. K. Norskov, andB. S. Clausen, “Structure and reactivity of Ni-Au nanoparticle catalysts”, J. Phys. Chem. B, 105, 5450 (2001).
[23]. J. Phillips, A. Auroux, G. Bergeret, J. Massardier, and A. Renouprez, “Phase behavior of palladium-silver particles supported on silica”, J. Phys. Chem., 97, 3565 (1993).
[24]. S. Zhou, B. Varughese, B. Eichhorn, G. Jackson, and K. Mcllwrath, “Pt-Cu core-shell and alloy nanoparticles for heterogeneous NOx reduction: anomalous stability and reactivity of a core-shell nanostructure”, Angew. Chem. Int. Ed., 44, 4539 (2005).
[25]. G. Schmid, in Metal clusters in chemistry, ed. P. Braunstein, L. A. Oro and P. R. Raithby, Wiley-VCH: Weinheim, 3, 1325 (1999).
[26]. A. F. Lee, C. J. Baddeley, C. Hardacre, R. M. Ormerod, R. M. Lambert, G. Schmid, and H. West, “Structural and catalytic properties of novel Au/Pd bimetallic colloid particles: EXAFS, XRD, and acetylene coupling”, J. Phys. Chem., 99, 6096 (1995).
[27]. M. O. Nutt, J. B. Hughes, and M. S. Wong, “Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination”, Environ. Sci. Technol., 39, 1346 (2005).
[28]. Y. F. Han, J. H. Wang, D. D. Kumar, Z. Yan, and D. W. Goodman, “A kinetic study of vinyl acetate synthesis over Pd-based catalysts: kinetics of vinyl acetate synthesis over Pd-Au/SiO2 and Pd/SiO2 catalysts,”J. Catal., Goodman 232, 291 (2005).
[29]. P. Mulvaney, M. Giersig, and A. Henglein, “Surface chemistry of colloidal gold-deposition of lead and accompanying optical effects”, J. Phys. Chem., 96, 10419 (1992).
[30]. S. W. Han, Y. Kim, and K. Kim, “Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/Vis, XPS, and FTIP analysis”, J. Colloid and Interface Sci., 208, 272 (1998).
[31]. S. Link, Z. L. Wang, M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the Plasmon absorption on their composition”, J. Phys. Chem. B, 103, 3529 (1999).
[32]. K. Sumiyama, K. Suzuki. S. S. Makhlouf, K. Wakoh, T. Kamiyana, S. Yamamuro, T. J. Konno, Y. F. Xu, T. J. Hihara, “Magnetic and structural properties of nanophase AgxFe1-x solid solution particles”, J. Non-Cryst. Solids, 192/193, 539 (1995).
[33]. P. Alivisatos, “The use of nanocrystals in biological detection”, Nat. Biotechnol, 22, 27 (2004).
[34]. N. L. Rosi and C. A. Mirkin, “Nanostructures in biodiagnostics”, Chem. Rev., 105 1547 (2005).
[35]. Y. W. Cao, R. Jin, and C. A. Mirkin, “DNA-modified core-shell Ag/Au nanoparticles”, J. Am. Chem. Soc.,123, 7961 (2001).
[36]. N. Toshima and T. Yonezawa, “Bimetallic nanoparticles-novel materials for chemical and physical applications,” J. Chem. Soc., 22, 1179 (1998).
[37]. S. S. Chang, C. W. Shih, C. W. Chen, W. C. Lai, and C. R. C. Wang, “The Shape Transition of Gold Nanorods”, Langmuir, 15, 701 (1999).
[38]. M. T. Reetz and W. Helbig, “Size-selective synthesis of nanostructured transition metal clusters”, J. Am. Chem. Soc., 116, 7401 (1994).
[39]. M. T. Reetz, W. Helbig, and S. A. Quaiser, “Electrochemical preparation of nanostructural bimetallic clusters,”Chem. Mater., 7, 2227 (1995).
[40]. S. Remita, M. Mostafavi, and M. O. Delcourt, “Bimetallic Ag-Pt and Au-Pt aggregates synthesized by radiolysis”, Radiat. Phys. Chem., 47, 275 (1996).
[41]. J. Belloni, M. Mostafavi, S. Remita, J. L. Marignier, and M. O. Delcourt, “Radiation-induced synthesis of mono-and multi-metallic clusters and nanocolloids”, New J. Chem., 1257 (1998).
[42]. A. Henglein, “Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition”, J. Phys. Chem., 97, 5457 (1993).
[43]. M. Mostafavi, N. Keghouche, M. O. Delcourt, and M. O. Belloni, “Ultra-slow aggregation process for silver clusters of a few atoms in solution”, J. Chem. Phys. Lett., 167, 193 (1990).
[44]. J. L. Marignier, J. Belloni, M. O. Delcourt, and J. P. Chevalier, “Microaggregates of non-noble metals and bimetallic alloys prepared by radiation-induced reduction”, Nature, 317, 344 (1985).
[45]. C. Cointet, M. Mostafavi, J. Khatouri, and J. Belloni, “Growth and Reactivity of Silver Clusters in Cyanide Solution”, J. Phys. Chem., 101, 3512 (1997).
[46]. M. Treguer, C. Cointet, H. Remita, J. Khatouri, M. Mostafavi, J. Amblard, J. Belloni, and R. Keyzer, “Dose rate effects on radiolytic synthesis of gold-silver bimetallic clusters in solution”, J. Phys. Chem. B, 102, 4310 (1998).
[47]. A. Henglein and R. Tausch-Treml, “Optical absorption and catalytic activity of subcolloidal and colloidal silver in aqueous solution: a pulse radiolysis study”, J. Colloid Interface Sci., 80, 84 (1998).
[48]. H. Remita, J. Khatouri, M. Treguer, J. Amblard, and J. Belloni, “Silver-palladium alloyed clusters synthesized by radiolysis”, Z. Phys. D, Aotms, Molecules, Clusters, 40, 127 (1997).
[49]. T. Yonezawa, T. Sato, S. Kurada, and K. Kuge, “Photochemical formation of colloidal silver: peptizing action og acetone ketyl radical,” J. Chem. Soc. Faraday trans., 87, 1905 (1991).
[50]. M. Tejos, R. Screbler, F. R. Diaz, and M. A. Del Valle, “Thin amorphous platinum films photochemically obtained and their potentialuse as modified electrodes”, Thin Solid Films, 409, 172 (2002).
[51]. M. Y. Han and C. H. Quek, “Photochemical synthesis in formamide and room-temperature coulomb staircase behavior of size-controlled gold nanoparticles”, Langmuir, 16, 362 (2000).
[52]. Y. Mizukoshi, K. Okitsu, Y. Maeda, T. Yamamoto, R. Oshima, and Y. Nagata, “Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous-solution”, J. Phys. Chem. B, 101, 7033 (1997).
[53]. J. Turkevich and G. Kim, “Palladium: preparation and catalytic properties of particles of uniform size”, Science, 169, 873 (1970).
[54]. N. Toshima, K. Kushihashi, T. Yonezawa, and H. Hirai, “Colloidal dispersions of palladium–platinum bimetallic clusters protected by polymers: preparation and application to catalysis”, Chem. Lett., 18, 1769 (1989).
[55]. N. Toshima, T. Yonezawa, and K. Kushihashi, “Polymer-protected Pd/Pt bimetallic clusters. preparation, catalytic properties and structural considerations,” J. Chem. Soc. Faraday Trans., 89, 2537 (1993).
[56]. N. Toshima, M. Harada, Y. Yamazaki, and K Asakura, “Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride”, J. Phys. Chem., 96, 9927 (1992).
[57]. P. Y. Silvert and K. Tekaia-Elhsissen, “Synthesis of monodisperse submicronic gold particles by the polyol process”, Solid State Ionic, 82, 53 (1995).
[58]. P. Y. Silvert, R. Herrear-Urbina, N. Duvauchelle, V. Vijayakrishnan, and K. Tekaia-Elhsissen, “Preparation of colloidal silver dispersions by the polyol process I. synthesis and characterization”, J. Mater. Chem., 6, 573 (1996).
[59]. M. Boutonnet, J. Kizling, P. Stenius, and G. Maire, “The preparation of monodisperse colloidal metal particles from microemulsions”, Colloids Surf., 5, 209 (1982).
[60]. A. P. Herrera, O. Resto, J. G. Briano, and C. Rinaldi, “Synthesis and agglomeration of gold nanoparticles in reverse micelles”, Nanotechnology, 16, 618 (2005).
[61]. J. H. Son, H. Y. Park, D. P. Kang, and D. S. Bae, “Synthesis and characterization of Ag/Pd doped SiO2 nanoparticles by a reverse micelle and sol–gel processing”, Colloid Surf. A-Physicochem. Eng. Asp., 313/314, 105(2008).
[62]. 吳明立,微乳化系統製備雙金屬奈米粒子之研究,成功大學化學工程所博士論文 (2001).
[63].D. V. Goia and E. Matijevic, “Preparation of monodispered metal particles”, New J. Chem., 22, 1203 (1998).
[64]. N. Toshima, T. Yonezawa, M. Harada, K. Asakura, and Y. Iwasawa, “The polymer-protected Pd-Pt bimetallic clusters having catalytic activity for selective hydrogenation of diene-preparation and EXAFS investigation on the structure”, Chem. Lett., 19, 815 (1990).
[65]. N. Toshima and T. Yonezawa, Makromol. Chem., Macromol. Symp., 59, 281 (1992).
[66]. N. Toshima and Y. Wang, “Preparation and catalysis of novel colloidal dispersions of copper/noble metal bimetallic clusters”, Langmuir, 10, 4574 (1994).
[67]. N. Toshima and Y. Wang, “Polymer-protected Cu/Pd bimetallic clusters”, Adv. Mater., 6, 245 (1994).
[68]. M. Mandal, S. Kundu, S. K. Ghosh, and T. Pal, “Micelle-mediated UV-photoactivation route for the evolution of Pdcore-Aushell and Pdcore-Agshell bimetallics from photogenerated Pd nanoparticles”, J. Photoch. Photobio. A, 167, 17 (2004).
[69]. Y. Wang and N. Toshima, “Preparation of Pd-Pt bimetallic colloids with controllable core/shell structures”, J. Phys. Chem. B, 101, 5301 (1997).
[70]. C. Y. Huang, H. J. Chiang, J. C. Huang, and S. R. Sheen, “Synthesis of nanocrystalline Ag-Pd alloys by chemical reduction method,” Nanostructured Mater., 10(8), 1393 (1998).
[71]. A. B. R. Mayer and J. E. Mark, “Poly(2-hydroxyalkyl methacrylates) as stabilizers for colloidal noble metal nanoparticle”, Polymer, 41, 1627 (2000).
[72]. K. Torigoe and K. Esumi, “Preparation of bimetallic Ag-Pd colloids form silver(I) Bis(oxalato)palladate(II)”, Langmuir, 9, 1664 (1993).
[73]. C. H. Chen, L. S. Sarma, G. R. Wang, J. M. Chen, S. C. Shih, M. T. Tang, D. G. Liu, J. F. Lee, J. M. Chen, and B. J. Hwang, “Formation of bimetallic Ag-Pd nanoclusters via the reaction between Ag nanoclusters and Pd ions”, J. Phys. Chem. B, 110, 10287 (2006).
[74]. W. Wang and G. Cao, “Synthesis and structural investigation of Pd/Ag bimetallic nanoparticles prepared by the solvothermal method”, J. Nanoparticle Res., 9, 1153 (2007).
[75]. 莊萬發,“超微粒子理論應用”,復漢出版社,民國84年4月,台南 (1995)。
[76].蔡淑惠,“合金奈米粒子之製備與應用”,成功大學化學研究所碩士論文,2003。
[77]. S. P. Moulik, and B. K. Paul, “Structure, dynamics and transport Properties of microemulsions ”, Adv. In Colloid& Interface Sci., 78, 99 (1998).
[78]. L. M. Prince, “Microemulsions: theory and practice”, New York: Academic Press (1977).
[79]. 曹恆光,連大成, “淺談微乳液”,物理雙月刊,23(4),488 (2001).
[80]. M. P. Pileni, “Structure and reactivity in reverse micelles”, Elsevier, New York (1989).
[81]. P. L. Luisi, “Enzymes hosted in reverse micelles in hydrocarbon solution”, Angew. Chem. Int. Ed. Engl., 24, 439 (1985).
[82]. P. L. Luisi and L. J. Magid, “Solubilization of enzymes and nucleic acids in hydrocarbon micellar solutions”, CRC Crit. Rev. Biochem., 20, 409 (1986).
[83]. A. S. Bommarius, J. F. Holzwarth, D. I. C. Wang, and T. A. Hatton, “Coalescence and Solubilizate Exchange in a Cationic Four-Component Reversed Micellar System”, J. Phys. Chem., 94, 7232 (1990).
[84]. R. P. Bagwe and K. C. Khilar, “Effects of the Intermicellar Exchange Rate and Cations on the Size of Silver Chloride Nanoparticles Formed in Reverse Micelles of AOT”, Langmuir, 13, 6432 (1997).
[85]. M. Zulauf and H. F. Eicke, “Inverted micelles and microemulsions in the ternary system water/aerosol-OT/isooctane as studied by photon correlation spectroscopy”, J. Phys. Chem., 83, 480 (1979).
[86]. D. H. Chen, J. J. Yeh, and T. C. Huang, “Synthesis of platinum ultrafine particles in AOT reverse micelles”, J. Colloid Interface Sci., 215, 159 (1999).
[87]. P. D. O. Fletcher, A. M. Howe, and B. H. Robinson,“The kinetics of solubilisate exchange between water droplets of a water-in-oil microemulsion”, J. Chem. Soc., 83, 985 (1987).
[88]. 朱秦億,“鈀及鈀銀複合膜之製備、特性分析及其氫/氮選透性之研究”,國立成功大學化學工程研究所博士論文,2004。
[89]. 林育佑,“以化學還原法合成導電性銅奈米微粉之研究”,成功大學化學工程研究所碩士論文,2003。
[90]. Ye. P. Mamunya, V. V. Davydenko, P. Pissis, and E. V. Lebedev, “Electrical and thermal conductivity of polymers filled with metal powders”, Eur. Polym. J., 38, 1887 (2002).
[91]. H. S. Katz and J. V. Milewski (ed), Handbook of Fillers and Reinforcements for Plastics, New York, Van Nostrand Reinhold, (1978).
[92]. R. K. McGeary, J. Am. Ceram. Soc., 144, 513 (1961).
[93]. Y. Fu, J.Liu and M. Willander, “Conduction modeling of a conductive adhesive with bimodal distribution of conducting element”, Inter. J. Adhesion & Adhesives, 19, 281 (1999).
[94]. M. Q. Zhang, J. R. Xu, H. M. Zeng, Q. Huo, Z. Y. Zhang and F. C. Yun, “Fractal approach to the critical filler volume fraction of an electrically conductive polymer composite”, J. Mater. Sci., 30, 4226 (1995).
[95]. Y. H. Chen, Y. H. Teseng, and C. S. Yeh, “Laser-induced alloying Au-Pd and Ag-Pd colloidal mixtures: the formation of dispersed Au/Pd and Ag/Pd nanoparticles”, J. Mater. Chem., 12, 1419 (2002).
[96]. P. Mulvaney, “Surface Plasmon spectroscopy of nanosized metal particles”, Langmuir, 12, 788 (1996).
[97]. L. D’Souza, B. Parthasarathi, and S. Sampath, “Silver-palladium nanodispersions in silicate materices: highly uniform, stable, bimetallic structures”, J. Colloid Interface Sci., 246, 92 (2001).
[98]. C.C. Yang, C.C. Wan, Y.Y. Wang, “Synthesis of Ag/Pd nanoparticles via reactive micelles as templates and its application to electroless copper deposition”, J. Colloid Interface Sci., 279, 433 (2004).
[99]. W. Wang and G. Cao, “Synthesis and structural investigation of Pd/Ag bimetallic nanoparticles prepared by the solvothermal method”, J. Nanoparticle Res., 9, 1153 (2007).
[100]. M. Michaelis and A. Henglein, “Composite Pd-Ag particles in aqueous solution”, J. Phys. Chem., 98, 6212 (1994).
[101]. K. Torigoe, Y. Nakajima, and K. Esumi, “Preparation and characterization of colloidal silver-platinum alloys”, J. Phys. Chem., 97, 8304 (1993).
[102]. G. Mie, Ann. Phys. (Leipzig), 330, 337 (1908).
[103]. B. de B. Darwent, Bond Dissociation Energies in Simple Molecules, NSRDS-NBS-31, National Bureau of Standards, Washington, D. C. (1970).
[104]. 王鉦源,“以化學還原法製備奈米級銀鈀微粉”,成功大學化學工程研究所碩士論文,2002。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊